
CS224d	
Deep	Learning		

for	Natural	Language	Processing	
	
	

Lecture	2:	Word	Vectors	
	
	Richard	Socher	



How	do	we	represent	the	meaning	of	a	word?	
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Defini4on:	Meaning	(Webster	dic4onary)	

•  the	idea	that	is	represented	by	a	word,	phrase,	etc.	

•  the	idea	that	a	person	wants	to	express	by	using	
words,	signs,	etc.	

•  the	idea	that	is	expressed	in	a	work	of	wri4ng,	art,	etc.	



How	to	represent	meaning	in	a	computer?	
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Common	answer:	Use	a	taxonomy	like	WordNet	that	has	
hypernyms	(is-a)	rela4onships								and	

	 	 	 	 						synonym	sets	(good):	

[Synset('procyonid.n.01'),		
Synset('carnivore.n.01'),		
Synset('placental.n.01'),		
Synset('mammal.n.01'),		
Synset('vertebrate.n.01'),		
Synset('chordate.n.01'),		
Synset('animal.n.01'),		
Synset('organism.n.01'),		
Synset('living_thing.n.01'),		
Synset('whole.n.02'),		
Synset('object.n.01'),		
Synset('physical_en4ty.n.01'),		
Synset('en4ty.n.01')]	

S:	(adj)	full,	good		
S:	(adj)	es4mable,	good,	honorable,	respectable		
S:	(adj)	beneficial,	good		
S:	(adj)	good,	just,	upright		
S:	(adj)	adept,	expert,	good,	prac4ced,		
proficient,	skillful	
S:	(adj)	dear,	good,	near		
S:	(adj)	good,	right,	ripe	
…	
S:	(adv)	well,	good		
S:	(adv)	thoroughly,	soundly,	good		
S:	(n)	good,	goodness		
S:	(n)	commodity,	trade	good,	good		



Problems	with	this	discrete	representaDon	
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•  Great	as	resource	but	missing	nuances,	e.g.	
synonyms:		
adept,	expert,	good,	prac4ced,	proficient,	skillful?	

•  Missing	new	words	(impossible	to	keep	up	to	date):	
wicked,	badass,	niXy,	crack,	ace,	wizard,	genius,	ninjia	

•  Subjec4ve	

•  Requires	human	labor	to	create	and	adapt	

•  Hard	to	compute	accurate	word	similarity	à	



Problems	with	this	discrete	representaDon	

The	vast	majority	of	rule-based	and	sta4s4cal	NLP	work	regards	
words	as	atomic	symbols:	hotel, conference, walk 

	

In	vector	space	terms,	this	is	a	vector	with	one	1	and	a	lot	of	zeroes	

[0 0 0 0 0 0 0 0 0 0 1 0 0 0 0] 
Dimensionality:	20K	(speech)	–	50K	(PTB)	–	500K	(big	vocab)	–	13M	(Google	1T)	

We	call	this	a	“one-hot”	representa4on.	Its	problem:	

  motel [0 0 0 0 0 0 0 0 0 0 1 0 0 0 0]  AND 
  hotel  [0 0 0 0 0 0 0 1 0 0 0 0 0 0 0]  =  0	

5	



DistribuDonal	similarity	based	representaDons	

You	can	get	a	lot	of	value	by	represen4ng	a	word	by	
means	of	its	neighbors	

“You	shall	know	a	word	by	the	company	it	keeps”	
(J.	R.	Firth	1957:	11)	

One	of	the	most	successful	ideas	of	modern	sta4s4cal	NLP	
 

government debt problems turning into banking crises as has happened in 

         saying that Europe needs unified banking regulation to replace the hodgepodge 

ë	These	words	will	represent	banking	ì	

	6	



How	to	make	neighbors	represent	words?	
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Answer:	With	a	cooccurrence	matrix	X	

•  2	op4ons:	full	document	vs	windows	

•  Word	-	document	cooccurrence	matrix	will	give	
general	topics	(all	sports	terms	will	have	similar	
entries)	leading	to	“Latent	Seman4c	Analysis”	

•  Instead:	Window	around	each	word	à	captures	both	
syntac4c	(POS)	and	seman4c	informa4on	



Window	based	cooccurence	matrix	
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•  Window	length	1	(more	common:	5	-	10)	

•  Symmetric	(irrelevant	whether	leX	or	right	context)	

•  Example	corpus:		
•  I	like	deep	learning.		

•  I	like	NLP.		

•  I	enjoy	flying.	



Window	based	cooccurence	matrix	
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•  Example	corpus:		
•  I	like	deep	learning.		

•  I	like	NLP.		

•  I	enjoy	flying.	
counts	 I	 like	 enjoy	 deep	 learning	 NLP	 flying	 .	

I	 0	 2	 1	 0	 0	 0	 0	 0	

like	 2	 0	 0	 1	 0	 1	 0	 0	

enjoy	 1	 0	 0	 0	 0	 0	 1	 0	

deep	 0	 1	 0	 0	 1	 0	 0	 0	

learning	 0	 0	 0	 1	 0	 0	 0	 1	

NLP	 0	 1	 0	 0	 0	 0	 0	 1	

flying	 0	 0	 1	 0	 0	 0	 0	 1	

.	 0	 0	 0	 0	 1	 1	 1	 0	



Problems	with	simple	cooccurrence	vectors	
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Increase	in	size	with	vocabulary	

	

Very	high	dimensional:	require	a	lot	of	storage	

	

Subsequent	classifica4on	models	have	sparsity	issues	

	

à	Models	are	less	robust	



SoluDon:	Low	dimensional	vectors	
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•  Idea:	store	“most”	of	the	important	informa4on	in	a	
fixed,	small	number	of	dimensions:	a	dense	vector	

•  Usually	around	25	–	1000	dimensions	

•  How	to	reduce	the	dimensionality?	



Method	1:	Dimensionality	ReducDon	on	X	
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Singular	Value	Decomposi4on	of	cooccurrence	matrix	X.		

	

Rohde, Gonnerman, Plaut Modeling Word Meaning Using Lexical Co-Occurrence
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Figure 1: The singular value decomposition of matrix X .
X̂ is the best rank k approximation to X , in terms of least
squares.

tropy of the document distribution of row vector a. Words
that are evenly distributed over documents will have high
entropy and thus a low weighting, reflecting the intuition
that such words are less interesting.
The critical step of the LSA algorithm is to compute

the singular value decomposition (SVD) of the normal-
ized co-occurrencematrix. An SVD is similar to an eigen-
value decomposition, but can be computed for rectangu-
lar matrices. As shown in Figure 1, the SVD is a prod-
uct of three matrices, the first, U , containing orthonormal
columns known as the left singular vectors, and the last,
VT containing orthonormal rows known as the right sin-
gular vectors, while the middle, S, is a diagonal matrix
containing the singular values. The left and right singu-
lar vectors are akin to eigenvectors and the singular values
are akin to eigenvalues and rate the importance of the vec-
tors.1 The singular vectors reflect principal components,
or axes of greatest variance in the data.
If the matrices comprising the SVD are permuted such

that the singular values are in decreasing order, they can
be truncated to a much lower rank, k. It can be shown that
the product of these reducedmatrices is the best rank k ap-
proximation, in terms of sum squared error, to the original
matrix X . The vector representing word a in the reduced-
rank space is Ûa, the ath row of Û , while the vector repre-
senting document b is V̂b, the bth row of V̂ . If a new word,
c, or a new document, d, is added after the computation
of the SVD, their reduced-dimensionality vectors can be
computed as follows:

Ûc = XcV̂ Ŝ−1

V̂d = XTd ÛŜ
−1

The similarity of two words or two documents in LSA
is usually computed using the cosine of their reduced-
dimensionality vectors, the formula for which is given in

1In fact, if the matrix is symmetric and positive semidefinite, the left
and right singular vectors will be identical and equivalent to its eigen-
vectors and the singular values will be its eigenvalues.

Table 3. It is unclear whether the vectors are first scaled
by the singular values, S, before computing the cosine,
as implied in Deerwester, Dumais, Furnas, Landauer, and
Harshman (1990).
Computing the SVD itself is not trivial. For a dense

matrix with dimensions n < m, the SVD computation
requires time proportional to n2m. This is impractical
for matrices with more than a few thousand dimensions.
However, LSA co-occurrence matrices tend to be quite
sparse and the SVD computation is much faster for sparse
matrices, allowing the model to handle hundreds of thou-
sands of words and documents. The LSA similarity rat-
ings tested here were generated using the term-to-term
pairwise comparison interface available on the LSA web
site (http://lsa.colorado.edu).2 The model was trained on
the TouchstoneApplied Science Associates (TASA) “gen-
eral reading up to first year college” data set, with the top
300 dimensions retained.

2.3 WordNet-based models

WordNet is a network consisting of synonym sets, repre-
senting lexical concepts, linked together with various rela-
tions, such as synonym, hypernym, and hyponym (Miller
et al., 1990). There have been several efforts to base a
measure of semantic similarity on the WordNet database,
some of which are reviewed in Budanitsky and Hirst
(2001), Patwardhan, Banerjee, and Pedersen (2003), and
Jarmasz and Szpakowicz (2003). Here we briefly sum-
marize each of these methods. The similarity ratings re-
ported in Section 3 were generated using version 0.06 of
Ted Pedersen’s WordNet::Similarity module, along with
WordNet version 2.0.
The WordNet methods have an advantage over HAL,

LSA, and COALS in that they distinguish between mul-
tiple word senses. This raises the question, when judg-
ing the similarity of a pair of polysemous words, of
which senses to use in the comparison. When given the
pair thick–stout, most human subjects will judge them to
be quite similar because stout means strong and sturdy,
which may imply that something is thick. But the pair
lager–stout is also likely to be considered similar because
they denote types of beer. In this case, the rater may not
even be consciously aware of the adjective sense of stout.
Consider also hammer–saw versus smelled–saw. Whether
or not we are aware of it, we tend to rate the similarity of
a polysemous word pair on the basis of the senses that are
most similar to one another. Therefore, the same was done
with the WordNet models.

2The document-to-document LSAmode was also tested but the term-
to-term method proved slightly better.

4

is	the	best	rank	k	approxima4on	to	X	,	in	terms	of	least	squares.		
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Figure 1: The singular value decomposition of matrix X .
X̂ is the best rank k approximation to X , in terms of least
squares.

tropy of the document distribution of row vector a. Words
that are evenly distributed over documents will have high
entropy and thus a low weighting, reflecting the intuition
that such words are less interesting.
The critical step of the LSA algorithm is to compute

the singular value decomposition (SVD) of the normal-
ized co-occurrencematrix. An SVD is similar to an eigen-
value decomposition, but can be computed for rectangu-
lar matrices. As shown in Figure 1, the SVD is a prod-
uct of three matrices, the first, U , containing orthonormal
columns known as the left singular vectors, and the last,
VT containing orthonormal rows known as the right sin-
gular vectors, while the middle, S, is a diagonal matrix
containing the singular values. The left and right singu-
lar vectors are akin to eigenvectors and the singular values
are akin to eigenvalues and rate the importance of the vec-
tors.1 The singular vectors reflect principal components,
or axes of greatest variance in the data.
If the matrices comprising the SVD are permuted such

that the singular values are in decreasing order, they can
be truncated to a much lower rank, k. It can be shown that
the product of these reducedmatrices is the best rank k ap-
proximation, in terms of sum squared error, to the original
matrix X . The vector representing word a in the reduced-
rank space is Ûa, the ath row of Û , while the vector repre-
senting document b is V̂b, the bth row of V̂ . If a new word,
c, or a new document, d, is added after the computation
of the SVD, their reduced-dimensionality vectors can be
computed as follows:

Ûc = XcV̂ Ŝ−1

V̂d = XTd ÛŜ
−1

The similarity of two words or two documents in LSA
is usually computed using the cosine of their reduced-
dimensionality vectors, the formula for which is given in

1In fact, if the matrix is symmetric and positive semidefinite, the left
and right singular vectors will be identical and equivalent to its eigen-
vectors and the singular values will be its eigenvalues.

Table 3. It is unclear whether the vectors are first scaled
by the singular values, S, before computing the cosine,
as implied in Deerwester, Dumais, Furnas, Landauer, and
Harshman (1990).
Computing the SVD itself is not trivial. For a dense

matrix with dimensions n < m, the SVD computation
requires time proportional to n2m. This is impractical
for matrices with more than a few thousand dimensions.
However, LSA co-occurrence matrices tend to be quite
sparse and the SVD computation is much faster for sparse
matrices, allowing the model to handle hundreds of thou-
sands of words and documents. The LSA similarity rat-
ings tested here were generated using the term-to-term
pairwise comparison interface available on the LSA web
site (http://lsa.colorado.edu).2 The model was trained on
the TouchstoneApplied Science Associates (TASA) “gen-
eral reading up to first year college” data set, with the top
300 dimensions retained.

2.3 WordNet-based models

WordNet is a network consisting of synonym sets, repre-
senting lexical concepts, linked together with various rela-
tions, such as synonym, hypernym, and hyponym (Miller
et al., 1990). There have been several efforts to base a
measure of semantic similarity on the WordNet database,
some of which are reviewed in Budanitsky and Hirst
(2001), Patwardhan, Banerjee, and Pedersen (2003), and
Jarmasz and Szpakowicz (2003). Here we briefly sum-
marize each of these methods. The similarity ratings re-
ported in Section 3 were generated using version 0.06 of
Ted Pedersen’s WordNet::Similarity module, along with
WordNet version 2.0.
The WordNet methods have an advantage over HAL,

LSA, and COALS in that they distinguish between mul-
tiple word senses. This raises the question, when judg-
ing the similarity of a pair of polysemous words, of
which senses to use in the comparison. When given the
pair thick–stout, most human subjects will judge them to
be quite similar because stout means strong and sturdy,
which may imply that something is thick. But the pair
lager–stout is also likely to be considered similar because
they denote types of beer. In this case, the rater may not
even be consciously aware of the adjective sense of stout.
Consider also hammer–saw versus smelled–saw. Whether
or not we are aware of it, we tend to rate the similarity of
a polysemous word pair on the basis of the senses that are
most similar to one another. Therefore, the same was done
with the WordNet models.

2The document-to-document LSAmode was also tested but the term-
to-term method proved slightly better.
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Simple	SVD	word	vectors	in	Python	
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Corpus:		
I	like	deep	learning.	I	like	NLP.	I	enjoy	flying.	
	



Simple	SVD	word	vectors	in	Python	
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Corpus:	I	like	deep	learning.	I	like	NLP.	I	enjoy	flying.	
Prin4ng	first	two	columns	of	U	corresponding	to	the	2	biggest	singular	values	



Word	meaning	is	defined	in	terms	of	vectors	

•  In	all	subsequent	models,	including	deep	learning	models,	a	
word	is	represented	as	a	dense	vector	

	
	

	

	

linguis,cs		=	

15	

0.286	
0.792	
−0.177	
−0.107	
0.109	
−0.542	
0.349	
0.271	



Hacks	to	X	
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•  Problem:	func4on	words	(the,	he,	has)	are	too	
frequent	à	syntax	has	too	much	impact.	Some	fixes:		

•  min(X,t),	with	t~100	

•  Ignore	them	all	

•  Ramped	windows	that	count	closer	words	more	

•  Use	Pearson	correla4ons	instead	of	counts,	then	set	
nega4ve	values	to	0	

•  +++	



InteresDng	semanDc	paPers	emerge	in	the	vectors	
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Rohde, Gonnerman, Plaut Modeling Word Meaning Using Lexical Co-Occurrence
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Figure 8: Multidimensional scaling for three noun classes.
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Figure 9: Hierarchical clustering for three noun classes using distances based on vector correlations.
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An	Improved	Model	of	Seman4c	Similarity	Based	on	Lexical	Co-Occurrence		
Rohde	et	al.	2005	
	



InteresDng	syntacDc	paPers	emerge	in	the	vectors	
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An	Improved	Model	of	Seman4c	Similarity	Based	on	Lexical	Co-Occurrence		
Rohde	et	al.	2005	
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Figure 10: Multidimensional scaling of three verb semantic classes.
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InteresDng	semanDc	paPers	emerge	in	the	vectors	
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An	Improved	Model	of	Seman4c	Similarity	Based	on	Lexical	Co-Occurrence		
Rohde	et	al.	2005	
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Figure 13: Multidimensional scaling for nouns and their associated verbs.

Table 10
The 10 nearest neighbors and their percent correlation similarities for a set of nouns, under the COALS-14K model.

gun point mind monopoly cardboard lipstick leningrad feet
1) 46.4 handgun 32.4 points 33.5 minds 39.9 monopolies 47.4 plastic 42.9 shimmery 24.0 moscow 59.5 inches
2) 41.1 firearms 29.2 argument 24.9 consciousness 27.8 monopolistic 37.2 foam 40.8 eyeliner 22.7 sevastopol 57.7 foot
3) 41.0 firearm 25.4 question 23.2 thoughts 26.5 corporations 36.7 plywood 38.8 clinique 22.7 petersburg 52.0 metres
4) 35.3 handguns 22.3 arguments 22.4 senses 25.0 government 35.6 paper 38.4 mascara 20.7 novosibirsk 45.7 legs
5) 35.0 guns 21.5 idea 22.2 subconscious 23.2 ownership 34.8 corrugated 37.2 revlon 20.3 russia 45.4 centimeters
6) 32.7 pistol 20.1 assertion 20.8 thinking 22.2 property 32.3 boxes 35.4 lipsticks 19.6 oblast 44.4 meters
7) 26.3 weapon 19.5 premise 20.6 perception 22.2 capitalism 31.3 wooden 35.3 gloss 19.5 minsk 40.2 inch
8) 24.4 rifles 19.3 moot 20.4 emotions 21.8 capitalist 31.0 glass 34.1 shimmer 19.2 stalingrad 38.4 shoulders
9) 24.2 shotgun 18.9 distinction 20.1 brain 21.6 authority 30.7 fabric 33.6 blush 19.1 ussr 37.8 knees
10) 23.6 weapons 18.7 statement 19.9 psyche 21.3 subsidies 30.5 aluminum 33.5 nars 19.0 soviet 36.9 toes

Table 11
The 10 nearest neighbors for a set of verbs, according to the COALS-14K model.

need buy play change send understand explain create
1) 50.4 want 53.5 buying 63.5 playing 56.9 changing 55.0 sending 56.3 comprehend 53.0 understand 58.2 creating
2) 50.2 needed 52.5 sell 55.5 played 55.3 changes 42.0 email 53.0 explain 46.3 describe 50.6 creates
3) 42.1 needing 49.1 bought 47.6 plays 48.9 changed 40.2 e-mail 49.5 understood 40.0 explaining 45.1 develop
4) 41.2 needs 41.8 purchase 37.2 players 32.2 adjust 39.8 unsubscribe 44.8 realize 39.8 comprehend 43.3 created
5) 41.1 can 40.3 purchased 35.4 player 30.2 affect 37.3 mail 40.9 grasp 39.7 explained 42.6 generate
6) 39.5 able 39.7 selling 33.8 game 29.5 modify 35.7 please 39.1 know 39.0 prove 37.8 build
7) 36.3 try 38.2 sells 32.3 games 28.3 different 33.3 subscribe 38.8 believe 38.2 clarify 36.4 maintain
8) 35.4 should 36.3 buys 29.0 listen 27.1 alter 33.1 receive 38.5 recognize 37.1 argue 36.4 produce
9) 35.3 do 34.0 sale 26.8 playable 25.6 shift 32.7 submit 38.0 misunderstand 37.0 refute 35.4 integrate
10) 34.7 necessary 31.5 cheap 25.0 beat 25.1 altering 31.5 address 37.9 understands 35.9 tell 35.2 implement

Table 12
The 10 nearest neighbors for a set of adjectives, according to the COALS-14K model.

high frightened red correct similar fast evil christian
1) 57.5 low 45.6 scared 53.7 blue 59.0 incorrect 44.9 similiar 43.1 faster 24.3 sinful 48.5 catholic
2) 51.9 higher 37.2 terrified 47.8 yellow 37.7 accurate 43.2 different 41.2 slow 23.4 wicked 48.1 protestant
3) 43.4 lower 33.7 confused 45.1 purple 37.5 proper 40.8 same 37.8 slower 23.2 vile 47.9 christians
4) 43.2 highest 33.3 frustrated 44.9 green 36.3 wrong 40.6 such 28.2 rapidly 22.5 demons 47.2 orthodox
5) 35.9 lowest 32.6 worried 43.2 white 34.1 precise 37.7 specific 27.3 quicker 22.3 satan 47.1 religious
6) 31.5 increases 32.4 embarrassed 42.8 black 32.9 exact 35.6 identical 26.8 quick 22.3 god 46.4 christianity
7) 30.7 increase 32.3 angry 36.8 colored 30.7 erroneous 34.6 these 25.9 speeds 22.3 sinister 43.8 fundamentalist
8) 29.2 increasing 31.6 afraid 35.6 orange 30.6 valid 34.4 unusual 25.8 quickly 22.0 immoral 43.5 jewish
9) 28.7 increased 30.4 upset 33.5 grey 30.6 inaccurate 34.1 certain 25.5 speed 21.5 hateful 43.2 evangelical
10) 28.3 lowering 30.3 annoyed 32.4 reddish 29.8 acceptable 32.7 various 24.3 easy 21.3 sadistic 41.2 mormon

24



Problems	with	SVD	
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Computa4onal	cost	scales	quadra4cally		for	n	x	m	matrix:	

O(mn2)	flops	(when	n<m)		

à	Bad	for	millions	of	words	or	documents	

	

Hard	to	incorporate	new	words	or	documents	

Different	learning	regime	than	other	DL	models	

	

	



Idea:	Directly	learn	low-dimensional	word	vectors	
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•  Old	idea.	Relevant	for	this	lecture	&	deep	learning:	
•  Learning	representa4ons	by	back-propaga4ng	errors.	

(Rumelhart	et	al.,	1986)	

•  A	neural	probabilis4c	language	model	(Bengio	et	al.,	2003)			

•  NLP	(almost)	from	Scratch	(Collobert	&	Weston,	2008)	

•  A	recent,	even	simpler	and	faster	model:		
word2vec	(Mikolov	et	al.	2013)	à	intro	now	

	



Main	Idea	of	word2vec	
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•  Instead	of	capturing	cooccurrence	counts	directly,	

•  Predict	surrounding	words	of	every	word		

•  Both	are	quite	similar,	see	“Glove:	Global	Vectors	for	
Word	Representa,on”	by	Pennington	et	al.	(2014)	and	
Levy	and	Goldberg	(2014)	…	more	later	

•  Faster	and	can	easily	incorporate	a	new	sentence/
document	or	add	a	word	to	the	vocabulary	



Details	of	Word2Vec	
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•  Predict	surrounding	words	in	a	window	of	length	m	of	
every	word.	

•  Objec4ve	func4on:	Maximize	the	log	probability	of	
any	context	word	given	the	current	center	word:	

•  		

•  Where	µ	represents	all	variables	we	op4mize	



Details	of	Word2Vec	
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•  Predict	surrounding	words	in	a	window	of	length	m	of	every	
word	

•  For																						the	simplest	first	formula4on	is		

•  where	o	is	the	outside	(or	output)	word	id,	c	is	the	center	word	
id,	u	and	v	are	“center”	and	“outside”	vectors	of	o	and	c	

•  Every	word	has	two	vectors!	

•  This	is	essen4ally	“dynamic”	logis4c	regression	

training time. The basic Skip-gram formulation defines p(wt+j |wt) using the softmax function:

p(wO|wI) =
exp

(

v′wO

⊤vwI

)

∑W
w=1 exp

(

v′w
⊤vwI

) (2)

where vw and v′w are the “input” and “output” vector representations of w, and W is the num-
ber of words in the vocabulary. This formulation is impractical because the cost of computing
∇ log p(wO|wI) is proportional toW , which is often large (105–107 terms).

2.1 Hierarchical Softmax

A computationally efficient approximation of the full softmax is the hierarchical softmax. In the
context of neural network language models, it was first introduced by Morin and Bengio [12]. The
main advantage is that instead of evaluating W output nodes in the neural network to obtain the
probability distribution, it is needed to evaluate only about log2(W ) nodes.

The hierarchical softmax uses a binary tree representation of the output layer with theW words as
its leaves and, for each node, explicitly represents the relative probabilities of its child nodes. These
define a random walk that assigns probabilities to words.

More precisely, each word w can be reached by an appropriate path from the root of the tree. Let
n(w, j) be the j-th node on the path from the root to w, and let L(w) be the length of this path, so
n(w, 1) = root and n(w,L(w)) = w. In addition, for any inner node n, let ch(n) be an arbitrary
fixed child of n and let [[x]] be 1 if x is true and -1 otherwise. Then the hierarchical softmax defines
p(wO|wI) as follows:

p(w|wI ) =

L(w)−1
∏

j=1

σ
(

[[n(w, j + 1) = ch(n(w, j))]] · v′n(w,j)
⊤
vwI

)

(3)

where σ(x) = 1/(1 + exp(−x)). It can be verified that
∑W

w=1 p(w|wI) = 1. This implies that the
cost of computing log p(wO|wI) and ∇ log p(wO|wI) is proportional to L(wO), which on average
is no greater than logW . Also, unlike the standard softmax formulation of the Skip-gram which
assigns two representations vw and v′w to each word w, the hierarchical softmax formulation has
one representation vw for each word w and one representation v′n for every inner node n of the
binary tree.

The structure of the tree used by the hierarchical softmax has a considerable effect on the perfor-
mance. Mnih and Hinton explored a number of methods for constructing the tree structure and the
effect on both the training time and the resulting model accuracy [10]. In our work we use a binary
Huffman tree, as it assigns short codes to the frequent words which results in fast training. It has
been observed before that grouping words together by their frequency works well as a very simple
speedup technique for the neural network based language models [5, 8].

2.2 Negative Sampling

An alternative to the hierarchical softmax is Noise Contrastive Estimation (NCE), which was in-
troduced by Gutmann and Hyvarinen [4] and applied to language modeling by Mnih and Teh [11].
NCE posits that a good model should be able to differentiate data from noise by means of logistic
regression. This is similar to hinge loss used by Collobert and Weston [2] who trained the models
by ranking the data above noise.

While NCE can be shown to approximately maximize the log probability of the softmax, the Skip-
gram model is only concerned with learning high-quality vector representations, so we are free to
simplify NCE as long as the vector representations retain their quality. We define Negative sampling
(NEG) by the objective

log σ(v′wO

⊤
vwI

) +
k
∑

i=1

Ewi∼Pn(w)

[

log σ(−v′wi

⊤
vwI

)
]

(4)

3



Cost/ObjecDve	funcDons	
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We	will	op4mize	(maximize	or	minimize)		
our	objec4ve/cost	func4ons	
	
For	now:	minimize	à	gradient	descent	
	
Refresher	with	trivial	example:	(from	Wikipedia)	
Find	a	local	minimum	of	the	func4on		
f(x)=x4−3x3+2,	with	deriva4ve	f'(x)=4x3−9x2.		
	
	
	



DerivaDons	of	gradient	
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•  Whiteboard	(see	video	if	you’re	not	in	class	;)	

•  The	basic	Lego	piece	

•  Useful	basics:	

•  If	in	doubt:	write	out	with	indices	

•  Chain	rule!	If	y	=	f(u)	and	u	=	g(x),	i.e.	y=f(g(x)),	then:	



Chain	Rule	
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•  Chain	rule!	If	y	=	f(u)	and	u	=	g(x),	i.e.	y=f(g(x)),	then:	

•  Simple	example:		



InteracDve	Whiteboard	Session!	
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Let’s	derive	gradient	together	
For	one	example	window	and	one	example	outside	word:	



ApproximaDons:	PSet	1	
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•  With	large	vocabularies	this	objec4ve	func4on	is	not	
scalable	and	would	train	too	slowly!	à	Why?	

•  Idea:	approximate	the	normaliza4on	or		

•  Define	nega4ve	predic4on	that	only	samples	a	few	
words	that	do	not	appear	in	the	context	

•  Similar	to	focusing	on	mostly	posi4ve	correla4ons	

•  You	will	derive	and	implement	this	in	Pset	1!	



Linear	RelaDonships	in	word2vec	

These	representa4ons	are	very	good	at	encoding	dimensions	of	
similarity!	
•  Analogies	tes4ng	dimensions	of	similarity	can	be	solved	quite	

well	just	by	doing	vector	subtrac4on	in	the	embedding	space	
Syntac4cally	
•  xapple	−	xapples	≈	xcar	−	xcars	≈	xfamily	−	xfamilies		

•  Similarly	for	verb	and	adjec4ve	morphological	forms	
Seman4cally	(Semeval	2012	task	2)	
•  xshirt	−	xclothing	≈	xchair	−	xfurniture		
•  xking	−	xman	≈	xqueen	−	xwoman		

30	



Count	based	vs	direct	predicDon	
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LSA, HAL (Lund & Burgess), 
COALS (Rohde et al),  
Hellinger-PCA (Lebret & Collobert)	

• Fast training	

• Efficient usage of statistics	

• Primarily used to capture word 
similarity	

• Disproportionate importance 
given to large counts	

• NNLM, HLBL, RNN, Skip-
gram/CBOW, (Bengio et al; Collobert 
& Weston; Huang et al; Mnih & Hinton; 
Mikolov et al; Mnih & Kavukcuoglu)	

• Scales with corpus size	

•  Inefficient usage of statistics	

• Can capture complex patterns  
beyond word similarity 	

• Generate improved performance  
on other tasks	



Combining	the	best	of	both	worlds:	GloVe	
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• Fast	training	

• Scalable	to	huge	corpora	

• Good	performance	even	with	small	corpus,	and	small	
vectors	

	



Glove	results	
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1.	frogs	
2.	toad	
3.	litoria	
4.	leptodactylidae	
5.	rana	
6.	lizard	
7.	eleutherodactylus	

litoria	 leptodactylidae	

rana	 eleutherodactylus	

Nearest	words	to		
frog:	



king	

man	
woman	

Word	Analogies	

Test	for	linear	rela4onships,	examined	by	Mikolov	et	al.	(2014)	

a:b	::	c:?	

man	

woman	

[	0.20	0.20	]	

[	0.60	0.30	]	

king	 [	0.30	0.70	]	

[	0.70	0.80	]	

-	

+	

+	

queen	

queen	

man:woman	::	king:?	

a:b	::	c:?	



Glove	VisualizaDons	
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Glove	VisualizaDons:	Company	-	CEO	
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Glove	VisualizaDons:	SuperlaDves	
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[												]	

Word	embedding	matrix	

•  Ini4alize	most	word	vectors	of	future	models	with	our	“pre-
trained”	embedding	matrix	
	
	
																																														|V|	
	

	L		=									 	 														… 										n		
	

	 				aardvark				a								at			…	

•  Also	called	a	look-up	table	
•  Conceptually	you	get	a	word’s	vector	by	leX	mul4plying	a	
one-hot	vector	e	(of	length	|V|)	by	L:					x	=	Le	

38	



Advantages	of	low	dimensional	word	vectors	

39	39	

What	is	the	major	benefit	of	deep	learned	word	vectors?	

Ability	to	also	propagate	any	informa4on	into	them	
via	neural	networks	(next	lecture).	

	

S	
c1											c2												c3			
	

x1	 								x2																x3												+1	
	

a1	 								a2	
P(c | d,λ) = eλ

T f (c,d )

eλ
T f ( !c ,d )

!c∑



Advantages	of	low	dimensional	word	vectors	

40	

•  Word	vectors	will	form	the	basis	for	all	subsequent	
lectures.	

•  All	our	seman4c	representa4ons	will	be	vectors!	

•  Next	lecture:	

•  Some	more	details	about	word	vectors	

•  Predict	labels	for	words	in	context	for	solving	lots	of	
different	tasks	


