Text Processing on the Web

Week 12
Sequence Labeling

Edited from source slides from Chua Tat-Seng’s lecture notes with other contributions from Inna Weiner, Rongkun Shen and Jie Tang
Recap

Clustering as unsupervised pattern learning

- Partitional methods
 - K means and variants
 - Speedups and approximations
 - Version of EM

- Hierarchical methods
 - HAC (bottom up) and HDC (top down)

- Selecting Labels for clusters
- Cluster Evaluation
Text Analysis Example

Singapore Flyer

Singapore Flyer Pte Ltd 30 Raffles Avenue, #01-07 Singapore 039803
Telephone: (65) 6854 5200 Fax: (65) 6339 9167

Singapore Flyer is the world's largest observation wheel. Standing at a stunning 165m from the ground, the Flyer offers you breathtaking, panoramic views of the Marina Bay, our island city and beyond. There's also a wide range of shops, restaurants, activities and facilities. READ MORE >>

• Information Units
 – IR: terms: raffles x 1; Singapore x 3; pte x 1 ...
 – IE: info units: Singapore Flyer, Raffles Avenue, Marina Bay, (65) 6854-5200 ... and their relations
 – QA: Which is the nearest MRT to Singapore Flyer?
 Answer: City Hall MRT
 – NLP: *understanding the contents*
GATE Example NE tagging

Twisters sweep Plains, kill 3

Story Highlights

- NEW: Tomato kills 2 in Oklahoma Panhandle; 1 in Colorado
- Eleven tomatoes reported in western Nebraska
- At least three injured in Texas Panhandle
- Watches, warnings stretch from South Dakota to Texas

Adjust font size:

OKLAHOMA CITY, Oklahoma (AP) -- An early spring storm swept across the Plains early Thursday, spinning off to Oklahoma couple in a home that was blown to pieces and a Colorado woman whose small town was nearly destroyed.

A tornado as wide as two football fields carved a destructive path through Holly, Colorado, late Wednesday, destroying dozens more and littering the streets with broken power lines, tree limbs and debris.

"Homes were there and now they're gone," county administrator Linda Fairbairn said. "Many, if not all, the structures in town were destroyed."

A 28-year-old woman who suffered massive injuries during the twister died after she was airlifted to a hospital in Colorado County Coroner Joe Giadone said Thursday.

The line of storms stretched nearly the length of the nation, from South Dakota to Texas. As it headed east on Thursday, it struck central Nebraska and Kansas. More watches were expected in Oklahoma, as well as other states.
Defining NER

- Identifying salient named entities in free text
 - PERSON – PLACE – NAMED OBJECTS
 - ORGANIZATION – QUANTITY – ADDRESSES
 - DATE/TIME – EVENT – UNITS OF MEASURE
 - And other Domain-Specific fields of interest (email address)

- Applications
 - Moving from doc to information retrieval
 - QA answer typing: “What date was the last election on?”: Election, GRCs, early April
 - As fundamental basis for IE: candidate text for output to templates, case frames, database records.
 - As a basis for summarization: focus-based summarization
Characterizing NER

Can we cast NER in terms of another text processing task?
• It’s a dictionary lookup problem – is it?
• It’s a classification problem
• It’s a pattern recognition problem
• It’s unsupervised clustering

What’s the difference?
• One critical difference: Chunks!
Sequence Labeling

- Sequences of words as part of same entity
- Certainly not limited to NER

If viewing as TC, how would you classify them?

- One way: post-process to enforce constraints
- Maybe better: Chunk tagging
 - IOB scheme: Inside Outside Begin
Example chunks

He/PRP saw/VBD the/DT big/JJ dog/NN
Begin Outside Begin Inside Inside

Pop quiz:
• What are the above tags trying to capture?
• What about End or Island tags? Do we even need a Begin tag?
NER Approaches

• Use a machine learner, give lots of good features
• What are some good features? Let’s go back to our example. Come on…

1. Internal
 1. Orthography
 2. Punctuation
 3. Gazetteer
 4. POS, Parsing information

2. External (Context)
 1. Nearby words

Not always applicable. Why?
Quite sensitive. Why?
Internal Features

Orthography
- Capitalization
- Numerals
- Accents
- Formatting

Gazetteer
- Get features from a list
- Construct/infer list from a dictionary
- Often hierarchical: PLACE/RIVER
- Many names are also common words: Baker, Stone

Punctuation
- Clause markers: , . ! ; :
- Entity markers: $ % * ’s
- Often needs to be paired with context – why?

Grammatical / Syntactic Info
- Part of speech
- Phrase chunks (itself a chunk problem; base NPs)
- Parsing
- Layout
- Error prone (noisy) source

Is sensitive to vocabulary, domain sensitivity

Surprisingly good with End of Sentence detection.

Min-Yen Kan / National University of Singapore
Context

• Often, local decision dependent on decision in the near past
 – Try HMM (first order)
• But also the conditioned on future
 – E.g., William B. Gates Foundation
 – Features need info on other decisions, nonlocal

• Context features often needed in combination
 – E.g., Previous detection of NE as some type X in document
 – E.g., $w_{-2}w_{-1}$ or $w_{-1}w_{+1}$
 – End up with many features, curse of dimensionality again
 – Back-off modeling
Labeling Sequence Data

- X is a random variable over data sequences
- Y is a random variable over label sequences
- Y_i is assumed to range over a finite label alphabet A
- The problem:
 - Learn how to give labels from a closed set Y to a data sequence X
Generative Probabilistic Models

• Learning problem:
 Choose Θ to maximize joint likelihood:

\[L(\Theta) = \sum \log p_{\Theta}(y_i, x_i) \]

• The goal: maximization of the joint likelihood of training examples
 \[y = \arg\max p^*(y|x) = \arg\max p^*(y,x)/p(x) \]

• Needs to enumerate all possible observation sequences
A Markov process or model assumes that we can predict the future based just on the present (or on a limited horizon into the past):

Let \(\{X_1, \ldots, X_T\} \) be a sequence of random variables taking values \(\{1, \ldots, N\} \) then the Markov properties are:

1. Limited Horizon:
\[
P(X_{t+1}|X_1, \ldots, X_t) = P(X_{t+1}|X_t) = P(X_2|X_1)
\]

2. Time invariant (stationary):
\[
= P(X_2|X_1)
\]
Describing a Markov Chain

Markov Chains can be described by the transition matrix A and the initial (start) probabilities Q:

$$A_{ij} = P(X_{t+1} = j | X_t = i)$$

$$q_i = P(X_1 = i)$$
Hidden Markov Model

Do not observe the sequence that the model passes through \((X)\) but only some probabilistic function of it \((Y)\). Thus, it is a Markov model with the addition of *emission probabilities*:

Standard tool is the hidden Markov Model (HMM).

\[
P(X, Y) = \prod_i P(X_i | Y_i) P(Y_i | Y_{i-1})
\]
The Three Problems in HMMs

• **Likelihood/Evaluation**: Given a series of observations y and a model $\lambda = \{A, B, q\}$, compute the likelihood $p(y| \lambda)$
 >> **Forward Algorithm**

• **Inference/Decoding**: Given a series of observations y and a model $\lambda = \{A, B, q\}$, compute the most likely sequence of hidden states x
 >> **Viterbi Algorithm** (like forward algorithm but just do max instead of sum)

• **Learning**: Given a series of observations, learn the best model λ
 >> **Forward-Backward Algorithm (Baum Welch)**
 (Iterative algorithm to re-estimate parameters, like EM)
Likelihood in HMMs

- Given a model $\lambda = \{A, B, q\}$, we can compute the likelihood by

$$P(y) = p(y|\lambda)$$

$$= \sum p(x)p(y|x)$$

$$= q(x_1) \prod A(x_{t+1}|x_t) \prod B(y_t|x_t)$$

- But ... this computation complexity is $O(N^T)$, when $|x_i| = N \rightarrow$ impossible in practice
Forward-Backward algorithm

• To compute likelihood:
 – Need to enumerate over all paths in the lattice (all possible instantiations of $X_1 \ldots X_T$). But … some starting subpath (blue) is common to many continuing paths (blue+red)

The idea:
Use **dynamic programming**, calculate a path in terms of shorter sub-paths
Forward-Backward Algorithm (cont’d)

- We build a matrix of the probability of being at time t at state i: $\alpha_t(i) = P(x_t=i, y_1 y_2 \ldots y_t)$. This is a function of the previous column (forward procedure):

$$\alpha_1(i) = q_i B_{iy_1}$$

$$\alpha_{t+1}(i) = B_{iy_{t+1}} \sum_{j=1}^{N} \alpha_t(j) A_{ji}$$

$$P(Y) = \sum_{i=1}^{N} \alpha_T(i)$$
Forward-Backward algorithm (cont’d)

We can similarly define a backwards procedure for filling the matrix $\beta_t(i) = P(y_{t+1} \ldots y_T|x_t=i)$

$$\beta_T(i) = 1$$

$$\beta_t(i) = \sum_{j=1}^{n} A_{ij} B_{jy_{t+1}} \beta_{t+1}(j)$$

$$P(Y) = \sum_{i=1}^{N} q_i B_{iy_1} \beta_1(i)$$
Combine both processes to arrive at likelihood:

\[P(y, x_t=i) = P(x_t=i, y_1 y_2 \ldots y_t) \times P(y_{t+1} \ldots y_T | x_t=i) \]
\[= \alpha_t(i) \beta_t(i) \]

And then we get:

\[P(y) = \sum P(y, x_t=i) = \sum \alpha_t(i) \beta_t(i) \]
HMM Summary

• Advantages:
 – Estimation very easy
 – Closed form solution
 – The parameters can be estimated with relatively high confidence from small samples

• But:
 – The model represents all possible (x,y) sequences and defines joint probability over all possible observation and label sequences
 – Need to enumerate all possible observation sequences
 – Impossible to represent multiple interacting features
 – Difficult to model long-range dependencies of the observations
 – Very strict independence assumptions on the observations
Discussion of some of these in more detail next week

- Baluja, Mittal and Sukthankar (99) *Applying Machine Learning for high performance named-entity extraction*
 - Good first read for ML approach to NE
- Zhou and Su (02) *Named Entity Recognition using an HMM-based Chunk Tagger*
 - More comprehensive set of analyses with more features. Explains chunk tags
- Maynard, Tablan and Cunningham (03) *NE Recognition Without Training Data on a Language You Don't Speak*
 - Case study of building NER in quick time without gazetteer
- Marnard, Tablan, Ursu, Cunningham and Wilks (01) *Named Entity Recognition from Diverse Text Types*
 - Sensitivity and portability of system over
- Pevzner and Hearst (02) *A Critique and Improvement of an Evaluation Metric for Text Segmentation*
 - Evaluation metrics for longer chunks
 - Includes scripts and software for evaluating chunk tagging