
Using Syntactic and Semantic Relation Analysis in Question Answering

Renxu Sun Jing Jiang Yee Fan Tan Hang Cui Tat-Seng Chua Min-Yen Kan

1 Introduction

Our participation at TREC thi
integrating dependency and
analysis of external resources int
system. In TREC-13, we have p
dependency relation matching t
extraction for factoid and list que
showed that the technique is ef
extraction within the corpus. H
also identified some problems an
this technique. First, dependency
does not perform well on short
have only very few key terms. Th
integrate query expansion and ma
resources to provide addit
information to these short ques
technique cannot be directly a
answer nuggets from external w
pages contain much more noise a
corpus, statistical based dep
matching tends to make a lot of e
previously trained model on the
we do not have sufficient trainin
model on the web. Therefore w
semantic relation analysis
dependency relation analysis t
nuggets for factoid and list ques
Finally, we adopt a soft pattern
(Cui et al., 2005) for definition se
the definitional QA task.

We focus on the following thr
year’s TREC:
(1) We incorporate dependency

into query expansion based
resources, and we perform qu
both document and passage r
more contextual information

(2) We propose the use of
analysis to extract answer n
and list questions from exter
These external answer nugg
directly projected back to th
questions) or be used as add
evidence for corpus-based
(for factoid questions).

{sunrenxu,jing
Department of Computer Science
School of Computing

National University of Singapore
jian,tanyeefa,cuihang,chuats,kanmy}@comp.nus.edu.sg
s year focuses on
semantic relation
o our existing QA
roposed the use of
o perform answer
stions. The results
fective in answer
owever, we have
d limitations with
 relation matching
 questions, which
erefore we need to
ke use of external
ional contextual
tions. Second, the
pplied to extract
eb pages. As web
s compared to the
endency relation
rrors based on our
corpus. Moreover,
g data to retrain a
e propose to use
to supplement

o extract answer
tions on the web.
 matching model
ntence retrieval in

ee features in this

 relation analysis
 on external web
ery expansion for

etrieval to provide
for short questions.
semantic relation
uggets for factoid
nal web resources.
ets can either be
e corpus (for list
itional supporting
answer extraction

(3) We train a bigram soft pattern statistical model

to capture the patterns inherent in a set of
training examples. We employ the bigram
model to identify good definition sentence
candidates.

This paper is organized as follows: In the next
section, we present the overall architecture of our
system. In Sections 3, 4 and 5, we respectively give
the details of the above three features. In Section 6,
we conclude the paper with discussion of future
directions.

2 System Overview

In Figure 1, we illustrate the architecture of our
QA system. We have leveraged our prior work in
question analysis, document retrieval, passage
retrieval to build the system. Our major
modification lies in query expansion, semantic
answer nugget extraction from web resources and
the bigram model for definition sentence selection.
In our comprehensive pre-processing step, we store
a named entity profile and the full parsing of each
article in the TREC corpus. The offline processing
greatly accelerates answer extraction.

Our framework functions as follows:
Target analysis and document retrieval: First, the
user submits a topic, e.g., “Aaron Copland”, to the
system. Lucene1 is used to index the documents. In
handling topics with qualifiers, for instance, “skier
Alberto Tomba”, we rely on the Web to separate the
qualifiers from the main topic words, e.g., “Alberto
Tomba” in the above example. Specifically, we
calculate the pointwise mutual information (PMI)2
between each pair of topic terms based on the hits
returned by Google when using the topic terms as
query. Terms with PMI values beyond a pre-
defined threshold are grouped together. To
construct a suitable Lucene query, we first use
logical “AND” to connect terms in the same group,
and employ logical “OR” to connect different
groups. To handle errors or infrequent expressions

1 http://jakarta.apache.org/lucene/docs/index.html

2
)(

),(
XP

YXPPMI =

Figure 1. The illustration of the TREC QA system architecture

in the given topics, we replace our original query by
any query suggestion from Google3. For instance,
our system automatically changes “Harlem Globe
Trotters” to “Harlem GlobeTrotters” according to
Google’s result. From the document retrieval on the
NE pre-tagged corpus, we get a set of NE tagged
relevant documents related to the given topic.

• Factoid/List Question Analysis: We first
extract the expected answer NE type for each
question. We then parse each question using
Minipar (Lin, 1998) and store the dependency parse
tree, which will be used for dependency based
answer extraction. Finally, we parse the question
using shallow semantic parser ASSERT (Pradhan et
al., 2004) and also store the parse tree, which will
be used for semantic answer nugget extraction from
web resources. As some of the questions cannot be
parsed by ASSERT (i.e empty output), we only
perform semantic parsing on the subset of questions
which have non-empty output. For the rest of the
questions, we only perform dependency based
answer extraction.

3 Defined as when Google returns : “Did you mean:

XXX”

• Query expansion and passage retrieval for
factoid and list questions: We incorporate
dependency relation analysis into query expansion,
which will be introduced in Section 3. The method
picks expansion terms from Google snippets
according to the terms’ relation with the question
terms in the snippets. For document ranking task
this year, we select the top k expanded terms
together with the non-trivial question terms to form
the query. Our passage retrieval module also takes
in expanded queries as input, and performs density-
based lexical matching to rank passages, which
consist of a window of three sentences.

• Answer extraction: We perform answer
extraction on corpus documents as well as answer
nuggets extraction on external web documents and
select the final answer by answer projection (for list
questions) and verification (for factoid questions).
We use dependency based answer extraction to
extract the answer string from the corpus. However,
our preliminary experiment shows that this
approach does not work well on web pages as they
contain much more noisy data as compared to
corpus. Therefore we propose the use of semantic
based answer nugget extraction which is less

sensitive to noise and we give the technical details
in Section 4.

• Definition generation: The relevant document
set for the given topic is the basis for generating the
definition for that topic. The definition generation
module first extracts definition sentences from the
document set. It identifies definition sentences
using centroid-based weighting and then applies the
soft-pattern model for matching these definition
sentences. It also leverages existing definitions
from external resources. We will discuss definition
sentence extraction in Section 5. After redundancy
removal, the module produces the definition for the
topic.

3 Query Expansion using Dependency
Relations

In TREC-13, we have proposed to use
dependency relation matching to perform answer
selection. However, our experiments showed that
dependency relation matching does not perform
well on short questions with very few (less than
four) key words. Therefore we need to introduce
additional contextual information for these short
questions through query expansion. However, most
query expansion methods only introduce new terms
and cannot be directly applied to relation matching.
Thus we propose a query expansion algorithm,
which can expand new terms as well as relation
paths based dependency relation analysis.

To perform query expansion, we first send the
queries to Google and use the top 50 returned
snippets as a basis for query expansion. We parse
the snippets using MiniPar and rank each non-stop
token in the parsing tree of the snippet by its
relation path to the tokens in the parsing tree of the
question using the trained scores of individual
relation. Finally, we select the top k relation paths
in the snippets to combine with relation paths
derived from the original questions to perform
answer selection.

We will next introduce our query expansion
algorithm follow by details on how we train
individual relation scores.

3.1 Query Expansion

Most query expansion techniques rank expansion
terms using their co-occurrence with the query term
by performing local context analysis (Xu et
al.,1996). However, we observed that due to the
noise on the web, the same technique cannot be
applied to the Web. This is because some irrelevant
terms, such as commercial related terms co-occur
very frequently with the query terms in some
snippets. This will mislead the query expansion
algorithm to select them as relevant terms.
Therefore we propose to use dependency relation

between query terms and expanded terms as
additional evidence to infer the relevance of the
expanded term. Our general framework is similar to
the local context analysis method, but with two
major differences: (1) We perform query expansion
using web resources rather than the top N passages
retrieved within the corpus. (2) We score the
expanded terms using their relation paths to query
terms rather than statistical co-occurrence.

Below are the steps we use to incorporate
dependency relation analysis to expand a query Q
based on web resource Dw.

1) We input each question as a query to Google

and collect the top 50 returned snippets as a
basis for query expansion. We combine the 50
snippets as a whole document denoted as Dw
and perform sentence splitting and dependency
parsing using Minipar. Each sentence Si in Dw
becomes a dependency tree Ti after parsing. A
dependency tree depicts the dependency
relations between tokens of a sentence. For any
two tokens (a token may either be a single word,
a noun phrase or a verb phrase) in a sentence,
there exists a path between them. The path
consists of a series of intermediate nodes linked
by labeled edges called relations. So we can
define relation path in the form of (Start_Token,
Rel1… Relk…Relm, End_Token).

2) After step 1, we have N dependency parsing
trees that corresponds to N sentences in Dw. The
non-stop word tokens denoted as Tk in Dw are
ranked according to the formula:

∏
∑

∈

=

×+
=

Qt

idf
Tk

n

s
i

i

it

N

idfstTkscorepath
QTkScore)

log

)),,(_(log
(),(

10

1
10δ (3.1.1)

Where
)(Re),,(_

),(Re

∏
∈

∧∈∧∈

=

tTkpathl
stsTk

i

i

lscorestTkscorepath (3.1.2)

NNNidf TkTk 1010 log/)/(log= (3.1.3)
NNNidf

ii tt 1010 log/)/(log= (3.1.4)
Tk is the token to be ranked,

),,(stTkpath is all the relation paths in the
dependency parsing tree of sentence s with start
token Tk and end token t,

),,(_ stTkscorepath is the score of),,(stTkpath

N is the number of sentences in Dw,
TkN is the number of sentences in Dw contains Tk,

it
N is the number of sentences in Dw contains ti,

)(Re ilscore is the score of individual relation
which is obtained through training,
δ is set to 0.1 to avoid zero values.
The above formula is a variant of the ranking

formula of local context query expansion except

that we use relation path similarity instead of co-
occurrence.

Besides the tokens, we also rank the path
associated with each token Tk and select the top
ranked path with start token Tk to the expanded
path of Tk. The selection formula is shown as

}},,(_{),,(_|),,({
)(_

max stTkscorepathstTkscorepathstTkpath
Tkexpath

wDs
Qt

∈
∈

=

=

(3.1.5)

(3) We add top k tokens denoted as to

the original query. We set the weight of original
query terms to be 1.0 and the weight of ith
expanded token to be (1-0.9*i/k). We use the
expanded set to perform document and passage
retrieval. We add

}...{ 1 kTkTk

}1|)(_{ kiTkexpath i ≤≤
to the set of paths derived from the original
question to perform dependency matching for
answer extraction.

3.2 Training Individual Relation Weights

As explained in the previous section, the
relevance of the expanded token Tk is judged by its
relation paths linking to the tokens in the query.
And each relation path is a sequence of individual
relations. Under the assumption that each relation
appears independent of the other relations in the
same path we have

∏
∈

∧∈∧∈

=

),(Re

)(Re),,(_
tTkpathl

stsTk
i

i

lscorestTkscorepath

(3.2.1)

Therefore for each type of relation in the

dependency parsing tree, we need to
train . We use TREC 8 and TREC 9,
QA sentence pairs to perform training. We denote
each QA pair as (Q

)(Re ilscore

i,Ai). We then collect the top 50
snippets returned by Google for each question and
perform sentence splitting and dependency parsing
and select the relevant paths from the set of parsing
trees of the snippets. A path p in the snippets of Qi
denoted as (Start_Token, Rel1… Relk…Relm,
End_Token) is relevant if iATokenStart ∈_
and . iQTokenEnd ∈_

)}1{log(max/)1log()(Re _Re1_Re ++= ∈≤≤∈ pathrelevantlNipathrelevantli ii
CClscore

(3.2.2)
Where

pathrelevantli
C _Re ∈ is the number of in

relevant paths
ilRe

N is the total number of relation types
According to the formula, the score of the

relation is proportional to the probability that it is in
a relevant path. In other words the more often a
“good” expansion term is inferred by the relation,

the higher the score it will get. We normalize the
score to be between 0 and 1 by dividing the score
by the maximum score.

3.3 Evaluation Results and Discussions

We perform document and passage retrieval
using the query expansion technique described
above. Figure 2 shows the precision-recall graph of
the document ranking task.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0 0.2 0.4 0.6 0.8 1 1.2

Recall

Pr
ec
i
si
on

Figure. 2 Precision-recall graph of document

ranking task (RUN NUSCHUAR1)

4 Semantic Answer Nugget Extraction on the
Web

To facilitate the answering of topic-related
factoid and list questions we use web resources as
supporting documents to perform answer nugget
extraction. We use http://www.answers.com/ as a
search engine to get topic related web documents.
And we perform semantic based answer nugget
extraction on these documents. Finally, we project
the answer nuggets back to corpus and verify the
correctness of the answer nuggets.

4.1 Collecting and Pre-processing of Web Pages

For each topic, we input the topic as the query
string to http://www.answers.com. The engine will
return a resource page if the topic is in its database.
Otherwise it will return the search result by Google.
We use the resource page as our external web
resource. We perform web page segmentation and
classification on the resource page. For each
resource page we classify the page segments into
three classes, namely lists, descriptive data
segments in natural language and commercial
advertisements. We will remove all commercial
segments as we will only use non-commercial
segments to perform answer nugget extraction.
Since the semantic answer selection works only on
natural language sentences, we have to assign the
surrounding texts as descriptive titles for tables and
lists and use these titles to perform semantic
matching with the questions.

http://www.answers.com/

4.2 Semantic Answer Extraction

Our goal is to match the semantic structure
contained in the question with sentences from the
web resources containing answer nuggets. After
ranking the sentences we use the top k matched
NEs (if the question has an NE typed answer target)
or arguments (if the question has no NE typed
answer target) as our candidate answer nuggets.
There are two major challenges for this semantic
matching. One is the different syntactic
representations of the same semantic structure. The
other is the use of different lexical terms to refer to
the same concept. To tackle these problems, we use
a shallow semantic parser to unify different
syntactic representations into the same semantic
representation, and we use WordNet and eXtended
WordNet to find synonyms and semantically related
verbs.

4.2.1 Shallow Semantic Parsing
To capture the semantic structures contained in a

sentence, we need to identify verbs and their
arguments. We also need to label the arguments
with their semantic roles. This goal is achieved by
performing shallow semantic parsing. The shallow
semantic parser we use is the ASSERT parser,
which is trained on the PropBank (Kingsbury et al.,
2002) corpus and uses support vector machine
classifiers.

PropBank was manually annotated with verb-
argument structures. Following the annotation rules
in PropBank, the ASSERT parser tags the
arguments of a verb with labels from ARG0 up to
ARG5. Although such semantic roles are verb-
specific, some labels such as ARG0 and ARG1 tend
to be general to all verb classes. For example, for
any transitive verb, ARG0 is always the subject,
and ARG1 is always the direct object. Besides these
core arguments, ASSERT also tags adjunctive
arguments. Examples are ARGM-LOC for locatives
and ARGM-TMP for temporal. Figure 3 shows a
sample output of ASSERT containing the parsing
result of the question and several answer candidate
sentences.

To represent sentences in terms of the semantic

structures, we define a semantic frame (or frame for

short) as a verb-argument structure obtained from a
sentence by the ASSERT parser. A frame consists
of a verb, which we call the predicate, and a set of
arguments. The arguments include both core
arguments and adjunctive arguments. Each
argument is associated with a label such as ARG0
and ARG1 to indicate the semantic role of the
argument. Therefore, a frame F can be represented
as F=(v,A), where v is the predicate and A is the set
of arguments. Each element a in A is a pair
consisting the argument label and the argument text,
represented by a=(l, T), where l is the label and T is
the set of terms that the argument contains. Because
a sentence may contain more than one semantic
structure, a sentence is represented by a set of
frames.

4.2.2 Verb Expansion using WordNet
Before we show our similarity scoring function,

we first look at verb similarity scores. An answer
passage can express the same semantic structure of
the question with a different verb that is either of
the same meaning as the verb in the question or
semantically related to the verb in the question.
Therefore, when matching semantic frames, we
need to consider the semantic similarity between
two verbs. We use WordNet and eXtended
WordNet to measure this verb similarity.

Our verb similarity function is very similar to the
weighting function in Moldovan et al., 2002.
Suppose we want to measure the similarity between
two verbs v1 and v2. We start from one of the verbs,
say, v1. This original verb is assigned a score of 1.
We select the synset that corresponds to the first
sense of v1 in WordNet. All words in this synset get
the same score as the original word. From this
synset, we follow the links to other synsets with
relations such as hyponyms and entailment. We
also follow the gloss links and reverse gloss links
provided by the eXtended WordNet. A gloss link
from synset S1 to synset S2 means S2 appears in the
gloss of S2, and a reverse gloss link from synset S1
to synset S2 means S1 appears in the gloss of S2.

If from v1 we follow the relation R to a synset
which contains the word w, then the score for the
word w is RW×1 , where is the weight for
relation R. If we follow the link further from w to
another synset which contains the word u by
relation S, then the score of the word u
is

RW

sR WW ××1 . Such expansion continues until we
reach a certain depth. In our experiments, we set the
depth to 2 because our preliminary experiments
show that a deeper expansion does not improve the
performance. The weights of the relations are the
same as that used in Moldovan et al., 2002. We also
penalize synsets that are more commonly used.
Each synset gets a generality score G which is
defined as

Q: [ARG2-FROM Where] was [ARG1 the first Burger King
restaurant] [TARGET opened]

P1: [ARG1 The first Burger King] [TARGET opens] [ARGM-LOC in
Miami]

P2: [ARG0 Burger King Corp.] [TARGET announced] [ARGM-TMP
Thursday] [ARG1 it has canceled the rights of an Israeli company to
operate a controversial franchise in the West Bank and ordered the
restaurant to remove the Burger King brand from the site immediately]

P2: Burger King Corp. announced Thursday [ARG0 it] has [TARGET
cancelled] the rights of an Israeli company [ARGM-PNC to operate a
controversial franchise in the West Bank] and ordered the restaurant to
remove the Burger King brand from the site immediately

P2: Burger King Corp. announced Thursday it has canceled the rights
of an Israeli company to [TARGET operate] [ARG1 a controversial
franchise in the West Bank] and ordered the restaurant to remove the
Burger King brand from the site immediately

Figure.3 Sample Output By ASSERT Parser

glossr
s NC

CG
−+

= (4.2.2.1)

where C is a constant, and is the number of
glosses in which the member of synset S appears.
We set C=500. After taking into account this
penalizing weight, the score of the word w is
therefore , where is the score of

the previous word v, is the relation connecting

v and w, and is the synset containing w.

glossrN −

wwvv GsRs ×× , vs

wvR ,

ws
After we expand the verb v1, we check if v2

appears in the expanded set. If it does, then it is
assigned the score as explained above. If not, v2 is
assigned a score of 0. We denote this similarity
score between v1 and v2 as .),(21 vvSimV

4.2.3 Semantic Matching
First, we define the similarity scores between two

frames. Let F1= (v1, A1), F2 = (v2, A2). We divide
the similarity score into two components, one
indicating the similarity between the verbs, and the
other indicating the similarity between the
arguments.

),()1(),(),(212121 AASimvvSimFFSim AV ×−+×= αα
 (4.2.3.1)

where denotes the similarity score
between two argument sets, and

),(21 AASimA

α is a weighting
parameter that can be tuned. Our experimental
results show that α does not affect the
performance much within a certain range. Therefore
we fix α to be 0.5.

The similarity between the two sets of arguments
is measured at the lexical level. We do not use
WordNet to expand the terms in the arguments
because many of the arguments are named entities
such as persons and organizations, for which
finding similar terms is not so meaningful.

To precisely match the argument sets of two
frames, we should do pairwise matching of the
arguments, that is, matching ARG0 in the first
frame with ARG0 in the second frame, and ARG1
in the first frame with ARG1 in the second frame,
etc. However, we choose to do a fuzzy matching by
considering all arguments in a frame together as a
bag of independent terms. There are two reasons for
doing fuzzy matching: (1) ASSERT often makes
mistakes and therefore does not tag the arguments
consistently, especially for adjunctive arguments,
and (2) since we consider semantically related verbs,
the semantic roles of the arguments may be
different in different frames. Our preliminary
experimental results also show that considering all
arguments together is better than considering them
separately.

We use Jaccard coefficient to measure the
similarity between two sets of arguments. Suppose
we are to compute , where A1 and A2
are two argument sets:

),(21 AASim A

)},(),...,,(),,{(,1,12,12,11,11,11 mm TlTlTlA = (4.3.2.2)

)},(),...,,(),,{(,1,12,22,21,21,22 nn TlTlTlA = (4.2.3.3)

jil , is the argument label of the jth argument of Ai,

and is the set of terms in the jth argument of Ai.
Let

jiT ,

U
m

i
iTT

1
,11

=

= and (4.2.3.4) U
n

i
iTT

1
,22

=

=

We then remove the stop words from T1 and T2.
Let the sets of terms after stop word removal be T1’
and T2’. We then define the similarity between A1
and A2 as

''

''
),(

21

21
21

U
I

TT

TT
AASimA = (4.2.3.5)

Both the question and the answer passages may
contain more than one semantic frame. We compute
pairwise frame similarity scores between the
question and an answer passage, and pick the
maximum score as the semantic similarity between
the question and the answer passage.

Finally, we use the semantic similarity scores to
rank passages. For a question, we first use a density
based passage retrieval method to retrieve the top
100 passages. We than rank these 100 passages
based on their semantic similarities to the question,
as defined above.

4.3 Answer Projection and Verification
After we obtain the answer nuggets from the web,

we need to project the answer nuggets back to the
corpus. For list questions, we focus more on the
recall so we only perform answer projection on the
document level. For factoid questions after the
projection step we use dependency relation based
answer ranking to verify if the answer nugget from
the web is correct in the local context.

4.4 Evaluation Results
Table. 1 shows the evaluation result for TREC-

14 factoid and list questions based on run
NUSCHUA1.
Table 1. Performance for factoid and list questions

 NUSCHUA1 TREC
Highest

TREC
Medium

Accuracy
for factoid
questions

0.666 0.713 0.152

Accuracy
for list

questions
0.331 0.468 0.053

 We find that our performance for factoid questions
is improved over our result last year. The main

reason is that after query expansion our system is
more capable of handling short questions. However,
our semantic answer nugget selection does not
perform very well on list questions. The major
problem is due to the recall of the semantic parser
and the strict matching criteria we imposed on the
frame matching, which will reduce the recall of
finding answers for list question.

5 Definition Generation for Topics

We consider it important to identify precise and
complete definition sentence for topics because it
facilitates the answering of factoid and list
questions, and more importantly, it helps to answer
the Other questions. In TREC-13, we applied a soft
pattern model to boost the recall of definition
sentence retrieval. This year, we use the improved
bigram soft pattern model (Cui et al., 2005), and
combine it together with external knowledge, to
identify precise definition sentences. Note that for
external knowledge, we choose to utilize specific
websites rather than general search engines, so that
we get more precise results.

5.1 Statistical Ranking of Definition Sentences
with External Knowledge

To ensure recall, for each topic, we construct
two data sets as the basis for selecting definition
sentences: one based on the TREC corpus and the
other from external knowledge. The TREC set is
constructed by relevant documents determined by
the document retrieval module using the topic as
the query. We retrieve up to 800 documents for
each topic. These documents are split into sentences.
To construct the external knowledge set, we
accumulate existing definitions for the topics from
http://www.answers.com/. The definitions are
downloaded through pre-written wrappers for the
website.

We first perform statistical weighting of
sentences on both of the data sets to find the
sentences relevant to the given topics. When
ranking sentences with corpus word statistics, we
employ the centroid-based ranking method, which
has been used in other definitional QA systems (e.g.,
Xu et al., 2003). We select a set of centroid words
(excluding stop words) which co-occur frequently
with the search target in the input sentences. To
select centroid words, we use mutual information to
measure the centroid weight of a word w as follows:

)(
)1)_(log()1)(log(

)1)_,(log()(widf
termschsfwsf

termschwCowWeightcentroid ×
+++

+
=

 (5.1.1)
where Co(w, sch_term) denotes the number of
sentences where w co-occurs with the search term
sch_term, and sf(w) gives the number of sentences

containing the word w. We also use the inverse
document frequency of w, idf(w)4, as a measure of
the global importance of the word. Words whose
centroid weights exceed the average plus a standard
deviation are selected as centroid words.

The weighting of centroid words can be
improved by using external knowledge. We
augment the weight of the centroid words which
also appear in the definitions from the external
knowledge data set. We form centroid words into a
centroid vector, which is then used to rank input
sentences by their cosine similarity with the vector.

5.2 Generic Soft Pattern Model

After performing the statistical ranking step
above, we have a list of ranked sentences with
definition sentences ranked highly. However, not
all sentences that are ranked highly are definition
sentences, although all of these sentences are
related to the topic.

In most TREC QA systems, definition patterns
are manually constructed in a labour intensive
manner, and are usually in the form of regular
expressions. Such patterns require exact matching
and hence we call them hard patterns. We observe
that definition sentences such as “… the weed
kudzu, a vine planted for soil stabilization that has
grown like wild ...” follows certain patterns, but
often with minor variations for a variety in writing
styles. Hard patterns usually fails in matching such
linguistic variations in vocabulary and syntax, and
learned hard patterns cannot match definition
sentences that are not seen in the training data.
Therefore we propose and employ a soft pattern
model discussed in (Cui et al., 2004), and further
improved it in (Cui et al., 2005) to produce a
theoretically sound generic soft pattern model. In
(Cui et al., 2005), a bigram soft pattern model and a
profile HMM soft pattern model are proposed, and
we apply the bigram soft pattern model here
because the profile HMM model requires more
training instances to converge.

For a definition pattern containing the search
target, we consider the tokens on the left of the
search target, left_seq, separately from those on the
right of the search target, right_seq, and compute
their respective scores separately. We combine the
two scores using linear interpolation:

() ()
() ()

score , score |

1 score |

left

right

left_seq right_seq left_seq

right_seq

α µ

α µ

=

+ −

(5.2.1)
where µleft and µright are the bigram soft pattern
models for the left and right sequences respectively.

4 We use the statistics from the Web Term Document

Frequency and Rank site to approximate words’ IDF
(http://elib.cs.berkeley.edu/docfreq/)

In the original bigram soft pattern model used
in TREC-13, the probability of a sequence is
computed simply as a product of probabilities of
bigrams. For our improved bigram soft pattern
model, we apply linear interpolation of unigrams
and bigrams to represent the probability of bigrams
to smooth the distribution to generate more accurate
statistics for unseen data, as well as to incorporate
the conditional probability of individual tokens
appearing in specific slots. For a given bigram
model µ with slots S1 to SL, a sequence of pattern
tokens t1 to tL is modeled as follows:

() () () () ()(1 1 1 1
2

1score , , | log | log | 1 |
L

L i i
i

t t P t S P t t P t S
L

µ λ −
=

⎛ ⎞= + + −⎜ ⎟
⎝

∑K)i iλ
⎠

(5.2.2)
where P(ti | Si) is the conditional probability of
token ti appearing in slot Si. The unigram and
bigram probabilities are estimated using maximum
likelihood estimation, and Laplacian smoothing is
applied to these probabilities. For more details on
our bigram soft pattern model, please refer to (Cui
et al., 2005).

5.3 Manually Constructed Patterns

On top of centroid-based weighting and soft
pattern matching, we also optionally use a set of
manually constructed patterns for matching
definition sentences. This set of patterns includes
the subset of patterns we used for TREC-12 that are
used in TREC-13. The set consists mainly
consisting of appositives and copulas patterns,
which are high-precision patterns represented in
regular expressions, such as “<SEARCH_TERM>
is DT$ NNP”. For this year’s TREC QA, we used
additional high-precision patterns used to match
numeric data, such as years and distance units.

Such hard matching patterns are used on top of
the soft patterns because a small number of good
definition sentences are dropped due to the imposed
cut-off of ranking scores by centroid-based
weighting and soft pattern matching, and we want
to capture these sentences. Also, sentences
containing numerical data are presented in a large
number of formats and are not given very high
scores by the soft pattern models.

Hence, the system works by first ranking all the
sentences using centroid-based ranking and soft
pattern matching, and then taking the top ranked
sentences as candidate definition sentences.
Optionally, for boosting the recall of the definition
sentences, it then examines those lower ranked
sentences which are not included in the candidate
definition sentences, and adds those sentences
matched by any of the manually constructed
patterns into the list of definition sentences.

5.4 Redundancy Removal
Like in TREC-13, this year’s TREC QA

guidelines requires that systems remove nuggets
that are already covered in the topic-related factoid
and list questions from their list of definition
nuggets. Our system performs a two-stage
redundancy check when selecting definition
sentences into the final answer. First, we define the
list of sentences used to answer the factoid and list
questions for the same topic as factoid sentences.
For selecting N sentences for the final answer, we
apply the following selection process on our ranked
list of sentences:
1. Add the first sentence in the ranked list of

sentences into the list of answer sentences.
2. Let the next sentence in the ranked list of

sentences be next_stc.
a. If there is a factoid sentence factoid_stc

such that sim(next_stc, factoid_stc) ≥ 0.85,
skip to step (3).

b. If there is already a selected answer
sentence answer_stc such that sim(next_stc,
answer_stc) ≥ 0.70, skip to step (3).

c. Otherwise, we add next_stc to the list of
answer sentences.

3. If the list of answer sentences already has N
sentences, we terminate the process. Otherwise,
go back to step 2.
Here, we measure the similarity between two

sentences using simple cosine similarity with each
term weighed by its inverse document frequency
(IDF). Since the answers to factoid or list questions
tend to account for very small fraction of the
sentences, we apply a stricter similarity threshold
on these sentences.

For this year, we choose to return only full
sentences as our definition nuggets, without
attempting to extract the relevant substrings of the
sentences. This is unlike TREC-13, where heuristic
rules were used to extract only the relevant parts,
such as the appositive part. The reason is that the
context of the sentence is often lost when such
extraction is done.

5.5 Evaluation Results
This year, we submitted three runs for the Other

questions. The first run produces 14 definition
sentences using only soft pattern matching. The
second run produces 12 definition sentences using
soft pattern matching and 2 using the hard pattern
matching rules as used in TREC-13, but not
including the numeric ones. The third run produces
12 definition sentences using soft pattern matching
and 6 using the hard pattern matching rules,
including the numeric ones. The average F3-scores
are shown in Table 2.

Table 2. Performance for Other questions
 NUSCHUA1 NUSCHUA2 NUSCHUA3

Avg F3-score 0.195 0.193 0.211
From the scores, we see that our bigram soft

pattern model performs as well as the manual non-
numeric hard pattern matching rules, which already
has a performance that is much better than the
median average F3-score of 0.156 across all the 71
runs. However, since number matching is a hard
problem in general, adding some hard numeric
matching rules to augment the soft pattern model in
our third run actually boosts the results, even
though the returned answers are much longer now.

This year, the topics are extra challenging for
answering the Other questions, reflected by the
across-the-board low scores, because a large
number of the topics are events. A reason is
because events can span across a long period of
time and involve a large number of entities. At the
same time, having to exclude all definition nuggets
that have been covered by the topic-related factoid
and list questions continue to make answering the
Other questions difficult. We continue to observe
that most of the important aspects of a topic have
already been asked in the factoid and list questions,
leaving little else for answering the Other question.

6 Conclusion

We have reviewed the newly-adopted techniques
in our QA system. They include using dependency
relation analysis for query expansion, using
semantic relation analysis for answer nugget
extraction from the web and using bigram soft
pattern model for definition sentence selection.
While these techniques have improved our previous
QA system, we note that more improvements may
be pursued in future work. First, the recall of
semantic parsing is not high enough to cover most
of the questions. Therefore to increase the recall of
semantic parsing will be one of our future works in
applying semantic relation analysis to QA.
Secondly, more experiments should be conducted to
figure out the effect of query expansion on the
specific type of questions, in particular for
questions with different lengths. Third, further work
needs to be done for answering Other questions for
events. Also, there is a need to find ways to
integrate numberic matching into the soft pattern
models.

References

[Cui et al., 2004] H. Cui, K. Li, R. Sun, T.-S. Chua
and M.-Y. Kan, National University of Singapore at
the TREC-13 Question Answering Main Task,
Proceedings of the 13th Text Retrieval Conference
(TREC 2004).

[Cui et.al., 2005] H. Cui, M.-Y. Kan and T.-S.
Chua, Generic soft pattern models for definitional
question answering, Proceedings of the 28th annual
international ACM SIGIR conference on Research
and development in information retrieval, Salvador,
Brazil , Aug 15-19, pp. 384 - 391.

[Lin, 1998] D. Lin, Dependency-based Evaluation
of MINIPAR, In Workshop on the Evaluation of
Parsing Systems, Granada, Spain, May, 1998.

[Pradhan et al., 2004] S. Pradhan, W. Ward, K.
Hacioglu, J. H. Martin and D. Jurafsky, Shallow
Semantic Parsing using Support Vector Machines,
Proceedings of HLT/NAACL '04, Boston, MA,
2004.

[Xu et al.,1996] J. Xu, W. Bruce Crof, Query
expansion using local and global document
analysis, Annual ACM Conference on Research
and Development in Information Retrieval
Proceedings of the 19th annual international ACM
SIGIR conference on Research and development in
information retrieval Zurich, Switzerland,1996, pp.
4-11.

[Kingsbury et al., 2002] P. Kingsbury, M. Palmer
and M. Marcus, Adding Semantic Annotation to the
Penn TreeBank, Proceeding of the Human
Language Technology Conference, San Diego,
California, 2002.

[Moldovan et al., 2002] D. Moldovan and A.
Novischi, Lexical Chains for Question Answering,
Proceeding of COLING 2002, pp. 674-680

[Xu et al., 2003] J. Xu, A. Licuanan, R. Weischedel,
TREC 2003 QA at BBN: Answering Definitional
Questions, The Twelfth Text REtrieval Conference
(TREC 2003) Notebook, pp. 28-35, 2003.

	Introduction
	System Overview
	Query Expansion using Dependency Relations
	Query Expansion
	Training Individual Relation Weights
	Evaluation Results and Discussions

	Semantic Answer Nugget Extraction on the Web
	Collecting and Pre-processing of Web Pages
	Semantic Answer Extraction
	Shallow Semantic Parsing
	Verb Expansion using WordNet
	Semantic Matching

	Answer Projection and Verification
	Evaluation Results

	Definition Generation for Topics
	Statistical Ranking of Definition Sentences with External Kn
	Generic Soft Pattern Model
	Manually Constructed Patterns
	Redundancy Removal
	Evaluation Results

	Conclusion

