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Constraint Satisfaction 
Problems 

Chapter 6 



CS 3243 - Constraint Satisfaction 2 

Outline 

  Constraint Satisfaction Problems (CSP) 
  Backtracking search for CSPs 
  Local consistency in constraint propagation 
  Other topics 

  Local search for CSPs 
  The structure of problems 
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Constraint satisfaction problems (CSPs) 

  Standard search problem: 
  state is a “black box” – any data structure that supports successor 

function, heuristic function, and goal test 

  CSP: 
  state is defined by variables Xi with values from domain Di 
  goal test is a set of constraints specifying allowable combinations of 

values for subsets of variables 

  Simple example of a formal representation language 
  Allows useful general-purpose algorithms with more power 

than standard search algorithms 
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Example: Map-Coloring 

  Variables: WA, NT, Q, NSW, V, SA, T  
  Domains: Di = {red,green,blue} 
  Constraints: adjacent regions must have different colors 

  e.g., WA ≠ NT, or (WA,NT) in {(red,green),(red,blue),(green,red), 
(green,blue),(blue,red),(blue,green)} 
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Example: Map-Coloring 

  Solutions are complete and consistent assignments, 
e.g., WA = red, NT = green,Q = red, NSW = 
green, V = red, SA = blue, T = green 
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Constraint graph 

  Binary CSP: each constraint relates two variables 

  Constraint graph: nodes are variables, arcs are constraints 



Cryptarithmetic 

  TWO + TWO = FOUR 
  SEND + MORE = MONEY 
  GO * FLY = KITES 
  HAPPY + HAPPY + HAPPY + DAYS =  

AHEAD 
  ALL + COWS + EAT = GRASS 
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Job shop scheduling 

  Assembling a car, by breaking it down into 
15 tasks:  
  E.g., Axles, Wheels, Nuts, Caps, Inspect 

  Precedence Constraints 
  AxleF + 10 ≤ WheelRF 

  Disjunctive Constraints 
  (AxleF + 10 ≤ AxleB) or (AxleB + 10 ≤ AxleF) 
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Varieties on the CSP formalism 

  Discrete variables 
  finite domains: 

  n variables, domain size d  O(dn) complete assignments 
  e.g., Boolean CSPs, incl.~Boolean satisfiability (NP-complete) 

  infinite domains: 
  integers, strings, etc. 
  e.g., job scheduling, variables are start/end days for each job 
  need a constraint language, e.g., StartJob1 + 5 ≤ StartJob3 

  Continuous variables 
  e.g., start/end times for Hubble Space Telescope observations 
  linear constraints solvable in polynomial time by linear programming 
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Varieties of constraints 

  Unary constraints involve a single variable,  
  e.g., SA ≠ green 

  Binary constraints involve pairs of variables, 
  e.g., SA ≠ WA 

  Higher-order constraints involve 3 or more 
variables, 
  e.g., cryptarithmetic column constraints 
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Example: Cryptarithmetic 

  Variables: F T U W  
               R O X1 X2 X3 

  Domains: {0,1,2,3,4,5,6,7,8,9} 
  Constraints: Alldiff (F,T,U,W,R,O) 

  O + O = R + 10 · X1 
  X1 + W + W = U + 10 · X2 
  X2 + T + T = O + 10 · X3 
  X3 = F, T ≠ 0, F ≠ 0 



Example: Sudoku 
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  Variables:  up to 81 variables 
  Domains: {0,1,2,3,4,5,6,7,8,9} 
  Constraints: Alldiff (…) * 27 (columns, rows, boxes) 
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Real-world CSPs 

  Assignment problems 
  e.g., who teaches what class 

  Timetabling problems 
  e.g., which class is offered when and where? 

  Transportation scheduling 
  Factory scheduling 

  Many real-world problems involve real-valued 
variables 

  Many problems also feature preferences  
(I don’t want to on Monday morning) 
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Standard search formulation (incremental) 

Let's start with the straightforward approach, then fix it 

States are defined by the values assigned so far 

  Initial state: the empty assignment { } 
  Successor function: assign a value to an unassigned variable that does 

not conflict with current assignment 
 fail if no legal assignments 

  Goal test: the current assignment is complete 

1.  This is the same for all CSPs 
2.  Every solution appears at depth n with n variables 

 use depth-first search 
3.  Path is irrelevant, so can also use complete-state formulation 



CS 3243 - Constraint Satisfaction 15 

CSP Search tree size 

b = (n - l )d at depth l, hence n! · dn leaves 
{} Variables: A,B,C,D 

Domains: 1,2,3 

A=1 A=2 D=3 … B=1 … 

A=1, 
B=1 

A=1, 
B=2 

A=1, 
C=1 

A=1, 
D=3 … … 

Depth 1: 4 variables x 3 domains  
= 12 states 

Depth 2: 3 variables x 3 domains  
= 9 states 

Depth 3: 2 variables x 3 domains  
= 6 states 

Depth 4: 1 variable x 3 domains  
= 3 states (leaf level) 
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Backtracking search 

  Variable assignments are commutative, i.e., 
[ WA = red then NT = green ] same as [ NT = green then WA 

= red ] 

  Only need to consider assignments to a single variable at 
each node 
  Fix an order in which we’ll examine the variables 
 b = d and there are dn leaves 

  Depth-first search for CSPs with single-variable assignments 
is called backtracking search 

  Is the basic uninformed algorithm for CSPs 
  Can solve n-queens for n ≈ 25 
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Backtracking search 
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Backtracking example 
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Backtracking example 
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Backtracking example 
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Backtracking example 
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Exercise - paint the town! 

  Districts across corners can be colored using the same color. 
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Constraint Graph 

BCN 
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How would you  
color this map? 

Consider its constraints? 
Can you do better than blind search? 
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Improving backtracking efficiency 

  General-purpose methods can yield 
significant gains in speed: 

  Which variable should be assigned next? 
  In what order should its values be tried? 
  Can we detect inevitable failure early? 
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Most constrained variable 

  Most constrained variable: 
choose the variable with the fewest legal values 

  a.k.a. minimum remaining values (MRV) 
heuristic 
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Most constraining variable 

  Tie-breaker among most constrained 
variables 

  Most constraining variable: 
  choose the variable with the most constraints on 

remaining variables 



CS 3243 - Constraint Satisfaction 27 

Least constraining value 

  Given a variable, choose the least 
constraining value: 
  the one that rules out the fewest values in the 

remaining variables 

  Combining these heuristics makes 1000 
queens feasible 
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Forward checking 

  Idea:  
  Keep track of remaining legal values for unassigned variables 
  Terminate search when any variable has no legal values 
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Forward checking 

  Idea:  
  Keep track of remaining legal values for unassigned variables 
  Terminate search when any variable has no legal values 
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Forward checking 

  Idea:  
  Keep track of remaining legal values for unassigned variables 
  Terminate search when any variable has no legal values 



CS 3243 - Constraint Satisfaction 31 

Forward checking 

  Idea:  
  Keep track of remaining legal values for unassigned variables 
  Terminate search when any variable has no legal values 



CS 3243 - Constraint Satisfaction 32 

Constraint propagation 

  Forward checking propagates information from assigned to 
unassigned variables, but doesn't provide early detection for 
all failures: 

  NT and SA cannot both be blue! 
  Constraint propagation repeatedly enforces constraints 

locally 



Inference in CSPs 

  Besides searching, in 
CSPs we can try to 
infer illegal values for 
variables by performing 
constraint propagation 

  Node consistency for 
unary constraints 

  Arc consistency for 
binary constraints 

  … 

  Can interleave with 
searching or do as 
preprocessing 
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Searching 

Constraint  
Propagation 
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Arc consistency 

  Simplest form of propagation makes each arc consistent 
  X Y is consistent iff 

for every value x of X there is some allowed y 
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More on arc consistency 

  Arc consistency is based on a very simple concept 
  if we can look at just one constraint and see that x=v is 

impossible … 
  obviously we can remove the value x=v from 

consideration 

  How do we know a value is impossible? 
  If the constraint provides no support for the value 
  e.g. if Dx = {1,4,5} and Dy = {1, 2, 3} 

  then the constraint x > y provides no support for x=1 
  we can remove x=1 from Dx 
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Arc consistency 

  Simplest form of propagation makes each arc consistent 
  X Y is consistent iff 

for every value x of X there is some allowed y 

  Arcs are directed, a binary constraint becomes two arcs   
  NSW ⇒ SA arc originally not consistent, is consistent after 

deleting blue 
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Arc consistency 

  Simplest form of propagation makes each arc consistent 
  X Y is consistent iff 

for every value x of X there is some allowed y 

  If X loses a value, neighbors of X need to be (re)checked 
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Arc consistency propagation 

  When we remove a value from Dx, we may get new 
removals because of it 

  E.g. Dx = {1,4,5}, Dy = {1, 2, 3}, Dz= {2, 3, 4, 5} 
  x > y,  z > x 
  As before we can remove 1 from Dx, so Dx = {4,5} 
  But now there is no support for Dz = 2,3,4 
  So we can remove those values, Dz = {5}, so z=5 
  Before AC applied to y-x, we could not change Dz 

  This can cause a chain reaction 



Sudoku Chain Reaction 
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  Alldiff from box makes domain of red square {3,4,5,6,9} 
Column constraints reduces domain to {4} 

  Then consider purple square.  Original column and box 
constraints yield domain of {1,4}.  Red square forces {1} 

  Then final blue box must by {7} as column already has 
eight values. 
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Arc consistency 

  Simplest form of propagation makes each arc consistent 
  X Y is consistent iff 

for every value x of X there is some allowed y 

  If X loses a value, neighbors of X need to be (re)checked 
  Arc consistency detects failure earlier than forward checking 
  Can be run as a preprocessor or after each assignment 
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Arc consistency algorithm AC-3 

  Time complexity: O(n2d3) 
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Time complexity of AC-3 

  CSP has n2 directed  
arcs 

  Each arc Xi,Xj has d 
possible values.  
For each value we  
can reinsert the  
neighboring arc  
Xk,Xi at most d times because Xi has d values 

  Checking an arc requires at most d2 time 

  O(n2 * d * d2) = O(n2d3) 
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Maintaining AC (MAC) 

  We can use AC in search 
  i.e. search proceeds as follows: 

  establish AC at the root 
  when AC3 terminates, choose a new variable/value 
  re-establish AC given the new variable choice (i.e. 

maintain AC) 
  repeat;  
  backtrack if AC gives domain wipe out 

  The hard part of implementation is undoing effects 
of AC 
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Special kinds of Consistency 

  Some kinds of constraint lend themselves to special 
kinds of arc-consistency 

  Consider the all-different constraint 
  the named variables must all take different values 
  not a binary constraint 
  can be expressed as n(n-1)/2 not-equals constraints 

  We can apply (e.g.) AC3 as usual 
  But there is a much better option  
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All Different 

  Suppose Dx = {2,3} = Dy, Dz = {1,2,3} 
  All the constraints x≠y, y≠z, z≠x are all arc 

consistent 
  e.g. x=2 supports the value z = 3 

  The single ternary constraint AllDifferent(x,y,z) is 
not! 
  We must set z = 1 

  A special purpose algorithm exists for All-Different 
to establish GAC in efficient time 
  Special purpose propagation algorithms are vital 
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K-consistency 

  Arc Consistency (2-consistency) can be extended to k-
consistency 

  3-consistency (path consistency): any pair of adjacent 
variables can always be extended to a third neighbor. 
  Catches problem with Dx, Dy and Dz, as assignment of Dz = 2 and 

Dx = 3 will lead to domain wipe out. 
  But is expensive, exponential time 

  n-consistency means the problem is solvable in linear time 
  As any selection of variables would lead to a solution 

  In general, need to strike a balance between consistency 
and search. 
  This is usually done by experimentation. 
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Local search for CSPs 

  Hill-climbing, simulated annealing typically work with 
"complete" states, i.e., all variables assigned 

  To apply to CSPs: 
  allow states with unsatisfied constraints 
  operators reassign variable values 

  Variable selection: randomly select any conflicted variable 
  Value selection by min-conflicts heuristic: 

  choose value that violates the fewest constraints 
  i.e., hill-climb with h(n) = total number of violated constraints 
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Example: 4-Queens 

  States: 4 queens in 4 columns (44 = 256 states) 
  Actions: move queen in column 
  Goal test: no attacks 
  Evaluation: h(n) = number of attacks 

  Given random initial state, can solve n-queens in almost 
constant time for arbitrary n with high probability (e.g., n = 
10,000,000) 



Min-conflicts 
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The structure of problems 

  Independent subproblems = unconnected components 
  (Return to this point after midterm) 

  Tree based CSPs can be solved by topological sort 
  Pick a root and “dangle” other nodes by it 
  Will have n-1 arcs, can make arc consistent in O(n) 
  O(nd2) 

CS 3243 - Constraint Satisfaction 50 

C 

A 

DB 

F 

E 

A B DC E F 



Reducing CSP Trees 

  Reduce other problems to trees, to use Tree-CSP-Solver, which yields 
solutions without backtracking.  Aim to reduce to many small 
subproblems. 

  Two approaches: 
  Remove nodes from CSP graph to make a tree 

  Assign values to removed nodes and remove used domains from tree nodes 
  Tree decomposition: make tree CSP with nodes as subproblems 
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Summary 

  CSPs are a special kind of problem: 
  states defined by values of a fixed set of variables 
  goal test defined by constraints on variable values 

  Backtracking = depth-first search with one variable assigned per node 

  Variable ordering and value selection heuristics help significantly 

  Forward checking prevents assignments that guarantee later failure 

  Constraint propagation (e.g., arc consistency) does additional work to 
constrain values and detect inconsistencies 

  Iterative min-conflicts is usually effective in practice 
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Midterm test  

  4 or 5 questions, first hour of class (be on time!) 
  Topics to be covered (CSP is not on the midterm): 

  Chapter 2 – Agents 
  Chapter 3 – Uninformed Search 
  Chapter 3 and 4 – Informed Search 

  Not including the parts of 3.5.3-4 (memory-bounded heuristic 
search), 3.6.3-4 (other heuristics) and 4.5 (online search) 

  Chapter 5 – Adversarial Search 
  Not including 5.6 (Partially observable games) 


