Huffman Encoding

Week 2

Min-Yen KAN
(Self-Study Module)

Fixed and variable bit widths

- To encode English text, we need 26 lower case letters, 26 upper case letters, and a handful of punctuation
- We can get by with 64 characters (6 bits) in all
- Each character is therefore 6 bits wide
- We can do better, provided:
- Some characters are more frequent than others
- Characters may be different bit widths, so that for example, e use only one or two bits, while \mathbf{x} uses several
- We have a way of decoding the bit stream
- Must tell where each character begins and ends

Example Huffman encoding

$$
\begin{aligned}
& A=0 \\
& B=100 \\
& C=1010 \\
& D=1011 \\
& R=11
\end{aligned}
$$

$$
\text { ABRACADABRA }=01001101010010110100110
$$

- This is eleven letters in 23 bits
- A fixed-width encoding would require 3 bits for five different letters, or 33 bits for 11 letters
- Notice that the encoded bit string can be decoded!

Why it works

- In this example, A was the most common letter
- In ABRACADABRA:
- 5 As code for A is 1 bit long
- 2 Rs code for R is 2 bits long
- 2 Bs code for B is 3 bits long
- 1 C code for C is 4 bits long
- 1 D code for D is 4 bits long

Creating a Huffman encoding

- For each encoding unit (letter, in this example), associate a frequency (number of times it occurs)
- You can also use a percentage or a probability
- Create a binary tree whose children are the encoding units with the smallest frequencies
- The frequency of the root is the sum of the frequencies of the leaves
- Repeat this procedure until all the encoding units are in the binary tree

Example, step I

- Assume that relative frequencies are:
- A: 40
- B: 20
- C: 10
- D: 10
- R: 20

- Smallest number are 10 and 10
(C and D),
- connect those

Example, step II

- C and D have already been used, and the new node above them (call it C+D) has value 20
- The smallest values
are B, C+D, and \mathbf{R}, all of which have value 20
- Connect any two of these

Example, step III

- The smallest values is \mathbf{R}, while \mathbf{A} and $B+C+D$ all have value 40
- Connect R to either of the others

Example, step IV

- Connect the final two nodes

Example, step V

- Assign 0 to left branches, 1 to right branches
- Each encodina is a path from the root

Unique prefix property

- $\mathbf{A}=\mathbf{0}$
$B=100$
$C=1010$
D = 1011
- No bit string is a prefix of any other bit string
- For example, if we added $\mathrm{E}=01$, then $\mathrm{A}(0)$ would be a prefix of E
- Similarly, if we added F=10, then it would be a prefix of three other encodings ($B=100, C=1010$, and $\mathrm{D}=1011$)
- The unique prefix property holds because, in a binary tree, a leaf is not on a path to any other node

Practical considerations

- Is encoding practical for long texts or short ones?
- Short: impractical
- To decode it, you would need the code table
- The code table is bigger than the message
- Long: practical
- The encoded string is large relative to the code table

Question: What about if we agree on code table beforehand?

