
1

CS 6242 Digital Libraries

Fundamentals of Information
Retrieval

2

Search Midterm questions for Digital Libraries

Search Phua Chu Kang dates at Esplanade

What is information retrieval?

3

What is information retrieval?

  Part of the information seeking process
  Matches a query with most relevant

documents
  View a query as a mini-document

Corpus

Query Matching
Documents

Phua Chu Kang dates
at Esplanade IR!

4

Searching in books

  Table of Contents
  Index
  grep

  Procedure:
  Look up topic
  Find the page
  Skim page to find topic

…
Index, 11, 103-151, 443

 Audio, 476
 Comparison of methods 143-145
 Granularity, 105, 112
 N-gram, 170-172
 Of integer sequences, 11
 Of musical themes, 11
 Of this book, 103, 507ff
 Within inverted file entry, see skipping

Index compression, 114-129, 198-201, 235-237
 Batched, 125,128
 Bernoulli, 119-122, 128, 150, 247, 421
 Context-sensitive, 125-126
 Global, 115-121
 Hyperbolic model, 123-124, 150
 In MG, 421-423
 Interpolative coding, 126-128
 Local, 115, 121-122, 247
 Nonparameterized, 115-119
 Observed frequency, 121, 124-125, 128, 247
 Parameterized, 115

Performance of, 128-129. 421
Skewed Bernoulli, 122-123, 138, 150
Within-document frequencies, 198-201
Index Construction, 223-261 (see also inversion)

 bitmaps, 255-256
…

Partial index of Managing Gigabytes

5

Information retrieval

  Algorithm
  (Permute query to fit index)
  Search index
  Go to resource
  (Permute query to fit item)
  (Search for item)

6

What to index?

  Books indices have key words and
phrases

  Search engines index (all) words

Why the disparity?
What do people really search for?

 What is a word?

•  Maximal sequence of alphanumeric characters
•  Limited to at most 256 characters and at most
 4 numeric characters.

 - MG indexing system

7

Trading precision for size
Can save up to 32% without too much loss:

  Stemming

  Usually just word inflection
  Information → Inform = Informal, Informed

  Case folding
  N.B.: keep odd variants (e.g., NeXT, LaTeX)

  Stop words
  Don’t index common words, people won’t search on them

anyways

Pop Quiz: Which of these techniques are more effective?

8

Indexing output
  Output = Lw,DD,IW×D

  Inverted File (Index)
  Postings (e.g., wt →

(d1,fwt,d1), (d2,fwt,d), …,
(dn,fwt,dn)

  Variable length records

  Lexicon:
  String Wt
  Document frequency ft
  Address within inverted file

It
  Sorted, fixed length

records

× D1 D2 D3 D4 D5 D6 … Dm

W1 1 1
W2 2 1
W3 1
W4 1 1

W5 1 1
W6 1 1 1
…
Wn

To think about: What type of entries are missing
from the search engine index that are present in
the book index?

Wf
2
3
1
2
2
3

Lexicon
Inverted File
(Postings File)

9

Trading precision for size, redux
Pop Quiz: Which of these techniques are more effective?

Typical:

 Lexicon = 30 MB Inverted File: 400 MB

  Stemming
  Affects Lexicon

  Case folding
  Affects Lexicon

  Stop words
  Affects Inverted File - Big effect! – ~30% savings

 but will depend on threshold

- Small effect – ~1% savings

- Small effect – ~1% savings

10

Is fine-grained indexing worthwhile?

  Problem: still have to scan document to find the
term.

  Cons:
  Need access methods to take advantage
  Extra storage space overhead (variable sized)

  Alternative methods:
  Hierarchical encoding (doc #, para #, sent #, word

#) to shrink offset size
  Split long documents into n shorter ones.

Image (D1, 2), (D4, 1)
Implicit (D2, 1), (D3, 1) …
Index (D5, 3), (D2, 1) …
Inverse (D2, 2)
Internet (D1, 2), (D3, 2) …

Image (D1, 2; 10, 205), (D4, 1, 3993)
Implicit (D2, 1; 242), (D3, 1; 233) …
Index (D5, 3; 20, 42, 3920), (D2, 1 …
Inverse (D2, 2; 599, 847)
Internet (D1, 2; 12, 43), (D3, 2; 302, …

11

Inverted file compression

  Clue: Encode gap length instead of offset
  Use small number of bits to encode more common gap lengths

  (e.g., Huffman encoding)

  Better: Use a distribution of expected gap length (e.g., Bernoulli
process)
  If p = prob that any word x appears in doc y, then
  Then pgap size z = (1-p)z p . This constructs a geometric distribution.

  Works for intra and inter-document index compression
  Why does it hold for documents as well as words?

Bridegroom

Twelfth

Jezebel

Occurrences in the Bible

12

Building the index – Memory based
inversion

  Takes lots of main memory, ugh!
  Can we reduce the memory requirement?

Initialize empty dictionary S
// Phase I – collection of term appearances in memory
For each document Dd in collection, 1 ≤ d ≤ N

 Read Dd, parsing it into index terms
 For each index term t in Dd
 Calculate fd,t
 Search in S for t, if not present, insert it
 Append node (d,fd,t) to list for term t

// Phase II – dump inverted file
For each term 1 ≤ t ≤ n

 Start a new inverted file entry
 Append each appropriate (d,fd,t) in list to entry
 Append to inverted file

13

Sort-based inversion

  Idea: try to make random access of disk
(memory) sequential

// Phase I – collection of term appearances on disk
For each document Dd in collection, 1 ≤ d ≤ N

 Read Dd, parsing it into index terms
 For each index term t in Dd

 Calculate fd,t

 Dump to file a tuple (t,d,fd,t)

// Phase II – sort tuples
Sort all the tuples (t,d,f) using External Mergesort

// Phase III – write output file
Read the tuples in sorted order and create inverted file

14

Sort based inversion: example

<a,1,2>
<b,1,2>
<c,1,1>
<a,2,2>
<d,2,1>
<b,2,1>
<b,3,1>
<d,3,1>

<a,1,1>
<a,2,2>
<b,1,2>
<c,1,1>
<b,2,1>
<b,3,1>
<d,2,1>
<d,3,1>

<a,1,1>
<a,2,2>
<b,1,2>
<b,2,1>
<b,3,1>
<c,1,1>
<d,2,1>
<d,3,1>

Initial dump
from corpus

Sorted Runs Merged Runs
(fully sorted)

•  What’s the performance of this algorithm?
•  Saves memory but very disk intensive!

15

Using a first pass for the lexicon

 Gets us fd,t and N
 Savings: For any t, we know fd,t,

so can use an array vs. LL
(shrinks record by 40%!)

a 2
b 3
c 1
d 2

Lexicon

Inverted File

16

Lexicon-based inversion

  Partition inversion as |I|/|M| = k smaller
problems
  build 1/k of inverted index on each pass
  (e.g., a-b, b-c, …, y-z)
  Tuned to fit amount of main memory in machine
  Just remember boundary words

  Can pair with disk strategy
  Create k temporary files and write tuples (t,d,fd,t)

for each partition on first pass
  Each second pass builds index from temporary file

17

Inversion – Summary of Techniques

  How do these techniques stack up?
  Assume a 5 GB corpus and 40 MB main

memory machine

Technique Memory Disk Time

 (MB) (GB) (Hours)
*Linked lists (memory) 4000 0 6
Linked lists (disk) 30 4 1100
Sort-based 40 8 20
Lexicon-based 40 0 79
Lexicon w/ disk 40 4 12

Source – Managing Gigabytes

18

Query Matching

  Now that we have an index, how do
we answer queries?

19

Query Matching

Assuming a simple word matching engine:

For each query term t

 Stem t
 Search lexicon
 Record ft and its inverted entry address, It

Select a query term t
Set list of candidates, C = It
For each remaining term t

 Read its It
 For each d in C, if d not in It set C = C – {d}

  X and Y and Z – high precision
  X or Y or Z – high recall
  Which algorithm is the above?

Conjunctive (AND)
processing

20

Boolean Model

  Query processing strategy:
  Join less frequent terms first
  Even in ORs, as merging takes longer than

lookup

  Problems with Boolean model:
  Retrieves too many or too few documents
  Longer documents are tend to match more

often because they have a larger vocabulary
  Need ranked retrieval to help out

21

Deciding ranking

  Boolean assigns same importance to all
terms in a query

Phua Chu Kang dates at Esplanade

  “Esplanade” has same weight as “date”

  One way:
  Assign weights to the words, make more

important words worth more
  Process results in q and d vectors: (word,

weight), (word, weight) … (word, weight)

Search

22

Term Frequency

)(max ,

,

idi

td

f
f

 Xxxxxxxxxxxxxx Mee Swa xxxxxxxxxxx
xxxxxxxx xxxxxxxxxxx Prata xxxxxxx
xxxxxxxxxx xxxxxxxx Chili Crab.
Xxxxxxxxxx xxxxxxxxxx Chili Crab
xxxxxxxx. Xxxxxxxxxx xxxxxxxx Laksa.
Xxxxxxxxx xxxxxxx Chili Crab.

(Relative) term frequency can indicate

importance.
  Rd,f = fd,t
  Rd,t = 1 + ln fd,t
  Rd,t = (K + (1-K)))(max ,

,

idi

td

f
f

23

Inverse Document Frequency

 Consider a future device for individual use, which
is a sort of mechanized private file and library. It
needs a name, and, to coin one at random,
"memex" will do.

24

Inverse Document Frequency

 Consider a future device for individual use,
which is a sort of mechanized private file and
library. It needs a name, and, to coin one at
random, "memex" will do.

  Words with higher ft are less discriminative.
  Use inverse to measure importance:

  wt = 1/ft
  wt = ln (1+ N/ft) this one is most common
  wt = ln (1 + fm/ft), where fm is the max observed

frequency

Question: What’s the ln () here for?

25

This is TF*IDF

  Many variants, but all capture:
  Term frequency:

Rd,t as being monotonically increasing

  Inverse Document Frequency:
Wt as being monotonically decreasing

  Standard formulation is:
wd,t = rd,t × wt

 = (1+ ln(fd,t)) × ln (1 + N/ft)

  Problem:
  rd,t grows as document grows, need to normalize;

otherwise biased towards long documents

26

Calculating Similarity

  Euclidean Distance - bad
  M(Q,Dd) = sqrt (Σ |wq,t – wd,t|2)

  Dissimilarity Measure; use reciprocal
  Has problem with long documents,

why?

  Actually don’t care about vector
length, just their direction
  Want to measure difference in direction

27

Cosine Similarity

  If X and Y are two n-dimensional vectors:
X · Y = |X| |Y| cos θ
cos θ = X · Y / |X| |Y|

= 1 when identical
= 0 when orthogonal

θ

Cos (Q,Dd) = Q · Dd / |Q| |Dd|
 = (1/WqWd) Σ wq,t · wd,t
 = (1/Wd) Σ wq,t · wd,t

q
d

28

  To get the ranked list, we use doc. accumulators:

For each query term t, in order of increasing ft,

 Read its inverted file entry It

 Update acc. for each doc in It: Ad+= ln (1 + fd,t) ×wt

For each Ad in A
 Ad /= Wd // that’s basically cos θ, don’t use wq

Report top r of A

Calculating the ranked list

)1ln()ln1(1
,∑

∩∈

+•+
dDQt t

td
qd f

Nf
WW

29

Accumulator Storage

  Holding all possible accumulators is
expensive
  Could need one for each document if query is

broad

  In practice, use fixed |A| wrt main
memory. What to do when all used?
  Quit: use ranks as they are
  Continue processing on |A| documents to get

accurate ranks (preferred)

30

Selecting r entries from accumulators

  Want to return documents with
largest cos values.

  How? Use a min-heap
Load r A values into the heap H
Process remaining A-r values

 If Ad > min{H} then
 Delete min{H}, add Ad, and sift

// H now contains the top r exact cosine values

31

To think about
  How do you deal with a dynamic collection?
  How do you support phrasal searching?
  What about wildcard searching?

  What types of wildcard searching are common?

