
CS3243, Solutions for Tutorial 3— 1

National University of Singapore
School of Computing

CS3243: Foundations of Artificial Intelligence
Solutions for Tutorial 3

Readings: AIMA Chapters 4 & 6

1. Consider the 8-puzzle that we discussed in class. Suppose we define a new heuristic function
h3 which is the average of h1 and h2, and another heuristic function h4 which is the sum of
h1 and h2. That is,

h3 =
h1 + h2

2

h4 = h1 + h2

where h1 and h2 are defined as “the number of misplaced tiles”, and “the sum of the distances
of the tiles from their goal positions”, respectively. Are h3 and h4 admissible? If admissible,
compare their dominance with respect to h1 and h2.

Since h1 ≤ h2,

h3 =
h1 + h2

2
≤

h2 + h2

2
= h2 ≤ h∗

hence h3 is admissible. Since h1 = h1+h1

2
≤ h1+h2

2
= h3 we have h1 ≤ h3 ≤ h2. That is, h2

dominates h3, and h3 dominates h1.

On the other hand, h4 is not admissible. Consider a board in which moving one tile will reach
the goal. In this case, h1 = h2 = h∗ = 1, and

h4 = h1 + h2 = 1 + 1 > h∗

2. Refer to the Figure 1 below. Apply the best-first search algorithm to find a path from Fagaras
to Craiova, using the following evaluation function f(n):

f(n) = g(n) + h(n)

where h(n) = |hSLD(Craiov) − hSLD(n)| and hSLD(n) is the straight-line distance from any
city n to Bucharest given in Figure 4.1. Trace the best-first search algorithm by showing the
series of search trees as each node is expanded, based on the TREE-SEARCH algorithm below.
Prove that h(n) is an admissible heuristic.

function Tree-Search(problem, fringe) returns a solution, or failure
fringe← Insert(Make-Node(Initial-State[problem]), fringe)
loop do

if fringe is empty then return failure
node←Remove-Front(fringe)
if Goal-Test[problem] applied to State(node) succeeds return node
fringe← InsertAll(Expand(node,problem), fringe)

CS3243, Solutions for Tutorial 3— 2

Figure 1: Graph of Romania.

The series of search trees, where the 3-tuple in each node denotes (g, h, f):

(a)

Fagaras
(0,16,16)

(b)

Fagaras
(0,16,16)

Sibiu Bucharest
(211,160,371)(99,93,192)

(c)

Fagaras
(0,16,16)

OradeaFagaras

Sibiu Bucharest
(211,160,371)

(198,16,214)
Arad

(239,206,445) (250,220,470)
Rimnicu Vicea
(179,33,212)

(99,93,192)

CS3243, Solutions for Tutorial 3— 3

(d)

Fagaras
(0,16,16)

OradeaFagaras

Craiova Pitesti

Sibiu Bucharest
(211,160,371)

(198,16,214)
Arad

(239,206,445) (250,220,470)
Rimnicu Vicea
(179,33,212)

(325,0,325) (276,60,336) (259,93,352)
Sibiu

(99,93,192)

(e)

Fagaras
(0,16,16)

OradeaFagaras

Bucharest
Craiova Pitesti

Sibiu Bucharest
(211,160,371)

(198,16,214)
Arad

(239,206,445) (250,220,470)
Rimnicu Vicea
(179,33,212)

Sibiu
(297,93,390) (409,160,569)

(325,0,325) (276,60,336) (259,93,352)
Sibiu

GOAL

(99,93,192)

Note the we need to expand Faragas even though we had reached the destination the third step
because getting to the destination is not sufficient. A* finds the optimal solution.

Now consider the following triangle:

n

Bucharest

CraiovaD

hSLD(n) hSLD(Craiova)

CS3243, Solutions for Tutorial 3— 4

Let D be the straight-line distance between n and Craiova. From the above triangle, we can
see by the Triangle Inequality that

D + hSLD(n) ≥ hSLD(Craiova)

and
D + hSLD(Craiova) ≥ hSLD(n)

Hence,
D ≥ hSLD(Craiova)− hSLD(n)

and
D ≥ −(hSLD(Craiova)− hSLD(n))

which is equivalent to D ≥ |hSLD(Craiova)−hSLD(n)|. Hence, D ≥ h(n). But we also know
that h∗(n) ≥ D, so h∗(n) ≥ h(n) , and h(n) is admissible.

3. (a) Given that a heuristic h is such that h(G) = 0, where G is any goal state, prove that if
h is consistent, then it must be admissible.

The proof is by induction on k, the number of actions from a node n to the goal node G.

Base step: k = 1, i.e., node n is one step from G. Since the heuristic function h is
consistent,

h(n) ≤ c(n, a,G) + h(G)

Since h(G) = 0,
h(n) ≤ c(n, a,G) = h∗(n)

Therefore, h is admissible.

Induction step:

G

n

n′

Assume: If h(n′) is consistent, then h(n′) is admissible, for all nodes n′ that are k steps
from G.

Now consider node n which is k + 1 steps from G. If h is a consistent heuristic,

h(n) ≤ c(n, a, n′) + h(n′)

Since n′ is k steps from G and h is admissible for node n′ that is k steps from G,

h(n′) ≤ h∗(n′)

⇒ c(n, a, n′) + h(n′) ≤ c(n, a, n′) + h∗(n′)

⇒ h(n) ≤ c(n, a, n′) + h∗(n′) = h∗(n)

Hence h is admissible for node n.

CS3243, Solutions for Tutorial 3— 5

(b) Give an example of an admissible heuristic function that is not consistent.

An example of an admissible heuristic function that is not consistent is as follows: h(n) =
3, h(n′) = 1. h is admissible since h(n) ≤ h∗(n) = 1 + 2 = 3, and h(n′) ≤ h∗(n′) = 2. h

is not consistent since 3 = h(n) > c(n, a, n′) + h(n′) = 1 + 1 = 2.

1

2 G

n

n′

(c) Is it possible for a heuristic to be consistent and yet not admissible? If not, prove it. If
it is, define one such heuristic.

Yes. Take a heuristic h1 that is both consistent and admissible, such that h1(G) = 0.
This means that following condition is satisfied for all nodes n and n′:

h1(n) ≤ c(n, a, n′) + h1(n
′)

Consider the heuristic h2 = h1 + 1. Clearly,

h2(n) ≤ c(n, a, n′) + h2(n
′)

is satisfied for all nodes n and n′ as well and h2 is consistent. However, h2(G) = 1 > 0
and h2 is not admissible.

4. Assume that we have the following initial state and goal state for the 8-puzzle game. We will
use h1 defined as “the number of misplaced tiles” to evaluate each state.

1 2 3

4

567

8

1 2

567

4 3

8

goal stateinitial state

(a) Apply the hill-climbing search algorithm in Figure 4.11 (reproduced below). Can the
algorithm reach the goal state?

CS3243, Solutions for Tutorial 3— 6

function Hill-Climbing(problem) returns a state that is a local maximum
inputs: problem, a problem
local variables: current, a node

neighbor, a node

current←Make-Node(Initial-State[problem])
loop do

neighbor← a highest-valued successor of current
if Value[neighbor] ≤ Value[current] then return State[current]
current← neighbor

end

According to Figure 4.11, the hill-climbing search algorithm will move to a neighboring
state only if the neighboring state is better. Since no successor of the initial state has a
better h1 value, the algorithm is stuck and is not able to reach the goal state.

(b) Identify a sequence of actions leading from the initial state to the goal state. Is it possible
for simulated annealing to find such a solution?

The following sequence of actions leads from the initial state to the goal state:

1 2

567

4 3

8

567

4 3

8

1

2

567

4 31

2 8

567

41

2 8 3

567

1

2 8 3

4

567

1

3

48

2

567

3

48

21

567

1

2 3

48

2

567

4 3

8

1

567

3

4

21

8

Simulated annealing allows an action that leads to a worse value to be taken with some
probability. Thus it is possible for simulated annealing to find the above solution.

5. Consider Figure 6.1 in the textbook (reproduced in Figure 2). The Tic-Tac-Toe search space
can actually be reduced by means of symmetry. This is done by eliminating those states
which become identical with an earlier state after a symmetry operation (e.g. rotation). The
following diagram shows a reduced state space for the first three levels with the player making
the first move using “x” and the opponent making the next move with “o”. Assume that the
following heuristic evaluation function is used at each leaf node n:

Eval(n) = P (n)−O(n)

where P (n) is the number of winning lines for the player while O(n) is the number of winning
lines for the opponent. A winning line for the player is a line (horizontal, vertical or diagonal)

CS3243, Solutions for Tutorial 3— 7

that either contains nothing or “x”. For the opponent, it is either nothing or “o” in the
winning line. Thus, for the leftmost leaf node in Figure 3, Eval(n) = 6− 5 = 1.

XX
XX

X
X

X

XX

MAX (X)

MIN (O)

X X

O

O
OX O

O
O O

O OO

MAX (X)

X OX OX O X
X X

X
X

X X

MIN (O)

X O X X O X X O X

.

. . .

. . .

. . .

TERMINAL
XX

−1 0 +1Utility

Figure 2: Search space for Tic-Tac-Toe.

(a) Use the minimax algorithm to determine the first move of the player, searching 2-ply
deep search space shown in Figure 3.

(b) Assume that the “x” player will now make his second move after his opponent has placed
an “o”. Complete the following minimax tree in Figure 4 by filling the remaining blank
boards at the leaf nodes. Compute the evaluation function for each of the filled leaf
nodes and determine the second move of the “x” player (searching 2-ply deep).

(c) The minimax search tree in Figure 5 has heuristic evaluation function values with respect
to the max player for all the leaf nodes, where square leaf nodes denote end of game
with +∞ representing that the max player wins the game and −∞ representing that
the min player is the winner. Do a minimax search and determine the next move of the
max player from node A. Which is the target leaf node that the max player hopes to
reach?

As shown in Figure 5, the max player will move from A to B. He hopes to reach J.

(d) Suppose we use alpha-beta pruning in the direction from left to right to prune the search
tree in question 3. Indicate which arcs are pruned by the procedure. Do you get the
same answer in terms of the max player’s next move and target leaf node?

The arcs pruned away by alpha-beta pruning are indicated as “X” above in Figure 6.

The arc EL can be pruned since whatever value that branch returns, node E will have a
minimax value of at least 7, which does not influence the minimax value at node B since

CS3243, Solutions for Tutorial 3— 8

Figure 3: 2-ply deep search space

node B will always have the minimax value of 5 from node D. Similarly, the arc CG can
be pruned, since node C will always have the minimax value of from node F regardless
of what value is returned from the branch CG.

The max player’s next move (B) and target leaf node (J) are still the same. That is,
alpha-beta pruning does not alter the outcome.

CS3243, Solutions for Tutorial 3— 9

Figure 4: 3-ply deep search space

CS3243, Solutions for Tutorial 3— 10

Figure 5: minimax search tree

Figure 6: minimax search tree with alpha-beta pruning

