

# Text Processing on the Web

#### Week 2

Introduction to Information Retrieval and the Vector Space Model

The material for these slides are borrowed heavily from the precursor of this course by Tat-Seng Chua as well as slides from the accompanying recommended texts from Baldi et al., Larson and Hearst and Manning et al.



- Last week: HTTP / Web nuances
- Unfinished: The web as a graph: size and evolution models (save for Session w/ Tutorial 0)

#### Outline

- What is IR?
- TF.IDF
- Relevance Feedback
- IR Evaluation



#### Text Database

Different kinds of text in "Text Processing"

- Free Text unstructured text, unlimited vocabulary. E.g., natural language text
- Structured Text Delimited text into fields, constituting attribute value pairs. E.g, database of strings
- Semi Structured Text Latent structure in text, but not necessarily coded in a regular style. E.g., product web pages

What is the appropriate treatment for each type of text?



#### Levels of Text Processing Systems

Information Retrieval

Dialog Systems Question Answering Information Extraction Natural Language Processing

String Matching

More Understanding

Less Understanding

Exercise: Map these processing systems to the line below and justify



#### **Text Analysis Example**

Photo credit: markehr



#### Singapore Flyer

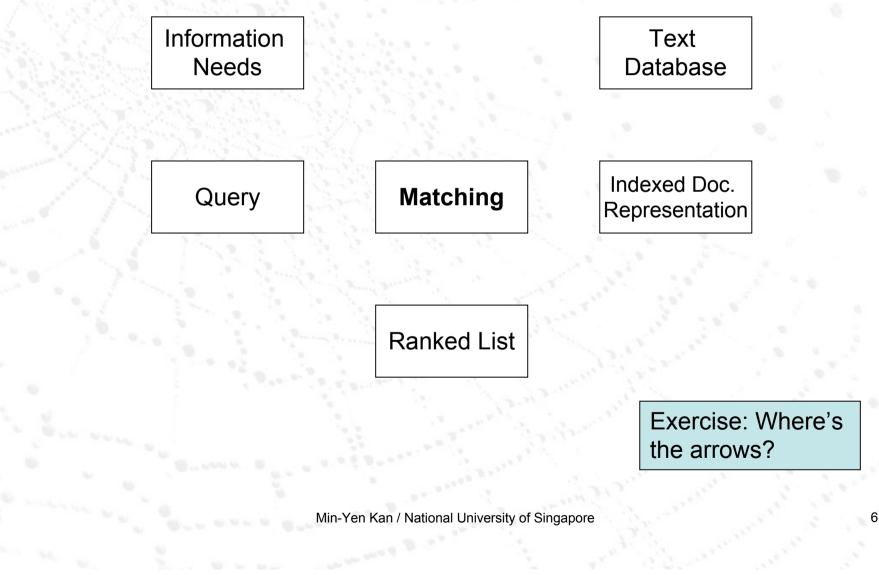
**Singapore Flyer Pte Ltd** 30 Raffles Avenue, #01-07 Singapore 039803 Telephone: (65) 6854 5200 Fax: (65) 6339 9167

Singapore Flyer is the world's largest observation wheel. Standing at a stunning 165m from the ground, the Flyer offers you breathtaking, panoramic views of the Marina Bay, our island city and beyond. There's also a wide range of shops, restaurants, activities and facilities. READ MORE >>

- Information Units
  - IR: terms: raffles x 1; Singapore x 3; pte x 1 …
  - IE: info units: Singapore Flyer, Raffles Avenue, Marina Bay, (65) 6854-5200 ... and their relations
  - QA: Which is the nearest MRT to Singapore Flyer? Answer: City Hall MRT
  - NLP: understanding the contents



#### Information Retrieval in a nutshell





### **Doc Representation**

Sad but true

Query and documents seen as a <u>bag of words</u> Matching is done by comparing these BoWs

How do we get to a BoW given a text? Let's look at unstructured text first:

- Tokenization not all languages have spaces to delimit
  - what about phrases like GermanNounCompounds
  - HTML structure can help to recover latent semi structure but is not guaranteed to be well formed



## **Doc Representation**

- Stemming recover stem for agglutinative languages
  - For English: Porter and Lovins stemmer: uses 5 iterations to strip suffixes. Does not necessarily result in a word
  - What's a "stem" in CJK?
- Case Folding combine the same word in different cases: next NEXT Next NeXT
- Stop Words remove frequent words that are not used in queries.

Which of 2 of these three attack the same problem? What is this problem?



### **Term Specific Weighting**

- We call this Term Frequency although this is really just a count
- Forms of *TF<sub>ij</sub>* = N<sub>ij</sub> 1+ln(N<sub>ij</sub>) N<sub>ij</sub>/max(N<sub>i</sub>)



# **Document Specific Weighting**

- Which of these tells you more about a doc?
  - 10 occurrences of *hernia*?
  - 10 occurrences of *the*?
- Would like to attenuate the weight of a common term
  - But what is "common"?
- Suggest looking at collection frequency (cf)
  - The total number of occurrences of the term in the entire collection of documents



## **Document frequency**

- But document frequency (*df* ) may be better:
- *df* = number of docs in the corpus containing the term

| Word      | cf    | df   |
|-----------|-------|------|
| ferrari   | 10422 | 17   |
| insurance | 10440 | 3997 |

- Document/collection frequency weighting is only possible in known (static) collection.
- So how do we make use of df?



### This is tf.idf

- tf.idf measure combines:
  - term frequency (tf)
    - or wf, some measure of term density in a doc
  - inverse document frequency (idf)
    - measure of informativeness of a term: its rarity across the whole corpus
    - could just be raw count of number of documents the term occurs in (*idf<sub>i</sub>* = 1/*df<sub>i</sub>*)
    - but by far the most commonly used version is:

$$idf_i = \log\left(\frac{n}{df_i}\right)$$

Justified as optimal weight w.r.t relative entropy



#### **Documents as vectors**

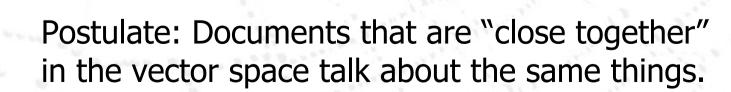
- Each doc j can now be viewed as a vector of tf x idf values, one component for each term
- So we have a vector space
  - terms are axes
  - docs live in this space
  - even with stemming, may have 20,000+ dimensions



It.

#### Why turn docs into vectors?

- First application: Query-by-example
  - Given a doc *d*, find others "like" it.
- Now that *d* is a vector, find vectors (docs) "near"



θ

φ

 $d_3$ 

Intuition

d<sub>z</sub>



### Desiderata for proximity

- If  $d_1$  is near  $d_2$ , then  $d_2$  is near  $d_1$ .
- If  $d_1$  near  $d_2$ , and  $d_2$  near  $d_3$ , then  $d_1$  is not far from  $d_3$ .
- No doc is closer to *d* than *d* itself.



# First cut

- Idea: Distance between  $d_1$  and  $d_2$  is the length of the vector  $|d_1 d_2|$ .
  - Euclidean distance
- Why is this not a great idea?
- We still haven't dealt with the issue of length normalization
  - Short documents would be more similar to each other by virtue of length, not topic
- However, we can implicitly normalize by looking at angles instead



#### **Cosine similarity**

 $d_2$ 

- Distance between vectors  $d_1$ and  $d_2$  captured by the cosine of the angle x between them.
- Note this is *similarity*, not distance
  - No triangle inequality for similarity.



#### **Cosine similarity**

A vector can be *normalized* (given a length of 1) by dividing each of its components by its length

 here we use the L<sub>2</sub> norm
 \_\_\_\_\_\_

$$\left\|\mathbf{x}\right\|_2 = \sqrt{\sum_i x_i^2}$$

- This maps vectors onto the unit sphere:
- Then,  $|\vec{d}_j| = \sqrt{\sum_{i=1}^n w_{i,j}} = 1$ 
  - Longer documents don't get more weight



#### **Cosine similarity**

$$sim(d_{j}, d_{k}) = \frac{\vec{d}_{j} \cdot \vec{d}_{k}}{\left|\vec{d}_{j}\right| \left|\vec{d}_{k}\right|} = \frac{\sum_{i=1}^{n} w_{i,j} w_{i,k}}{\sqrt{\sum_{i=1}^{n} w_{i,j}^{2}} \sqrt{\sum_{i=1}^{n} w_{i,k}^{2}}}$$

- Cosine of angle between two vectors
- The denominator involves the lengths of the vectors.





# Normalized vectors

 For normalized vectors, the cosine is simply the dot product:

# $\cos(\vec{d}_j, \vec{d}_k) = \vec{d}_j \cdot \vec{d}_k$



### Example

Docs: Austen's *Sense and Sensibility*, *Pride and Prejudice*; Bronte's *Wuthering Heights. tf* weights

|           | SaS   | PaP   | WH    |
|-----------|-------|-------|-------|
| affection | 115   | 58    | 20    |
| jealous   | 10    | 7     | 11    |
| gossip    | 2     | 0     | 6     |
|           | SaS   | PaP   | wн    |
| affection | 0.996 | 0.993 | 0.847 |
| jealous   | 0.087 | 0.120 | 0.466 |
| gossip    | 0.017 | 0.000 | 0.254 |
|           |       |       |       |

 $\cos(SAS, PAP) = .996 \times .993 + .087 \times .120 + .017 \times 0.0 = 0.999$ 

 $\cos(SAS, WH) = .996 \times .847 + .087 \times .466 + .017 \times .254 = 0.889$ 



#### Cosine similarity exercise

- Exercise: Rank the following by decreasing cosine similarity. Assume tf.idf weighting:
  - Two docs that have only frequent words (the, a, an, of) in common.
    - Two docs that have no words in common.
  - Two docs that have many rare words in common (wingspan, tailfin).



#### Phrase queries

- Running multiple queries
  - Backoff to n-1 gram in case of too few results
    - 1. "A B C"
    - 2. "A B", "B C"
    - 3. A, B, C
- Proximity as window w between term occurrences
  - Prefer the window to be smaller



### Break time

Watch the Corp Comm video

Min-Yen Kan / National University of Singapore

25

#### **NUS School of Computing Public Symposium**

(comprising two talks)

20 August 2008, 4pm to 5.30pm SR1, COM1 Level 2 *Register at: <u>https://register.comp.nus.edu.sg/corpcomm4</u>* 



NUS School of Computing 10 Years as a Faculty & 33 Years of Computing Excellence

Google: A Computer-Science Success Story Considering Mathematical Groundwork, Pragmatics Remaining Challenges by Jeffrey Ullman Stanford W Ascherman Professor of Computer Science (Emeritus)



Why Many High-paying Jobs of the Future Can Benefit from a Good University Education in Computing

*by* H T Kung William H Gates Professor of Computer Science & Electrical Engineering Harvard School of Engineering and Applied Sciences



### Relevance Feedback and IR Evaluation

27



We focus

on this case

### **Relevance Feedback**

- Main Idea:
  - Modify existing query based on relevance judgements
    - Extract terms from relevant documents and add them to the query
    - and/or re-weight the terms already in the query
  - Two main approaches:
    - Automatic (pseudo-relevance feedback)
      - Users select relevant documents
  - Users/system select terms from an automatically-generated list
- Will return to this later: clickstreams in web search engines



#### **Relevance Feedback**

- Usually do both:
  - expand query with new terms
  - re-weight terms in query
- There are many variations
  - Usually positive weights for terms from relevant docs
  - Sometimes negative weights for terms from non-relevant docs
  - Select terms sometimes by requiring them to match query in addition to document



#### **Rocchio Method**

$$Q_1 = Q_0 + \beta \sum_{i=1}^{n_1} \frac{R_i}{n_1} - \gamma \sum_{i=1}^{n_2} \frac{S_i}{n_2}$$

where

 $Q_0$  = the vector for the initial query

 $R_i$  = the vector for the relevant document *i* 

 $S_i$  = the vector for the non-relevant document *i* 

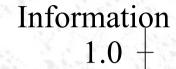
 $n_1$  = the number of relevant documents chosen

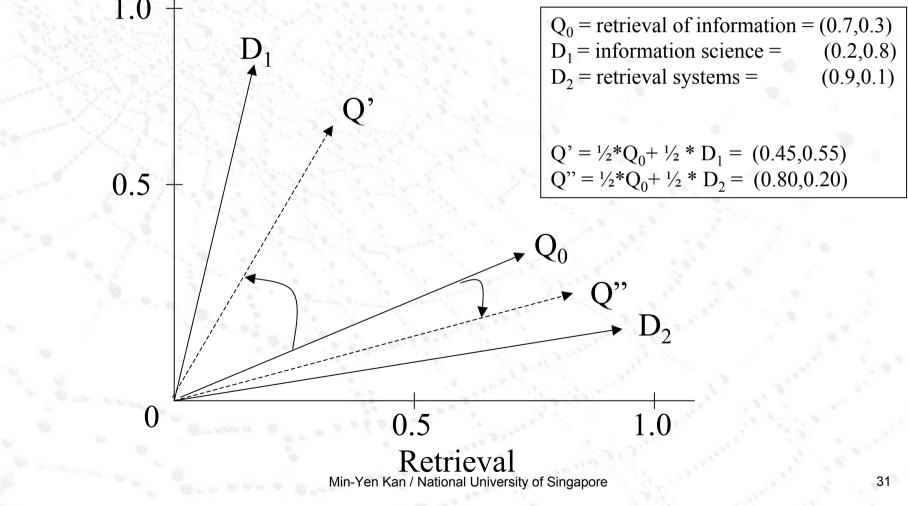
 $n_2$  = the number of non - relevant documents chosen

 $\beta$  and  $\gamma$  tune the importance of relevant and nonrelevant terms (in some studies best to set  $\beta$  to 0.75 and  $\gamma$  to 0.25)



#### **Rocchio/Vector Illustration**







# **Evaluation Contingency Table**

|                                       | System says is<br>relevant | System says is<br>irrelevant |
|---------------------------------------|----------------------------|------------------------------|
| Document is<br>actually<br>relevant   | TP<br>(True Positive)      | FN<br>(False Negative)       |
| Document is<br>actually<br>irrelevant | FP<br>(False Positive)     | TN<br>(True Negative)        |



TP

TP+FP

TP

TP+FN

P + R

### **Evaluation Metrics**

#### Precision = Positive Predictive Value

- "ratio of the number of relevant documents retrieved over the total number of documents retrieved"
- how much extra stuff did you get?

Recall = Sensitivity

- "ratio of relevant documents retrieved for a given query over the number of relevant documents for that query in the database"
- how much did you miss?
- <sup>2PR</sup>  $F_1$  measure = harmonic mean of P and R
  - Can use other coefficients instead of 1



#### One number to rule them all: MAP

- A "standard" measure: Mean Average Precision (MAP)
  - average of precision at all points where a new relevant document is found.
    - Problem: favors systems with high
  - On the web, a user is usually looking just at the first a few results in Web search.
    - Leads to precision at k documents, but it's kludgy: not sensitive to the ranking of every relevant document.



### A second try: nDCG

- "Gain": Each rel doc gives some level of relevance to the user G' = <3,2,3,0,0,1>
- "Cumulative": overall utility of *n* docs = sum of gain of each rel doc. CG' = <3,5,8,8,8,9>
- "**Discount**" docs further down in list, as they are less likely to be used DCG' = <3, 3+2/log2, 3+2/log2+3/log3, ..., 3+2/log2+3/log3+1/log6>
  - "Normalized" against ideal IR system rankings Ideal G' = <3,3,2,1,0,0> Ideal DCG' = <3, 3+3/log2, 3+3/log2+2/log3, 3+3/log2+2/log3+1/log4, ...> nDCG' = DCG' / Ideal DCG' = <1, ...>

Pro: works naturally from fractional relevance Con: have to set the discounting coefficients in NDCG (why log?)



#### To summarize

- TF Favor terms important to the document
- IDF Favor terms selective of the document
- Normalize documents of different length
- Docs and Queries all as vectors
  - Ask for help from the user to construct new query
  - Document as query similarity search "more like this"
- Retrieval Evaluation as P/R/F<sub>1</sub> and nDGC.