CS 6242 Digital Libraries

Fundamentals of Information Retrieval

What is information retrieval?

Midterm questions for Digital Libraries

Search

Phua Chu Kang dates at Esplanade

Search

Searching in books

- Table of Contents
- o Index
- o grep

• Procedure:

- Look up topic
- Find the page
- Skim page to find topic

Index, 11, 103-151, 443 Audio, 476 Comparison of methods 143-145 Granularity, 105, 112 N-gram, 170-172 Of integer sequences, 11 Of musical themes, 11 Of this book, 103, 507ff Within inverted file entry, see skipping Index compression, 114-129, 198-201, 235-237 Batched, 125,128 Bernoulli, 119-122, 128, 150, 247, 421 Context-sensitive, 125-126 Global, 115-121 Hyperbolic model, 123-124, 150 In MG, 421-423 Interpolative coding, 126-128 Local, 115, 121-122, 247 Nonparameterized, 115-119 Observed frequency, 121, 124-125, 128, 247 Parameterized, 115 Performance of, 128-129. 421 Skewed Bernoulli, 122-123, 138, 150 Within-document frequencies, 198-201 Index Construction, 223-261 (see also inversion) bitmaps, 255-256 ...

Information retrieval

o Algorithm

- (Permute query to fit index)
- Search index
- Go to resource
- (Permute query to fit item)
- (Search for item)

What to index?

- Books indices have key words and phrases
- Search engines index (all) words

Why the disparity?

What do people really search for?

What is a **word**?

- Maximal sequence of alphanumeric characters
- Limited to at most 256 characters and at most 4 numeric characters.

- MG indexing system

Trading precision for size

Can save up to **32%** without too much loss:

- Stemming
 - Usually just word inflection
 - Information \rightarrow Inform = Informal, Informed
- Case folding
 - **N.B.**: keep odd variants (e.g., NeXT, LaTeX)
- Stop words
 - Don't index common words, people won't search on them anyways

Pop Quiz: Which of these techniques are more effective?

Indexing output

- Output = $L_w, D_D, I_{W \times D}$
- Inverted File (Index)
 - Postings (e.g., $w_t \rightarrow (d_1, f_{wt,d1}), (d_2, f_{wt,d}), ..., (d_n, f_{wt,dn})$
 - Variable length records
- Lexicon:
 - String W_t
 - Document frequency f_t
 - Address within inverted file I_{t}
 - Sorted, fixed length records

To think about: What type of entries are missing from the search engine index that are present in the book index?

Trading precision for size, redux

Pop Quiz: Which of these techniques are more effective?

Typical: Lexicon = 30 MB

Stemming
 Affects Lexicon

- Inverted File: 400 MB
- Small effect ~1% savings

- Case folding
 - Affects Lexicon
- Small effect ~1% savings

- Stop words
 - Affects Inverted File -Big effect! ~30% savings but will depend on threshold

Is fine-grained indexing worthwhile?

• **Problem:** still have to scan document to find the term.

- Cons:
 - Need access methods to take advantage
 - Extra storage space overhead (variable sized)
- Alternative methods:
 - Hierarchical encoding (doc #, para #, sent #, word #) to shrink offset size
 - Split long documents into *n* shorter ones.

Inverted file compression

Occurrences in the *Bible*

- Clue: Encode *gap length* instead of offset
- Use small number of bits to encode more common gap lengths
 - (e.g., Huffman encoding)
- Better: Use a distribution of expected gap length (e.g., Bernoulli process)
 - If p = prob that any word x appears in doc y, then
 - Then $p_{qap size z} = (1-p)^z p$. This constructs a geometric distribution.
- \circ $\,$ Works for intra and inter-document index compression $\,$
 - Why does it hold for documents as well as words?

Building the index – Memory based inversion

Initialize empty dictionary S // Phase I – collection of term appearances in memory For each document D_d in collection, $1 \le d \le N$ Read D_d , parsing it into index terms For each index term t in D_d Calculate $f_{d,t}$ Search in S for t, if not present, insert it Append node $(d, f_{d,t})$ to list for term t

// Phase II – dump inverted file

For each term $1 \le t \le n$ Start a new inverted file entry Append each appropriate $(d, f_{d,t})$ in list to entry Append to inverted file

Sort-based inversion

 Idea: try to make random access of disk (memory) sequential

// Phase I – collection of term appearances on disk For each document D_d in collection, $1 \le d \le N$ Read D_d , parsing it into index terms For each index term t in D_d Calculate fd,t

Dump to file a tuple (t,d,f_{d,t})

// Phase II - sort tuples Sort all the tuples (t,d,f) using External Mergesort

// Phase III - write output file
Read the tuples in sorted order and create inverted file

Sort based inversion: example

<a,1,2></a,1,2>	<a,1,1></a,1,1>	<a,1,1></a,1,1>
<b,1,2></b,1,2>	<a,2,2></a,2,2>	<a,2,2></a,2,2>
<c,1,1></c,1,1>	<b,1,2></b,1,2>	<b,1,2></b,1,2>
<a,2,2></a,2,2>	<c,1,1></c,1,1>	<b,2,1></b,2,1>
<d,2,1></d,2,1>	<b,2,1></b,2,1>	<b,3,1></b,3,1>
<b,2,1></b,2,1>	<b,3,1></b,3,1>	<c,1,1></c,1,1>
<b,3,1></b,3,1>	<d,2,1></d,2,1>	<d,2,1></d,2,1>
<d,3,1></d,3,1>	<d,3,1></d,3,1>	<d,3,1></d,3,1>
Initial dump from corpus	Sorted Runs	Merged Runs (fully sorted)

- What's the performance of this algorithm?
- Saves memory but very disk intensive!

Using a first pass for the lexicon

\circ Gets us $f_{d,t}$ and N

 Savings: For any t, we know f_{d,t}, so can use an array vs. LL (shrinks record by 40%!)

Lexicon-based inversion

- Partition inversion as |I|/|M| = k smaller problems
 - build 1/k of inverted index on each pass
 - (e.g., a-b, b-c, ..., y-z)
 - Tuned to fit amount of main memory in machine
 - Just remember boundary words
- Can pair with disk strategy
 - Create k temporary files and write tuples (t,d,f_{d,t}) for each partition on first pass
 - Each second pass builds index from temporary file

Inversion – Summary of Techniques

- How do these techniques stack up?
- Assume a 5 GB corpus and 40 MB main memory machine

Technique	Memory	Disk	Time
	(MB)	(GB)	(Hours)
*Linked lists (memory)	4000	0	6
Linked lists (disk)	30	4	1100
Sort-based	40	8	20
Lexicon-based	40	0	79
Lexicon w/ disk	40	4	12

Source – Managing Gigabytes

 Now that we have an index, how do we answer queries?

Query Matching

Assuming a simple word matching engine:

For each query term t Conjunctive (AND) Stem t Search lexicon Record f_t and its inverted entry address, I_t Select a query term t Set list of candidates, $C = I_{+}$ For each remaining term t Read its I₊ For each d in C, if d not in I_t set C = C - $\{d\}$

- X and Y and Z high precision
- X or Y or Z high recall
- Which algorithm is the above?

processing

Boolean Model

• Query processing strategy:

- Join less frequent terms first
- Even in ORs, as merging takes longer than lookup
- Problems with Boolean model:
 - Retrieves too many or too few documents
 - Longer documents are tend to match more often because they have a larger vocabulary
 - Need ranked retrieval to help out

Deciding ranking

 Boolean assigns same importance to all terms in a query

Phua Chu Kang dates at Esplanade

- "Esplanade" has same weight as "date"
- One way:
 - Assign weights to the words, make more important words worth more
 - Process results in q and d vectors: (word, weight), (word, weight) ... (word, weight)

Term Frequency

Xxxxxxxx Mee Swa xxxxxxxxx xxxxxxx xxxxx Prata xxxxxx xxxxxxx xxxxx Chili Crab. Xxxxxxxx xxxxx Chili Crab xxxxxxx. Xxxxxxx Chili Crab xxxxxxX. Xxxxxxx Chili Crab. XxxxxxXX. $f_{d,i}$

(Relative) term frequency can indicate importance.

•
$$R_{d,f} = f_{d,t}$$

• $R_{d,t} = 1 + \ln f_{d,t}$
• $Rd,t = (K + (1-K) \frac{f_{d,t}}{\max_i(f_{d,i})})$

Inverse Document Frequency

Consider a future device for individual use, which is a sort of mechanized private file and library. It needs a name, and, to coin one at random, "memex" will do.

Inverse Document Frequency

Consider a future **device** for **individual** use, which is a sort of **mechanized private** file and **library**. It needs a name, and, to coin one at **random**, "**memex**" will do.

- \circ Words with higher f_t are less discriminative.
- Use inverse to measure importance:
 - $w_t = 1/f_t$
 - $w_t = \ln (1 + N/f_t) \leftarrow$ this one is most common
 - $w_t = \ln (1 + f^m/f_t)$, where f^m is the max observed frequency

Question: What's the In () here for?

This is TF*IDF

- Many variants, but all capture:
 - Term frequency: R_{d,t} as being monotonically increasing
 - Inverse Document Frequency: W_t as being monotonically decreasing
- Standard formulation is: $w_{d,t} = r_{d,t} \times w_t$ $= (1 + \ln(f_{d,t})) \times \ln(1 + N/f_t)$
- Problem:
 - r_{d,t} grows as document grows, need to normalize; otherwise biased towards long documents

Calculating Similarity

o Euclidean Distance - bad

- $M(Q,D_d) = sqrt (\Sigma |w_{q,t} w_{d,t}|^2)$
- Dissimilarity Measure; use reciprocal
- Has problem with long documents, why?
- Actually don't care about vector length, just their direction
 - Want to measure difference in direction

Calculating the ranked list

$$\frac{1}{W_d W_q} \sum_{t \in \mathcal{Q} \cap D_d} (1 + \ln f_{d,t}) \bullet \ln(1 + \frac{N}{f_t})$$

• To get the ranked list, we use doc. accumulators:

For each query term t, in order of increasing f_t , Read its inverted file entry I_t Update acc. for each doc in I_t : A_d += ln (1 + $f_{d,t}$) × w_t For each A_d in A A_d /= W_d // that's basically cos θ , don't use w_q Report top r of A

Accumulator Storage

- Holding all possible accumulators is expensive
 - Could need one for each document if query is broad
- In practice, use fixed |A| wrt main memory. What to do when all used?
 - Quit: use ranks as they are
 - Continue processing on |A| documents to get accurate ranks (preferred)

Selecting r entries from accumulators

 Want to return documents with largest cos values.

• How? Use a min-heap

Load r A values into the heap H Process remaining A-r values If A_d > min{H} then Delete min{H}, add A_d, and sift // H now contains the top r exact cosine values

To think about

- How do you deal with a dynamic collection?
- How do you support phrasal searching?
- What about wildcard searching?
 - What types of wildcard searching are common?