Lecture 13:
Convolutional Neural Networks (for NLP)

Richard Socher
richard@metamind.io
Overview of today

- From RNNs to CNNs
- CNN Variant 1: Simple single layer
 - Application: Sentence classification
 - More details and tricks
- Evaluation
- Comparison between sentence models: BoV, RNNs, CNNs
- CNN Variant 2: Complex multi layer
From RNNs to CNNs

Richard Socher
From RNNs to CNNs

- Recursive neural nets require a parser to get tree structure

- Recurrent neural nets cannot capture phrases without prefix context and often capture too much of last words in final vector
From RNNs to CNNs

- RNN: Get compositional vectors for grammatical phrases only
- CNN: What if we compute vectors for every possible phrase?
 Example: “the country of my birth” computes vectors for:
 - the country, country of, of my, my birth, the country of, country of my, of my birth, the country of my, country of my birth

- Regardless of whether it is grammatical
- Wouldn’t need parser
- Not very linguistically or cognitively plausible
What is convolution anyway?

- 1d discrete convolution generally:
 \[(f \ast g)[n] = \sum_{m=-M}^{M} f[n - m]g[m].\]

- Convolution is great to extract features from images

- 2d example →
- Yellow shows filter weights
- Green shows input

Richard Socher

Stanford UFLDL wiki

5/12/16
From RNNs to CNNs

- First layer: compute all bigram vectors

\[
\begin{align*}
\text{the} & : 1 \\
\text{country} & : 1 \\
\text{of} & : 5.5 \\
\text{my} & : 2.5 \\
\text{birth} & : 3.8 \\
\end{align*}
\]

- Same computation as in RNN but for every pair

\[
p = \tanh \left(W \begin{bmatrix} c_1 \\ c_2 \end{bmatrix} + b \right)
\]

- This can be interpreted as a convolution over the word vectors
From RNNs to CNNs

• Now multiple options to compute higher layers.
• First option (simple to understand but not necessarily best)
• Just repeat with different weights:

\[p = \tanh \left(W^{(2)} \begin{bmatrix} c_1 \\ c_2 \end{bmatrix} + b \right) \]
From RNNs to CNNs

• First option (simple to understand but not necessarily best)
From RNNs to CNNs

- First option (simple to understand but not necessarily best)
Single Layer CNN

- A simple variant using one convolutional layer and pooling
- Based on Collobert and Weston (2011) and Kim (2014) “Convolutional Neural Networks for Sentence Classification”
- Word vectors: \(x_i \in \mathbb{R}^k \)
- Sentence: \(x_{1:n} = x_1 \oplus x_2 \oplus \ldots \oplus x_n \) (vectors concatenated)
- Concatenation of words in range: \(x_{i:i+j} \)
- Convolutional filter: \(w \in \mathbb{R}^{hk} \) (goes over window of h words)
- Could be 2 (as before) higher, e.g. 3:
Single layer CNN

- Convolutional filter: \(w \in \mathbb{R}^{hk} \) (goes over window of h words)
- Note, filter is vector!
- Window size h could be 2 (as before) or higher, e.g. 3:
- To compute feature for CNN layer:

\[
 c_i = f \left(w^T x_{i:i+h-1} + b \right)
\]

\[
 \begin{bmatrix}
 1.1 \\
 0.4 \\
 0.3 \\
 \end{bmatrix}
\]

\[
 \begin{bmatrix}
 2.1 \\
 3.3 \\
 7 \\
 \end{bmatrix}
\]

\[
 \begin{bmatrix}
 4 \\
 4.5 \\
 3.6 \\
 \end{bmatrix}
\]

- the
country
of
my
birth

Richard Socher 5/12/16
Single layer CNN

- Filter w is applied to all possible windows (concatenated vectors)

- Sentence: $x_{1:n} = x_1 \oplus x_2 \oplus \ldots \oplus x_n$

- All possible windows of length h: $\{x_{1:h}, x_{2:h+1}, \ldots, x_{n-h+1:n}\}$

- Result is a feature map: $c = [c_1, c_2, \ldots, c_{n-h+1}] \in \mathbb{R}^{n-h+1}$

\[
\begin{bmatrix}
1.1 \\
0.4 \\
0.3 \\
0.4
\end{bmatrix} \quad \begin{bmatrix}
3.5 \\
2.1 \\
3.3 \\
7
\end{bmatrix} \quad \ldots \quad \begin{bmatrix}
2.4 \\
2.3 \\
3.6 \\
???????
\end{bmatrix}
\]

Richard Socher 5/12/16
Single layer CNN

- Filter \(w \) is applied to all possible windows (concatenated vectors)

- Sentence: \(x_{1:n} = x_1 \oplus x_2 \oplus \ldots \oplus x_n \)

- All possible windows of length \(h \): \(\{x_{1:h}, x_{2:h+1}, \ldots, x_{n-h+1:n}\} \)

- Result is a feature map: \(c = [c_1, c_2, \ldots, c_{n-h+1}] \in \mathbb{R}^{n-h+1} \)
Single layer CNN: Pooling layer

- New building block: Pooling
- In particular: max-over-time pooling layer
- Idea: capture most important activation (maximum over time)

- From feature map \(\mathbf{c} = [c_1, c_2, \ldots, c_{n-h+1}] \in \mathbb{R}^{n-h+1} \)

- Pooled single number: \(\hat{c} = \max\{\mathbf{c}\} \)

- But we want more features!
Solution: Multiple filters

- Use multiple filter weights \(w \)

- Useful to have different window sizes \(h \)

- Because of max pooling \(\hat{c} = \max \{ c \} \), length of \(c \) irrelevant

 \[
 c = [c_1, c_2, \ldots, c_{n-h+1}] \in \mathbb{R}^{n-h+1}
 \]

- So we can have some filters that look at unigrams, bigrams, trigrams, 4-grams, etc.
Multi-channel idea

- Initialize with pre-trained word vectors (word2vec or Glove)
- Start with two copies
- Backprop into only one set, keep other “static”
- Both channels are added to c_i before max-pooling
Classification after one CNN layer

- First one convolution, followed by one max-pooling

- To obtain final feature vector: \(z = [\hat{c}_1, \ldots, \hat{c}_m] \) (assuming \(m \) filters \(w \))

- Simple final softmax layer

\[
y = \text{softmax} \left(W^{(S)} z + b \right)
\]
Figure from Kim (2014)

n words (possibly zero padded) and each word vector has k dimensions
Tricks to make it work better: Dropout

• Idea: randomly mask/dropout/set to 0 some of the feature weights z

• Create masking vector r of Bernoulli random variables with probability p (a hyperparameter) of being 1

• Delete features during training:

$$y = \text{softmax} \left(W^{(S)} (r \circ z) + b \right)$$

• Reasoning: Prevents co-adaptation (overfitting to seeing specific feature constellations)
Tricks to make it work better: Dropout

$y = \text{softmax} \left(W^{(S)} (r \circ z) + b \right)$

- At training time, gradients are backpropagated only through those elements of z vector for which $r_i = 1$

- At test time, there is no dropout, so feature vectors z are larger.
- Hence, we scale final vector by Bernoulli probability p

$$\hat{W}^{(S)} = pW^{(S)}$$

- Kim (2014) reports 2 – 4% **improved accuracy** and ability to use very large networks without overfitting
Another regularization trick

• Somewhat less common

• Constrain l_2 norms of weight vectors of each class (row in softmax weight $W^{(S)}$) to fixed number s (also a hyperparameter)

• If $\|W_{c}^{(S)}\| > s$, then rescale it so that: $\|W_{c}^{(S)}\| = s$
All hyperparameters in Kim (2014)

- Find hyperparameters based on dev set
- Nonlinearity: ReLu
- Window filter sizes $h = 3, 4, 5$
- Each filter size has 100 feature maps
- Dropout $p = 0.5$
- L2 constraint s for rows of softmax $s = 3$
- Mini batch size for SGD training: 50
- Word vectors: pre-trained with word2vec, $k = 300$

- During training, keep checking performance on dev set and pick highest accuracy weights for final evaluation
Experiments

<table>
<thead>
<tr>
<th>Model</th>
<th>MR</th>
<th>SST-1</th>
<th>SST-2</th>
<th>Subj</th>
<th>TREC</th>
<th>CR</th>
<th>MPQA</th>
</tr>
</thead>
<tbody>
<tr>
<td>CNN-rand</td>
<td>76.1</td>
<td>45.0</td>
<td>82.7</td>
<td>89.6</td>
<td>91.2</td>
<td>79.8</td>
<td>83.4</td>
</tr>
<tr>
<td>CNN-static</td>
<td>81.0</td>
<td>45.5</td>
<td>86.8</td>
<td>93.0</td>
<td>92.8</td>
<td>84.7</td>
<td>89.6</td>
</tr>
<tr>
<td>CNN-non-static</td>
<td>81.5</td>
<td>48.0</td>
<td>87.2</td>
<td>93.4</td>
<td>93.6</td>
<td>84.3</td>
<td>89.5</td>
</tr>
<tr>
<td>CNN-multichannel</td>
<td>81.1</td>
<td>47.4</td>
<td>88.1</td>
<td>93.2</td>
<td>92.2</td>
<td>85.0</td>
<td>89.4</td>
</tr>
<tr>
<td>RAE (Socher et al., 2011)</td>
<td>77.7</td>
<td>43.2</td>
<td>82.4</td>
<td></td>
<td></td>
<td></td>
<td>86.4</td>
</tr>
<tr>
<td>MV-RNN (Socher et al., 2012)</td>
<td>79.0</td>
<td>44.4</td>
<td>82.9</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RNTN (Socher et al., 2013)</td>
<td></td>
<td>45.7</td>
<td>85.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DCNN (Kalchbrenner et al., 2014)</td>
<td></td>
<td>48.5</td>
<td>86.8</td>
<td></td>
<td>93.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Paragraph-Vec (Le and Mikolov, 2014)</td>
<td></td>
<td></td>
<td>87.8</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CCAE (Hermann and Blunsom, 2013)</td>
<td>77.8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>87.2</td>
</tr>
<tr>
<td>Sent-Parser (Dong et al., 2014)</td>
<td>79.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>86.3</td>
</tr>
<tr>
<td>NBSVM (Wang and Manning, 2012)</td>
<td>79.4</td>
<td></td>
<td></td>
<td>93.2</td>
<td></td>
<td>81.8</td>
<td>86.3</td>
</tr>
<tr>
<td>MNB (Wang and Manning, 2012)</td>
<td>79.0</td>
<td></td>
<td></td>
<td></td>
<td>93.6</td>
<td>80.0</td>
<td>86.3</td>
</tr>
<tr>
<td>G-Dropout (Wang and Manning, 2013)</td>
<td>79.0</td>
<td></td>
<td></td>
<td>93.4</td>
<td></td>
<td>82.1</td>
<td>86.1</td>
</tr>
<tr>
<td>F-Dropout (Wang and Manning, 2013)</td>
<td>79.0</td>
<td></td>
<td></td>
<td></td>
<td>93.6</td>
<td>81.9</td>
<td>86.3</td>
</tr>
<tr>
<td>Tree-CRF (Nakagawa et al., 2010)</td>
<td>77.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>81.4</td>
<td>86.1</td>
</tr>
<tr>
<td>CRF-PR (Yang and Cardie, 2014)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>82.7</td>
</tr>
<tr>
<td>SVM$_s$ (Silva et al., 2011)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Problem with comparison?

• Dropout gives 2 – 4 % accuracy improvement
• Several baselines didn’t use dropout

• Still remarkable results and simple architecture!

• Difference to window and RNN architectures we described in previous lectures: pooling, many filters and dropout
• Ideas can be used in RNN²s too
• Tree-LSTMs obtain better performance on sentence datasets
Fixed tree RNNs explored in computer vision: Socher et al (2012): “Convolutional-Recursive Deep Learning for 3D Object Classification”
Relationship between RNNs and CNNs

- CNN

- RNN

Richard Socher 5/12/16
Relationship between RNNs and CNNs

- CNN
- RNN
Relationship between RNNs and CNNs

• **Stride size** flexible in CNNs, RNNs “weighted average pool”
• Tying (sharing) weights of filters inside vs across different layers
• CNN: multiple filters, additional layer type: max-pooling
• Balanced input independent structure vs input specific tree
CNN alternatives

- Narrow vs wide convolution

- Complex pooling schemes (over sequences) and deeper convolutional layers

- Kalchbrenner et al. (2014)
CNN application: Translation

- One of the first successful neural machine translation efforts
- Uses CNN for encoding and RNN for decoding
- Kalchbrenner and Blunsom (2013) “Recurrent Continuous Translation Models”
Model comparison

- **Bag of Vectors**: Surprisingly good baseline for simple classification problems. Especially if followed by a few layers!

- **Window Model**: Good for single word classification for problems that do not need wide context

- **CNNs**: good for classification, unclear how to incorporate phrase level annotation (can only take a single label), need zero padding for shorter phrases, hard to interpret, easy to parallelize on GPUs
Model comparison

- **Recursive Neural Networks**: most linguistically plausible, interpretable, provide most important phrases (for visualization), need parse trees

- **Recurrent Neural Networks**: Most cognitively plausible (reading from left to right), not usually the highest classification performance but lots of improvements right now with gates (GRUs, LSTMs, etc).

- Best but also most complex models: Hierarchical recurrent neural networks with attention mechanisms and additional memory → Last week of class :)
Next week:

• Guest lectures next week:

• Speech recognition and state of the art machine translation