
CS 3243 - Constraint Satisfaction 1

Constraint Satisfaction
Problems

Chapter 6

CS 3243 - Constraint Satisfaction 2

Outline

  Constraint Satisfaction Problems (CSP)
  Backtracking search for CSPs
  Local consistency in constraint propagation
  Other topics

  Local search for CSPs
  The structure of problems

CS 3243 - Constraint Satisfaction 3

Constraint satisfaction problems (CSPs)

  Standard search problem:
  state is a “black box” – any data structure that supports successor

function, heuristic function, and goal test

  CSP:
  state is defined by variables Xi with values from domain Di
  goal test is a set of constraints specifying allowable combinations of

values for subsets of variables

  Simple example of a formal representation language
  Allows useful general-purpose algorithms with more power

than standard search algorithms

CS 3243 - Constraint Satisfaction 4

Example: Map-Coloring

  Variables: WA, NT, Q, NSW, V, SA, T
  Domains: Di = {red,green,blue}
  Constraints: adjacent regions must have different colors

  e.g., WA ≠ NT, or (WA,NT) in {(red,green),(red,blue),(green,red),
(green,blue),(blue,red),(blue,green)}

CS 3243 - Constraint Satisfaction 5

Example: Map-Coloring

  Solutions are complete and consistent assignments,
e.g., WA = red, NT = green,Q = red, NSW =
green, V = red, SA = blue, T = green

CS 3243 - Constraint Satisfaction 6

Constraint graph

  Binary CSP: each constraint relates two variables

  Constraint graph: nodes are variables, arcs are constraints

Cryptarithmetic

  TWO + TWO = FOUR
  SEND + MORE = MONEY
  GO * FLY = KITES
  HAPPY + HAPPY + HAPPY + DAYS =

AHEAD
  ALL + COWS + EAT = GRASS

CS 3243 - Constraint Satisfaction 7

Job shop scheduling

  Assembling a car, by breaking it down into
15 tasks:
  E.g., Axles, Wheels, Nuts, Caps, Inspect

  Precedence Constraints
  AxleF + 10 ≤ WheelRF

  Disjunctive Constraints
  (AxleF + 10 ≤ AxleB) or (AxleB + 10 ≤ AxleF)

CS 3243 - Constraint Satisfaction 8

CS 3243 - Constraint Satisfaction 9

Varieties on the CSP formalism

  Discrete variables
  finite domains:

  n variables, domain size d  O(dn) complete assignments
  e.g., Boolean CSPs, incl.~Boolean satisfiability (NP-complete)

  infinite domains:
  integers, strings, etc.
  e.g., job scheduling, variables are start/end days for each job
  need a constraint language, e.g., StartJob1 + 5 ≤ StartJob3

  Continuous variables
  e.g., start/end times for Hubble Space Telescope observations
  linear constraints solvable in polynomial time by linear programming

CS 3243 - Constraint Satisfaction 10

Varieties of constraints

  Unary constraints involve a single variable,
  e.g., SA ≠ green

  Binary constraints involve pairs of variables,
  e.g., SA ≠ WA

  Higher-order constraints involve 3 or more
variables,
  e.g., cryptarithmetic column constraints

CS 3243 - Constraint Satisfaction 11

Example: Cryptarithmetic

  Variables: F T U W
 R O X1 X2 X3

  Domains: {0,1,2,3,4,5,6,7,8,9}
  Constraints: Alldiff (F,T,U,W,R,O)

  O + O = R + 10 · X1
  X1 + W + W = U + 10 · X2
  X2 + T + T = O + 10 · X3
  X3 = F, T ≠ 0, F ≠ 0

Example: Sudoku

CS 3243 - Constraint Satisfaction 12

  Variables: up to 81 variables
  Domains: {0,1,2,3,4,5,6,7,8,9}
  Constraints: Alldiff (…) * 27 (columns, rows, boxes)

3

9

1

2

3 5

8 6

6

1

4

8

6

1 2

7 8

9

8

2

2

8

5

6 9

2 3

1

5

9

3

CS 3243 - Constraint Satisfaction 13

Real-world CSPs

  Assignment problems
  e.g., who teaches what class

  Timetabling problems
  e.g., which class is offered when and where?

  Transportation scheduling
  Factory scheduling

  Many real-world problems involve real-valued
variables

  Many problems also feature preferences
(I don’t want to on Monday morning)

CS 3243 - Constraint Satisfaction 14

Standard search formulation (incremental)

Let's start with the straightforward approach, then fix it

States are defined by the values assigned so far

  Initial state: the empty assignment { }
  Successor function: assign a value to an unassigned variable that does

not conflict with current assignment
 fail if no legal assignments

  Goal test: the current assignment is complete

1.  This is the same for all CSPs
2.  Every solution appears at depth n with n variables

 use depth-first search
3.  Path is irrelevant, so can also use complete-state formulation

CS 3243 - Constraint Satisfaction 15

CSP Search tree size

b = (n - l)d at depth l, hence n! · dn leaves
{} Variables: A,B,C,D

Domains: 1,2,3

A=1 A=2 D=3 … B=1 …

A=1,
B=1

A=1,
B=2

A=1,
C=1

A=1,
D=3 … …

Depth 1: 4 variables x 3 domains
= 12 states

Depth 2: 3 variables x 3 domains
= 9 states

Depth 3: 2 variables x 3 domains
= 6 states

Depth 4: 1 variable x 3 domains
= 3 states (leaf level)

CS 3243 - Constraint Satisfaction 16

Backtracking search

  Variable assignments are commutative, i.e.,
[WA = red then NT = green] same as [NT = green then WA

= red]

  Only need to consider assignments to a single variable at
each node
  Fix an order in which we’ll examine the variables
 b = d and there are dn leaves

  Depth-first search for CSPs with single-variable assignments
is called backtracking search

  Is the basic uninformed algorithm for CSPs
  Can solve n-queens for n ≈ 25

CS 3243 - Constraint Satisfaction 17

Backtracking search

CS 3243 - Constraint Satisfaction 18

Backtracking example

CS 3243 - Constraint Satisfaction 19

Backtracking example

CS 3243 - Constraint Satisfaction 20

Backtracking example

CS 3243 - Constraint Satisfaction 21

Backtracking example

CS 3243 - Constraint Satisfaction 22

Exercise - paint the town!

  Districts across corners can be colored using the same color.

CS 3243 - Constraint Satisfaction 23

Constraint Graph

BCN

WN

TOH

CSW

BMG

ST

EC

CPR

How would you
color this map?

Consider its constraints?
Can you do better than blind search?

CS 3243 - Constraint Satisfaction 24

Improving backtracking efficiency

  General-purpose methods can yield
significant gains in speed:

  Which variable should be assigned next?
  In what order should its values be tried?
  Can we detect inevitable failure early?

CS 3243 - Constraint Satisfaction 25

Most constrained variable

  Most constrained variable:
choose the variable with the fewest legal values

  a.k.a. minimum remaining values (MRV)
heuristic

CS 3243 - Constraint Satisfaction 26

Most constraining variable

  Tie-breaker among most constrained
variables

  Most constraining variable:
  choose the variable with the most constraints on

remaining variables

CS 3243 - Constraint Satisfaction 27

Least constraining value

  Given a variable, choose the least
constraining value:
  the one that rules out the fewest values in the

remaining variables

  Combining these heuristics makes 1000
queens feasible

CS 3243 - Constraint Satisfaction 28

Forward checking

  Idea:
  Keep track of remaining legal values for unassigned variables
  Terminate search when any variable has no legal values

CS 3243 - Constraint Satisfaction 29

Forward checking

  Idea:
  Keep track of remaining legal values for unassigned variables
  Terminate search when any variable has no legal values

CS 3243 - Constraint Satisfaction 30

Forward checking

  Idea:
  Keep track of remaining legal values for unassigned variables
  Terminate search when any variable has no legal values

CS 3243 - Constraint Satisfaction 31

Forward checking

  Idea:
  Keep track of remaining legal values for unassigned variables
  Terminate search when any variable has no legal values

CS 3243 - Constraint Satisfaction 32

Constraint propagation

  Forward checking propagates information from assigned to
unassigned variables, but doesn't provide early detection for
all failures:

  NT and SA cannot both be blue!
  Constraint propagation repeatedly enforces constraints

locally

Inference in CSPs

  Besides searching, in
CSPs we can try to
infer illegal values for
variables by performing
constraint propagation

  Node consistency for
unary constraints

  Arc consistency for
binary constraints

  …

  Can interleave with
searching or do as
preprocessing

CS 3243 - Constraint Satisfaction 33

Searching

Constraint
Propagation

CS 3243 - Constraint Satisfaction 34

Arc consistency

  Simplest form of propagation makes each arc consistent
  X Y is consistent iff

for every value x of X there is some allowed y

CS 3243 - Constraint Satisfaction 35

More on arc consistency

  Arc consistency is based on a very simple concept
  if we can look at just one constraint and see that x=v is

impossible …
  obviously we can remove the value x=v from

consideration

  How do we know a value is impossible?
  If the constraint provides no support for the value
  e.g. if Dx = {1,4,5} and Dy = {1, 2, 3}

  then the constraint x > y provides no support for x=1
  we can remove x=1 from Dx

CS 3243 - Constraint Satisfaction 36

Arc consistency

  Simplest form of propagation makes each arc consistent
  X Y is consistent iff

for every value x of X there is some allowed y

  Arcs are directed, a binary constraint becomes two arcs
  NSW ⇒ SA arc originally not consistent, is consistent after

deleting blue

CS 3243 - Constraint Satisfaction 37

Arc consistency

  Simplest form of propagation makes each arc consistent
  X Y is consistent iff

for every value x of X there is some allowed y

  If X loses a value, neighbors of X need to be (re)checked

CS 3243 - Constraint Satisfaction 38

Arc consistency propagation

  When we remove a value from Dx, we may get new
removals because of it

  E.g. Dx = {1,4,5}, Dy = {1, 2, 3}, Dz= {2, 3, 4, 5}
  x > y, z > x
  As before we can remove 1 from Dx, so Dx = {4,5}
  But now there is no support for Dz = 2,3,4
  So we can remove those values, Dz = {5}, so z=5
  Before AC applied to y-x, we could not change Dz

  This can cause a chain reaction

Sudoku Chain Reaction

CS 3243 - Constraint Satisfaction 39

  Alldiff from box makes domain of red square {3,4,5,6,9}
Column constraints reduces domain to {4}

  Then consider purple square. Original column and box
constraints yield domain of {1,4}. Red square forces {1}

  Then final blue box must by {7} as column already has
eight values.

3

9

1

2

3 5

8 6

6

1

4

8

6

1 2

7 8

9

8

2

2

8

5

6 9

2 3

1

5

9

3

CS 3243 - Constraint Satisfaction 40

Arc consistency

  Simplest form of propagation makes each arc consistent
  X Y is consistent iff

for every value x of X there is some allowed y

  If X loses a value, neighbors of X need to be (re)checked
  Arc consistency detects failure earlier than forward checking
  Can be run as a preprocessor or after each assignment

CS 3243 - Constraint Satisfaction 41

Arc consistency algorithm AC-3

  Time complexity: O(n2d3)

CS 3243 - Constraint Satisfaction 42

Time complexity of AC-3

  CSP has n2 directed
arcs

  Each arc Xi,Xj has d
possible values.
For each value we
can reinsert the
neighboring arc
Xk,Xi at most d times because Xi has d values

  Checking an arc requires at most d2 time

  O(n2 * d * d2) = O(n2d3)

CS 3243 - Constraint Satisfaction 43

Maintaining AC (MAC)

  We can use AC in search
  i.e. search proceeds as follows:

  establish AC at the root
  when AC3 terminates, choose a new variable/value
  re-establish AC given the new variable choice (i.e.

maintain AC)
  repeat;
  backtrack if AC gives domain wipe out

  The hard part of implementation is undoing effects
of AC

CS 3243 - Constraint Satisfaction 44

Special kinds of Consistency

  Some kinds of constraint lend themselves to special
kinds of arc-consistency

  Consider the all-different constraint
  the named variables must all take different values
  not a binary constraint
  can be expressed as n(n-1)/2 not-equals constraints

  We can apply (e.g.) AC3 as usual
  But there is a much better option

CS 3243 - Constraint Satisfaction 45

All Different

  Suppose Dx = {2,3} = Dy, Dz = {1,2,3}
  All the constraints x≠y, y≠z, z≠x are all arc

consistent
  e.g. x=2 supports the value z = 3

  The single ternary constraint AllDifferent(x,y,z) is
not!
  We must set z = 1

  A special purpose algorithm exists for All-Different
to establish GAC in efficient time
  Special purpose propagation algorithms are vital

CS 3243 - Constraint Satisfaction 46

K-consistency

  Arc Consistency (2-consistency) can be extended to k-
consistency

  3-consistency (path consistency): any pair of adjacent
variables can always be extended to a third neighbor.
  Catches problem with Dx, Dy and Dz, as assignment of Dz = 2 and

Dx = 3 will lead to domain wipe out.
  But is expensive, exponential time

  n-consistency means the problem is solvable in linear time
  As any selection of variables would lead to a solution

  In general, need to strike a balance between consistency
and search.
  This is usually done by experimentation.

CS 3243 - Constraint Satisfaction 47

Local search for CSPs

  Hill-climbing, simulated annealing typically work with
"complete" states, i.e., all variables assigned

  To apply to CSPs:
  allow states with unsatisfied constraints
  operators reassign variable values

  Variable selection: randomly select any conflicted variable
  Value selection by min-conflicts heuristic:

  choose value that violates the fewest constraints
  i.e., hill-climb with h(n) = total number of violated constraints

CS 3243 - Constraint Satisfaction 48

Example: 4-Queens

  States: 4 queens in 4 columns (44 = 256 states)
  Actions: move queen in column
  Goal test: no attacks
  Evaluation: h(n) = number of attacks

  Given random initial state, can solve n-queens in almost
constant time for arbitrary n with high probability (e.g., n =
10,000,000)

Min-conflicts

CS 3243 - Constraint Satisfaction 49

The structure of problems

  Independent subproblems = unconnected components
  (Return to this point after midterm)

  Tree based CSPs can be solved by topological sort
  Pick a root and “dangle” other nodes by it
  Will have n-1 arcs, can make arc consistent in O(n)
  O(nd2)

CS 3243 - Constraint Satisfaction 50

C

A

DB

F

E

A B DC E F

Reducing CSP Trees

  Reduce other problems to trees, to use Tree-CSP-Solver, which yields
solutions without backtracking. Aim to reduce to many small
subproblems.

  Two approaches:
  Remove nodes from CSP graph to make a tree

  Assign values to removed nodes and remove used domains from tree nodes
  Tree decomposition: make tree CSP with nodes as subproblems

CS 3243 - Constraint Satisfaction 51

WA

NT
Q

NSW

V

T
T

N
T

W
A

S
A

N
T

S
A

Q

S
A

NSW

V

S
A

Q

NSW

CS 3243 - Constraint Satisfaction 52

Summary

  CSPs are a special kind of problem:
  states defined by values of a fixed set of variables
  goal test defined by constraints on variable values

  Backtracking = depth-first search with one variable assigned per node

  Variable ordering and value selection heuristics help significantly

  Forward checking prevents assignments that guarantee later failure

  Constraint propagation (e.g., arc consistency) does additional work to
constrain values and detect inconsistencies

  Iterative min-conflicts is usually effective in practice

CS 3243 - Constraint Satisfaction 53

Midterm test

  4 or 5 questions, first hour of class (be on time!)
  Topics to be covered (CSP is not on the midterm):

  Chapter 2 – Agents
  Chapter 3 – Uninformed Search
  Chapter 3 and 4 – Informed Search

  Not including the parts of 3.5.3-4 (memory-bounded heuristic
search), 3.6.3-4 (other heuristics) and 4.5 (online search)

  Chapter 5 – Adversarial Search
  Not including 5.6 (Partially observable games)

