Text Processing on the Web

Week 7
Question Answering

The material for these slides are borrowed heavily from the precursor of this course taught by Tat-Seng Chua as well as slides from the accompanying recommended texts Baldi et al. and Manning et al.
Recap: Passage Retrieval and External Resources

• Tuning the performance of IR systems using
 – Query expansion
 – External resources

• Passage Retrieval
 – Can use simple document methods
 – Are a good platform for trying more substantial processing
 – Emphasizing precision; relegate document retrieval to high recall
Three-week Outline

Last Time

• External Resources
 – Thesaurii
 – Wikipedia
 – Domain specific Sites

• Query Expansion
 – Query logs to suggest

• Ranking
 – Density Based
 – Dependency Based

Today

• What is Question Answering?
 – TREC
 – Def, List, Factoid
 – Closed vs. Open Domain

• Question Analysis
 – Question Typologies

• Structural use of terms in QA
Question Answering

• Open Domain
 – Find answers to natural language questions by searching and locating answers in a free (or semi structured) text collection
 – Typically non-interactive
 – A focus of TREC

• Closed Domain
 – QA in a closed domain (e.g., intranet of company)
 – Might simply do routing (classify to closest FAQ)
 – May use ontological knowledge
Text REtrieval Conference

• Annual bakeoff competition of IR systems
• Helped to do large scale testing in a rigorous way
 + Standard corpus and standard answers
 + Technology transfer and visibility
 – All systems start to look the same after a while; less room for innovation

• Structured like our HWs with query relevance assessed by participants or paid volunteers
TREC Tracks

http://trec.nist.gov/tracks.html
- Question Answering
- Blog
- Enterprise – a bit like closed domain
- Genomics – data, but also documentation

Past tracks
- Terabyte – over large datasets
- Novelty – finding interesting new results
- Cross Language – retrieving documents in other languages
- Interactive – user in the loop
- Video – not just text anymore
Question Types in the QA Track

• Factoid – exact answer to a factual question
 – How long is the coastline of England?
• List – listing of items to answer a question
 – Which countries import rice?
• Definition – give a NL definition to a topic
 – Who is Aaron Copeland?

• Topic-Based – Culmination of all three on a particular topic
Example Topic Questions

In 2004 TREC switched to topic style questions

- **Topic: Hale Bopp Comet**
 - FACTOID: When was the comet discovered
 - FACTOID: How often does it approach the earth?
 - LIST: In what countries was the comet visible on its last return?
 - OTHER: (other relevant info not explicitly asked)

- **Topic: James Dean**
 - FACTOID: When was James Dean born
 - FACTOID: When did James Dean die
 - FACTOID: How did James Dean die?
 - LIST: What movies did he appear in?
 - FACTOID: Which was the first movie that he was in?
 - OTHER

How are definition questions related to these question types?
Answering Questions

In TREC QA, answers to factoids need to be exact

• Q: Which river is the longest river in the US?
• A: At 2,348 miles the Mississippi River is the longest river in the U.S.
• A: Mississippi
• A: Mississippi River
Evaluating QA

Get the correct answer: precision
Get succinct answers: recall

Factoid / List
- DeepRead: only count content words
- Later: TREC 2002 modified this for getting ranking answers

Definition / Other
- Nugget precision/recall/F
 - What’s a nugget?
 - Used \(F_5 \): recall worth 5x vs. precision (also \(F_3 \))
- Vital versus OK nuggets
 - Leads to two different scores

\[
\begin{align*}
P &= \frac{\text{# of matching words}}{\text{# of words in answer key}} \\
R &= \frac{\text{# of matching words}}{\text{# of words in system response}}
\end{align*}
\]
QA Architecture

Information

Query
Typed Query
Expanded Query
Documents
Passages
Exact Answers

System

Query Analysis
Query Expansion
Document Retriever
Passage Retriever
Answer Extractor
Typical QA Implementation

From Yang et al. “Structured Use of … QA”

Reduce # of expanded content words – Successive Constraint Relaxation
Question Classification

- Based on question focus and answer type
- Divide into main classes
 - HUMAN, LOCATION, TIME, NUMBER, OBJECT, DESCRIPTION, UNKNOWN
- Subdivide into detailed classes
 - E.g., under LOCATION
 - LOC_PLANET, LOC_TOWN
 - LOC_CITY, LOC_RIVER
 - LOC_CONTINENT, LOC_LAKE
 - LOC_COUNTRY, LOC_MOUNTAIN
 - LOC_COUNTY, LOC_OCEAN
 - LOC_STATE, LOC_ISLAND
 - LOC_PROVINCE

- Need to ensure accuracy is good. Fortunately, it is very high (> 90%, at least for certain classes)
Question Parsing

• Aim: To extract essential terms in question
 – To extract answer target and content words
• E.g., for question “What mythical Scottish town appears for one day every 100 years?”
 – \(q_0 = (\text{mythical, Scottish, town, appears, one, day, 100, years}) \)
 – Answer target = LOC_TOWN
 – Basic Noun Phrases \(n = \text{“mythical Scottish town”} \)
 – Sub-heading words \(h = \text{“town”} \)
 – Quotation words \(u \)
 • Present in some questions with titles of works, e.g., What was the original name of the song “The Star Spangled Banner”?
Query Expansion

• Aims to: bring in context to bridge gap between the query and documents
 – Many terms used in queries do not appear in documents or are phrased differently
• For automated Open Domain QA:
 – Make use of external resources to find context
 – Use the Web to extract highly correlated terms with query terms using MI or other co-occurrence metrics
 – Use WordNet to find terms that are lexically related to query using the structure and synsets S_q and gloss G_q
 – Combine these three sources to get final ranked list of terms I_q
 – Use I_q for query expansion $q_1 = q_0 + \{ \text{top } m \text{ terms from } I_q \}$
 – Linear query expansion by varying m to adjust precision of query
Document Retrieval

• Use Lucene to perform Boolean Retrieval
•Retrieve top $n = 50$ documents using conjunctive syntax
 – If q_1 does not return sufficient documents, remove some extra terms and repeat search
 – This is the successive constraint relaxation, which we will use again later
Passage Retrieval

- Identify sentences from top $n = 50$ documents
- Density based match to find relevant sentences
- Recall query processing got us q_0, q_1, n, h, u
 Score all sentences in top n S_j are scored by
 +1 if match quotation words u
 +1 if match noun phrases n
 +1 if match sub heading words h
 +[0-1] % of terms overlapping between q_0 and S_j
 +[0-1] % of terms matching expanded ($q_1 - q_0$) query terms
 + based on other criteria (dependency relation score)
- Select top k sentences based on scores of S_j
Answer Extraction

• Perform NE tagging from top k sentences
 – NE tagging task reviewed later in the course

• For each sentence, extract string matching question target

“What mythical Scottish town appears for one day every 100 years?”
Answer target: LOC_TOWN
Top ranked sentence “Isolated in the rugged heartland of the <LOC_MOUNTAIN Green Mountains>, <LOC_MOUNTAIN Plymouth Notch> has been called <LOC_STATE Vermont>’s <LOC_TOWN Brigadoon>, after the imaginary <LOC_COUNTRY Scottish> village that appears and vanishes in the mists.”
The extracted answer is Brigadoon

“Who is Tom Cruise married to?”
Answer target: HUM_BASIC
Top ranked Candidate Sentence: “Actor <HUM_PERSON Tom Cruise> and his wife <HUM_PERSON Nicole Kidman> accepted “substantial” libel damages on <TME_DATE Thursday> from a <LOC_COUNTRY British> newspaper that reported he was gay and that their marriage was a sham to cover it up.”
The extracted answer is Nicole Kidman
If no answers... try again

• Perform successive constrain relaxation (SCR):
 – We reduce the number of expanded query terms in q_1 and repeat the document/sentence retrieval and answer extraction
 – Try up to $m=5$ iterations (afterwards, conclude really no answer \textit{nil})

• This strategy increases recall
• Question: What does it do to precision?
Further Readings

• The Voorhees paper gives an overview of the TREC QA tasks.
• Read the Hirschman et al. article to get an understanding of a complete, early QA system.
• Then read the Yang et al. paper to see how it works in a more modern system.
• (Supplemental) the Moldovan and Novischi article describes a more principled way to use WordNet (definitions + ontology data) to relate to synonymous words together.
Leveraging structure in QA
Two parts

Looking at the structure of terms to boost QA

• Structured Queries
 (from Yang et al. 2002)
 – In query expansion
 – No linguistic knowledge
 – Distance between terms

• Soft Patterns
 (from Cui et al. 2004)
 – For filtering in passage retrieval
 – Part of speech tagging
 – Order between terms

Could be applied elsewhere (e.g., NLP, IE, IR), not just QA
Structured Queries

Goal: know which terms in (expanded) query belong together
 Such semantic groups should correspond to set of elements in a QA event

Given any two distinct terms t_i and t_j, we compute 3 correlations

- **Lexical:**
 - Use WordNet (gloss and hierarchy)
 - Give bonus if t_i and t_j related (e.g., in same synset)

- **Co-occurrence**
 - Find mutual information between t_i and t_j
 - Give bonus if MI(t_i,t_j) greater than average

- **Distance:**
 - Density based methods (i.e., find how close in the snippets or documents t_i and t_j
 occur)
 - Give bonus proportional to reciprocal of avg. distance between t_i and t_j

Note: Co-occurrence and distance correlations *overlap* (not independent)
Calculating semantic groups

- Initially, soft cluster terms in (expanded) query by their distance
 - Use fixed thresholds in some number of initial clusters \(G \).
 - Each cluster in \(G \) represented by highest IDF word, called \(\text{main}(G_i) \)

- Then iterate to obtain hard clusters
 - Select cluster \(G_s \) to be added to final cluster set \(E \) based on having highest weighted \(\text{main}(G_i) \)
 - Remove any overlapping words in other \(G_k \) that overlap with words in \(G_s \)

- For each final cluster in \(E \), decide its group cohesiveness based on the correlations.
 - If cluster is tight, use an AND syntax (words are part of the same concept)
 - If cluster is loose, use an OR syntax to connect words (words are synonymous)
Example

• For question: “What Spanish explorer discovered the Mississippi River?”
• Expanded Query= \{Mississippi, Hernando, Soto, De, Spanish, 1541, French, European, First, river\}
• Initial clusters (main word **bolded**)

![Diagram showing initial clusters](image-url)
• Final Boolean query is: Mississippi & 1541 & (Hernando & De & Soto) & (first | European | River) & (French | Spanish)
Definition QA architecture

User → Query

IR Engine → Best Sentences

Pattern Matching → Definition Sentences

Result → Sentence Selection

Definition Patterns

Training Pattern Instances
How Do Current Systems Identify Definitions?

• Current systems use hand-crafted patterns

 – Appositive
 • e.g. Gunter Blobel, a cellular and molecular biologist,…
 – Copulas
 • e.g. Battery is a kind of electronic device …
 – Predicates (relations)
 • e.g. TB is usually caused by …
Weaknesses of Current Pattern Matching Methods

• Lack of Flexibility – Hard Matching
 – Pattern: `<SCH_TERM>`, also known as
 `TB`, also known as Tuberculosis, ...
 `TB` (also known as Tuberculosis) ...
 – Variations make hard matching fail
 – Introduce **Soft Patterns** with greater flexibility

• Manual labor
 – Introduce unsupervised learning by Group Pseudo-Relevance Feedback (GPRF).
What are Soft Patterns?

• Soft patterns allow partial matching
 TB (also known as Tuberculosis) …
 \[P(\emptyset | \text{Slot1}) = 0.001, P(\text{also}|\text{Slot2}) = 0.21, P(\text{known}|\text{Slot3}) = 0.33, P(\text{as}|\text{Slot4}) = 0.13 \]

 \[P(\text{Matching}) = 0.23 : \text{still better than non-definition sentences}. \]

• How does it work?
 – Training – accumulating pattern instances in a vector.
 • Derive pattern instances from labeled definition sentences.
 – Matching with a probabilistic model, not regular expressions.
 • Using statistical information from all pattern instances, not generalized rules.
 • Instance-based learning.
Preparing Pattern Instances

The channel *Iqra* is owned by the Arab Radio and Television company and is the brainchild of the Saudi billionaire, Saleh Kamel.

Step 1
POS tagging and noun phrase chunking.

The_DT channel_NN Iqra_NNP is_VBZ owned_VBN by_IN NNP company_NN and_CC is_VBZ the_DT brainchild_NN of_IN NNP.

Step 2
Selective substitution – replace those specific words with more general tags. Other tokens remain unchanged.

DT$ NN <SEARCH_TERM> BE$ owned by DT$ NNP and BE$ DT$ NN of NNP.
Preparing Pattern Instances – Cont’d

\[DT\$ \text{NN} \text{<SCH_TERM>} \text{BE}\$ \text{owned by} \]

Step 3
Crop a text window around the tag “<SCH_TERM>”
(window size = 3 for each side)
Example Pattern Generation

…… The channel *Iqra* is owned by the …
…… severance packages, known as *golden parachutes*, included ……

A *battery* is a cell which can provide electricity.

```
DT$  NN  <Search_Term>  BE$ owned by
known as  <Search_Term>  ,  VB
<Search_Term>  BE$  DT$

...... <Slot_2>  
       NN 0.12
known 0.09
DT$ 0.04

<Slot_1>  
       NN 0.11
as 0.20

<Search_Term>  

...... <Slot_1>
, 0.40
BE$ 0.2

<Slot_2>  
DT$ 0.2
owned 0.09
VB 0.1

<Slot_w>  
......, Slot_2, Slot_1, SEARCH_TERM , Slot_1, Slot_2, ...... Slot_w : Pa>
```
Matching Soft Patterns

• Test sentences are reduced to a vector S using the same strategy.

$<token_{w}, \ldots, token_{1}, SEARCH_TERM, token_{1}, \ldots, token_{w} : S>\$

• Matching Soft Patterns – similarity between the pattern vector Pa and the test vector S.
 – Independent slot content similarity.
 – Slot sequence fidelity.
Probabilistic Matching Degree

• Individual slot similarity – independent assumption
 \[Pa_{weight}^{Slots} = \Pr(S \mid Pa) = \prod_{i=-w}^{w} \Pr(token_i \mid Slot_i) \]

• Sequence fidelity – bigram model
 \[\Pr(right_seq) = \Pr(token_1, token_2 \cdots token_w \mid Pa) = P(token_1)P(token_2 \mid token_1) \cdots P(token_w \mid token_{w-1}) \]
 \[Pa_{weight}^{seq} = (1-\alpha) \cdot \Pr(left_seq \mid Pa) + \alpha \cdot \Pr(right_seq \mid Pa) \]

• Combined to get the matching degree
 \[Pattern_weight = \frac{Pa_{weight}^{Slots} \times Pa_{weight}^{seq}}{fragment_length} \]
Unsupervised Labeling of Definition Sentences using GPRF

- Pattern instances obtained from labeled definition sentences.
 - Manual labeling is too expensive.

- Pseudo-relevance Feedback in document retrieval
 - Take the top n ranked documents as relevant.

- Employ Group pseudo-relevance feedback (GPRF)
 - Statistical ranking – centroid based method.
 - Perform PRF over a group of questions (top 10 sentences for each question).
 - Generate soft patterns from all auto-labeled sentences for all questions.
Analysis of GPRF

• Assumption 1 – some definition sentences can be ranked high using statistical method.
 – Word co-occurrence metrics can well model descriptive sentences.
 • Over 33% of top ranked sentences are definitional.
 – Noise introduced in each question’s top list is mitigated by our group strategy
• Assumption 2 – definition patterns are general and can be used across questions.
Summary

• Question Answering as exact answer retrieval
 – Different types of QA
 – Definitional QA as summarization (keep this in mind next week)

• Less volume of information allows more intensive statistical NLP to be applied
 – Pre-process: question typing
 – Post-process: answer extraction
 – Successive Constraint Relaxation to expand queried to find less exact answers.

• Use structure
 – Associating terms into groups (keep in mind for clustering later)
 – Soft patterns for capturing context in an unsupervised way using PRF