Text Processing on the Web

Week 13
Learning to Rank / Revision

(source of LeToR slides from Tie-Yan Liu @ MSRA)
Conventional Ranking Models

• Content relevance
 – Boolean model, vector space model, probabilistic BM25 model, language model

• Page importance
 – Link analysis: HITS, PageRank, etc.
 – And by log mining
Machine Learning Can Help

• Machine learning is an effective tool
 – To automatically tune parameters
 – To combine multiple evidence
 – To avoid over-fitting (by means of regularization, etc.)

• Learning to Rank
 – Use machine learning technologies to train the ranking model
 – A hot research topic these years
Learning to Rank

Labels refer to the judgments in IR evaluation

q_1 queries q_N

$(x_1^{(1)}, 4)$, $(x_2^{(1)}, 2)$, \ldots, $(x_M^{(1)}, 1)$

$x_1^{(N)}, 5$, $x_2^{(N)}, 3$, \ldots, $x_M^{(N)}, 2$

s

q

$(x_1, ?)$, $(x_2, ?)$, \ldots, $(x_n, ?)$

Test data

Training Data

Learning System

Model $f(x; w)$

$\min \text{Loss}$

$\left(x_1, f(x_1; w) \right)$, $\left(x_2, f(x_2; w) \right)$, \ldots, $\left(x_M, f(x_M; w) \right)$

7/20/2008

Tie-Yan Liu @ Tutorial at SIGIR 2008
The general idea

- Training examples in the form of $<Q,d,\{rel,\bar{rel}\}>$
- Simple: replace $<Q,d>$ with features: $\vec{x} = \{x_0, x_1, \ldots, x_n\}$
 - Similarity of Q,d
 - Density of Q within d
 - Other factors PageRank, etc.

- Train a simple learner on this data to get a probabilistic belief of
- Rank by belief on rel to \bar{rel}
Least Squares Retrieval Function
(N. Fuhr, TOIS 1989)

• Relevance judgment for a query-document pair is represented by a vector:
 – For binary judgment: \(y = (1, 0) \) or \((0, 1)\)

• Use a polynomial function as the ranking function \(f(x) \).

• Use least square error (LSE) method to learn the regression function

\[
\min \sum_{i=1}^{N} \sum_{j=1}^{M^{(i)}} \left| y_j^{(i)} - f(x_j^{(i)}) \right|^2
\]
Discriminative Model for IR
(R. Nallapati, SIGIR 2004)

• Idea: Use discriminative modeling instead of generative model

• Generative models (i.e. via \(P(d|R) \cdot P(R)\)) include BIR and language model (in their interpretation)

• Discriminative learning algorithms (i.e. model \(P(R|d)\) directly) used:
 – Maximum Entropy
 – Support Vector Machines
Conventional ML Approach

• These are examples of a direct ML approach
• Apply regression or classification methods to solve the problem of ranking
 – Regard binary judgments or multi-valued discrete as “non-ordered” categories, or real values.
 – Although ground truths are neither “non-ordered” categories nor real values.

Serious shortcomings. What’s the problem?
Ordinal Regression

• Confusion between **relevance** with **ranking**
 – Absolute and independent relevance assumed
 • But relevance is relative and defined only among documents for the same query: a non-rel doc for a popular query may have higher TF than a rel doc for a rare query
 – Also we don’t necessary care about relevance
 • Care about ranking w.r.t other possible candidate \(d_n \), especially at top ranks
 • Relative order is important: don’t need to predict accurate category, or value of \(f(x) \).
Bridging the Gap

• Go beyond conventional ML methods
 1. Ordinal regression (a pointwise approach)
 • Target the ground truth of multi-valued discrete.
 2. Preference learning (a pairwise approach)
 • Target the ground truth of pairwise preference.
 • Also compatible with that of multi-valued discrete.
 3. Listwise ranking (a listwise approach)
 • Target the ground truth of partial / total order.
 • Also compatible with other types of ground truths.
1. Ordinal Regression: A Pointwise Approach

- **Input space**
 - Features of a single document (w.r.t. a query): \(X \in \mathbb{R}^T \)

- **Output space**
 - Ordered categories: \(Y \in \{ c_1 < c_2 < \ldots < c_K \} \)

\[
\begin{pmatrix}
q_i \\
\begin{pmatrix}
x_1^{(i)}, 5 \\
x_2^{(i)}, 3 \\
\vdots \\
x_M^{(i)}, 2
\end{pmatrix}
\end{pmatrix}
\xrightarrow{\text{Transform}}
\begin{pmatrix}
q_i \\
\{(x_1^{(i)}, c_4), (x_2^{(i)}, c_3), \ldots, (x_M^{(i)}, c_1)\}
\end{pmatrix} \quad c_1 < c_2 < c_3 < c_4
Ordinal Regression vs. Regression/Classification

- **Regression:** Real values
- **Classification:** Non-ordered categories
- **Ordinal regression:** Discrete values / Ordered categories

- Ordinal regression can be regarded as something between regression and classification.
2. Preference Learning: A Pairwise Approach

- Input space: two documents
 - Document pairs: \((X_u, X_v) \in R^T \times R^T\)
- Output space
 - Preference: \(Y \in \{+1,-1\}\)
 - Use pairs of features or differences between the two vectors

\[
\begin{pmatrix} q_i \\ x_1^{(i)}, 5 \\ x_2^{(i)}, 3 \\ \vdots \\ x_{n(i)}^{(i)}, 2 \end{pmatrix}
\xrightarrow{\text{Transform}}
\begin{pmatrix} q_i \\ \left\{ (x_1^{(i)}, x_2^{(i)}, +1), (x_2^{(i)}, x_1^{(i)}, -1), \ldots \right\} \\ \left\{ (x_2^{(i)}, x_{n(i)}^{(i)}, +1), (x_{n(i)}^{(i)}, x_2^{(i)}, -1) \right\} \end{pmatrix}
\]
Learning to Order Things

• Pairwise ranking function
 \[f(x_u, x_v) = \sum w_i f_t(x_u, x_v) \]

• Important: pairwise loss function
 \[L(f) = \sum_{i=1}^{N} \sum_{x_u^{(i)} > x_v^{(i)}} \left(1 - f(x_u^{(i)}, x_v^{(i)}) \right) / \sum_{i=1}^{N} \sum_{x_u^{(i)} > x_v^{(i)}} 1 \]

• A weighted majority algorithm is used to learn the parameters \(w \) from the pairwise ground truth.
Learning to Order Things

• Go from pairwise preferences to a total order:
 - \[\max_{\rho} AGREE(\rho, f) = \sum_{x_u, x_v : \rho(x_u) > \rho(x_v)} f(x_u, x_v) \]
 - Con: the optimal total order construction is proven NP hard.

• Then must approximate:
 - Use a greedy ordering
 - Proven: the agreement for the approximation algorithm is at least half the optimal agreement
Ranking SVM

- Formally discussed that ordinal regression can be solved by pairwise preference learning

\[
\begin{align*}
\min & \frac{1}{2} \left\| w \right\|^2 + C \sum_{i=1}^{N} \sum_{u,v} \xi_{uv}^{(i)} \\
& \left< w, x_u^{(i)} - x_v^{(i)} \right> \geq 1 - \xi_{uv}^{(i)}, \text{if } x_u^{(i)} > x_v^{(i)} \\
& \xi_{uv}^{(i)} \geq 0.
\end{align*}
\]

Use SVM to perform pairwise classification on these instances, to learn model parameter \(w \)

Use SVM to perform binary classification on these instances, to learn model parameter \(w \)

\(x_u - x_v \) as positive instance of learning

Use \(w \) for testing

Use SVM to perform pairwise classification

\[f(x; \hat{w}) = < \hat{w}, x > \]
Results look … poor

- It is not clear how pairwise loss correlates with query-level IR evaluation measures.

Pairwise loss vs. (1-NDCG@5)

TREC Dataset
Possible Explanation?

The more the number varies, the more pairwise is different from query-level.
A case for query-specific loss

- Consider two queries with 40 and 5 document results. Say a system gets 780 of the 790 possible pairs correct
 - Sys 1: gets all of the $5\times4/2 = 10$ pairs from Q2 wrong
 - Sys 2: gets a random 10 of the $40\times39/2 = 780$ pairs wrong
- Clearly, we prefer Sys 2. How to cater for this?
- Change the loss function (evaluation function)
A Possible Solution

- Introduce a per-query normalization to the pairwise loss function.

\[
\min \frac{1}{2} \| w \|^2 + C \sum_{i=1}^{N} \mu^{(i)}(i) \sum_{u,v} \xi_{uv}(i)
\]

Query-level normalizer

\[
\max_i \frac{\# \{ \text{instance pairs associated with } q_i \}}{\# \{ \text{instance pairs associated with } q_i \}}
\]

Loss function desiderata:

1) Insensitive to number of document pairs.
2) Top ranks should be more important.
3) Upper bound on loss. Difficult queries shouldn’t have more importance.
Pairwise Summary

Pros:
• No longer assume absolute relevance
• Use pairwise relationship to represent relative ranking.

Cons
• Minimizing document pairs classification error and not errors in ranking of documents.
• # of generated document pairs can vary
 – Need to fix loss, otherwise model can be biased
3. A Listwise Approach

- **Input space**
 - Document collection w.r.t. a query
 \[
 (X_{1}^{(q)}, \ldots, X_{M(q)}^{(q)}) \in (R^{T})^{M(q)}
 \]

- **Output space**
 - Permutation of these documents: \(Y \in \prod_{M(q)} \)

- By treating the list of documents associated with the same query as a learning instance, one can naturally obtain
 - The rank (position) information,
 - The query-level information.

- Opportunity to model more of the unique properties of IR ranking in the learning process.
Direct Optimization of IR Measures

• Let’s try to directly optimize the ranking results.

• But this is difficult:
 – Evaluation functions such as NDCG are non-smooth and non-differentiable, since they depend on ranks
 – Most optimization was developed to handle smooth and differentiable functions

• Two methods:
 1. Smooth out the evaluation function with a surrogate;
 2. Use other optimization routines (e.g., genetic algorithms).
ListNet
(Z. Cao, T. Qin, T. Liu, et al. ICML 2007)

- Loss function = KL-divergence between two permutation probability distributions

\[L(f) \propto D(P(\pi | e^{\psi(y)}) || P(\pi | e^{f(x)}) \right) \]

- Model = Neural Network
- Algorithm = Gradient Descent
Experimental Results

Training Performance on TD2003 Dataset

Pairwise (RankNet) vs Listwise (ListNet): Better correlation
Selected References

• N. Fuhr. Optimum polynomial retrieval functions based on the probability ranking principle, TOIS, 1989.
• R. Herbrich, T. Graepel, et al. Support Vector Learning for Ordinal Regression, ICANN1999
• R. Herbrich, T. Graepel, et al. Large Margin Rank Boundaries for Ordinal Regression, Advances in large margin classifiers, 2000
• T. Joachims, Optimizing Search Engines Using Clickthrough Data, KDD 2002.
• R. Nallapati, Discriminative model for information retrieval, SIGIR 2004.
• A. Trotman, Learning to rank, Information Retrieval, 2005
• D. Metzler, W. B. Croft, et al. Direct maximization of rank-based metrics for information retrieval, CIIR, 2005
• H. Yu, SVM Selective sampling for ranking with application to data retrieval, KDD 2005.
Revision
Announcements

• I will be away right before the exam (17-22 Nov), so please come ask questions earlier
• Send me anonymous mail (via IVLE) about what you liked about the course, what you disliked
 – Criticisms always more helpful
 – You can also save it for the “official feedback” if you’d like
Final Exam

• 2 hours, 26 Nov, in the evening
• Open book

• 3 multi-part questions, no calculation needed
 – But that doesn’t mean there’s no math
• Similar to other past year exams and more open-ended tutorial questions
Course in a nutshell

W0: Math
W1: Web basics and models
W2: Basic IR
W3: Probabilistic IR
W4: Dimensionality Reduction
W5: Link Structure
W6: Passage Retrieval

W7: Question Answering
W8: Summarization
W9: Intro to Machine Learning
W9: Text Categorization
W11: Sequence Labeling
W12: CRF + Info. Extraction
W13: Learning to Rank
Text Analysis Example

Singapore Flyer

Singapore Flyer Pte Ltd 30 Raffles Avenue, #01-07
Singapore 039803
Telephone: (65) 6854 5200 Fax: (65) 6339 9167

Singapore Flyer is the world's largest observation wheel. Standing at a stunning 165m from the ground, the Flyer offers you breathtaking, panoramic views of the Marina Bay, our island city and beyond. There's also a wide range of shops, restaurants, activities and facilities.

Information Units

- **IR:** terms: raffles x 1; Singapore x 3; pte x 1 ...
- **IE:** info units: Singapore Flyer, Raffles Avenue, Marina Bay, (65) 6854-5200 ...

 and their relations
- **QA:** Which is the nearest MRT to Singapore Flyer?

 Answer: City Hall MRT

- **NLP:** understanding the contents
W0-W1: Math and Web basics

• Size and growth of the web
 – Size: an instance of Bayesian estimation
 – Growth: instances of temporal graph modeling
 new nodes and edges added/changed over timesteps

• Compare these to other instances in the course

• Math:
 – Prior and posterior probabilities
 – Parameter estimation: EM (the chicken and egg problem)
W2-W3: Models of IR

• Heuristic systems
 – TF.IDF (compare IDF to RF in text classification)

• Prob IR
 – Model how a query is an representation of a document
 – A mathematical basis for IDF

• Language Modeling
 – Putting word order dependencies in the retrieval model
 – First look at Hidden Markov Models and n-grams
W4: Dimensionality Reduction

Link to machine learning and text classification

- Upwards of 30K dimensions, sparse vectors
- Reduce to save space, and help both recall and precision

- LSI: apply singular value decomposition to find best orthogonal axes to represent doc-term matrix
- pLSI: view this from a probabilistic interpretation, using a unigram LM and using a latent topic variable in modeling

- Both have problems determining k, # of topics/dimensions, similar to text clustering
W5: Link structure

• Dealing with hyperlinks. Can be generalized to recommendation frameworks.

• PageRank: Random Walk + Teleportation
 – Topic sensitive teleportation

• HITS: Hubs and authorities
 – Salsa: SVD

Still needs work integrating within standard IR
W6-W7: Passage retrieval and QA

Information
- Query
- Typed Query
- Expanded Query
- Documents
- Passages
- Exact Answers

System
- Query Analysis
- Query Expansion
- Document Retriever
- Passage Retriever
- Answer Extractor

IR
Passage
QA
W6-W7: Passage retrieval and QA

- From document to exact answer retrieval
- Need heavier duty processing for smaller fragments
 - Query Expansion (from external websites, from lexicons, from logs)
 - Density based retrieval towards syntactic analysis
 - Carefully targeted NLP analysis helps
 - Question Typing
 - When questions are in NL form or when we can infer more about the user’s context
W8-W12: Applying machine learning to NLP/IR tasks

- Many NLP/IR tasks can be framed as learning problems

- **Supervised**: have labeled training data; learn a function
- **Unsupervised**: have training data, no label; learn a clustering/pattern
- **Semi supervised**:
 - Small amounts of labeled data, lots of unlabeled data: text classification, named entity recognition
 - Labeled data but not at the fine-grained answer level: IE, summarization
Feature Engineering

- Domain independent
- Task independent
- Order independent
- Language independent
- Shallow NLP
- Local context statistics (TF, position)
- Orthographic
- Domain dependent
- Task dependent
- Context sensitive
- Language dependent
- Deep NLP
- Corpus wide statistics (IDF, RF)

Text problems: Dealing with 10K+ features, skewed datasets, finding an appropriate learning algorithm (not just SVMs)
W8-W12: Application areas

- Summarization
 - Selecting sentences or text units
- Text Classification
 - Selecting one or more categories for a text unit
- Sequence Labeling / Information Extraction
 - Identifying a chunk
 - Selecting a chunk tag
 - Managing co-reference
W13: Learning to Rank

• BUG
Three lessons learned

• Probabilistic analyses of text processing
 – Bayesian Analysis
• Feature/vector creation
 – Latent variables
 – Aspects of the problem and setting
• Dealing with aspects of text processing
 – Size of number of features

• Still very much open ended research topics
 – Heuristic IR still scales better
 – Adversarial IR is a real issue
 – Integration of better knowledge sources and scalability continues to be a problem
That’s it!

Thanks for learning about Text processing!