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Abstract

Obtaining training data for multi-hop question
answering (QA) is time-consuming and
resource-intensive. We explore the possibility
to train a well-performed multi-hop QA model
without referencing any human-labeled multi-
hop question-answer pairs, i.e., unsupervised
multi-hop QA. We propose MQA-QG, an
unsupervised framework that can generate
human-like multi-hop training data from
both homogeneous and heterogeneous data
sources. MQA-QG generates questions by
first selecting/generating relevant information
from each data source and then integrating
the multiple information to form a multi-hop
question. Using only generated training data,
we can train a competent multi-hop QA which
achieves 61% and 83% of the supervised
learning performance for the HybridQA and
the HotpotQA dataset, respectively. We also
show that pretraining the QA system with
the generated data would greatly reduce the
demand for human-annotated training data.
Our codes are publicly available at https:
//github.com/teacherpeterpan/
Unsupervised-Multi-hop-QA.

1 Introduction

Extractive Question Answering (EQA) is the task
of answering questions by selecting a span from
the given context document. Works on EQA can
be divided into the single-hop (Rajpurkar et al.,
2016, 2018; Kwiatkowski et al., 2019) and multi-
hop cases (Yang et al., 2018; Welbl et al., 2018;
Perez et al., 2020). Unlike single-hop QA, which
assumes the question can be answered with a sin-
gle sentence or document, multi-hop QA requires
combining disjoint pieces of evidence to answer
a question. Though different well-designed neu-
ral models (Qiu et al., 2019; Fang et al., 2020)
have achieved near-human performance on the
multi-hop QA datasets (Welbl et al., 2018; Yang
et al., 2018), these approaches rely heavily on the

When was the driver ranked in the 4-th position in 2004 United 
States Grand Prix born?

Jenson Button is the  driver 
ranked in the 4-th position in 
2004 United States Grand Prix

Jenson Button: Jenson 
Alexander Lyons Button MBE 
(born 19 January 1980) is a 
British racing driver and 
former Formula One driver. 

Question Generation 
Operator

When was Jenson 
Button born?

Bridge Entity: 
Jenson Button

Table-to-Text Operator

Bridge Blending Operator

2004 United States Grand Prix
Pos Driver Constructor Time

1 Rubens Barrichello Ferrari 1:10.223

2 Michael Schumacher Ferrari 1:10.400

3 Takuma Sato BAR - Honda 1:10.601

4 Jenson Button BAR - Honda 1:10.820

Figure 1: An overview of our approach for generat-
ing bridge-type multi-hop questions from table and text.
The full set of supported input types and question types
are described in Section 3.2.

.

availability of large-scale human annotation. Com-
pared with single-hop QA datasets (Rajpurkar et al.,
2016), annotating multi-hop QA datasets is signifi-
cantly more costly and time-consuming because a
human worker needs to read multiple data sources
in order to propose a reasonable question.

To address the above problem, we pursue a more
realistic setting, i.e., unsupervised multi-hop QA,
in which we assume no human-labeled multi-hop
question is available for training, and we explore
the possibility of generating human-like multi-hop
question–answer pairs to train the QA model. We
study multi-hop QA for both the homogeneous
case where relevant evidence is in the textual
forms (Yang et al., 2018) and the heterogeneous
case where evidence is manifest in both tabular
and textual forms (Chen et al., 2020b). Though
successful attempts have been made to generate
single-hop question–answer pairs by style trans-
fer (Lewis et al., 2019) or linguistic rules (Li et al.,
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2020), these methods are not directly applicable to
the multi-hop setting as: 1) they cannot integrate
information from multiple data sources, and 2) they
only handle free-form text but not heterogeneous
sources as input contexts.

We propose Multi-Hop Question Generator
(MQA-QG), a simple yet general framework that
decomposes the generation of a multi-hop question
into two steps: 1) selecting relevant information
from each data source, 2) integrating the multiple
information to form a question. Specifically, the
model first defines a set of basic operators to re-
trieve / generate relevant information from each
input source or to aggregate different information.
Afterwards, we define six reasoning graphs. Each
corresponds to one type of multi-hop question and
is formulated as a computation graph built upon the
operators. We generate multi-hop question–answer
pairs by executing the reasoning graph. Figure 1
shows an example of generating a table-to-text
question: a) Given the inputs of (table, text), the
FindBridge operator locates a bridge entity that
connects the contents between table and text. b)
We generate a simple, single-hop question for the
bridge entity from the text (QGwithEnt operator)
and generate a sentence describing the bridge en-
tity from the table (DescribeEnt operator). c) The
BridgeBlend operator blends the two generated
contents to obtain the multi-hop question.

We evaluate our method on two multi-hop QA
datasets: HotpotQA (Yang et al., 2018) and Hy-
bridQA (Chen et al., 2020b). Questions in Hot-
potQA reason over multiple texts (homogeneous
data), while questions in HybridQA reason over
both table and text (heterogeneous data). The ex-
periments show that MQA-QG can generate high-
quality multi-hop questions for both datasets. With-
out using any human-labeled examples, the gen-
erated questions alone can be used to train a sur-
prisingly well QA model, reaching 61% and 83%
of the F1 score achieved by the fully-supervised
setting on the HybridQA and HotpotQA dataset,
respectively. We also find that our method can be
used in a few-shot learning setting. For example,
after pretraining the QA model with our generated
data, we can obtain 64.6 F1 with only 50 labeled
examples in HotpotQA, compared with 21.6 F1
without the warm-up training.

In summary, our contributions are:

• To the best of our knowledge, this is the first work
to investigate unsupervised multi-hop QA.

• We propose MQA-QG, a novel framework to
generate high-quality training data without the need
to see any human-annotated multi-hop question.
• We show that the generated training data can
greatly benefit the multi-hop QA system in both
unsupervised and few-shot learning settings.

2 Related Work

Unsupervised Question Answering. To reduce
the reliance on expensive data annotation, Unsu-
pervised / Zero-Shot QA has been proposed to train
question answering models without any human-
labeled training data. Lewis et al. (2019) proposed
the first unsupervised QA model which generates
synthetic (context, question, answer) triples to train
the QA model using unsupervised machine transla-
tion. However, the generated questions are unlike
human-written questions and tend to have a lot of
lexical overlaps with the context. To address this,
followup works utilized the Wikipedia cited docu-
ments (Li et al., 2020), predefined templates (Fab-
bri et al., 2020), or pretrained language model (Puri
et al., 2020) to produce more natural questions re-
sembling the human-annotated ones.

However, all the existing studies are focused on
the SQuAD (Rajpurkar et al., 2016) dataset to an-
swer single-hop and text-only questions. These
methods do not generalize to multi-hop QA be-
cause they lack integrating and reasoning over dis-
joint pieces of evidence. Furthermore, they are
restricted to text-based QA without considering
structured or semi-structured data sources such as
KB and Table. In contrast, we propose the first
framework for unsupervised multi-hop QA, which
can reason over disjoint structured or unstructured
data to answer complex questions.

Multi-hop Question Generation. Question
Generation (QG) aims to automatically generate
questions from textual inputs (Pan et al., 2019).
Early work of Question Generation (QG) relied
on syntax rules or templates to transform a piece
of given text to questions (Heilman, 2011; Chali
and Hasan, 2012). With the proliferation of deep
learning, QG evolved to use supervised neural
models, where most systems were trained to
generate questions from (passage, answer) pairs in
the SQuAD dataset (Du et al., 2017; Zhao et al.,
2018; Kim et al., 2019).

With the advent of pretraining language mod-
els (Dong et al., 2019), the challenge of gen-
erating single-hop questions similar to SQuAD



Group Operator Inputs→ Outputs Description

Selection
FindBridge

(Table T , Text D) or Texts (D1, D2)
→ Bridge Entities EB

Select an entity EB that links the two input texts
D1 and D2 (or links the table T and the text D)

FindComEnt Text D → Comparative Entities EC Extract potential comparative entities from the
input text (location, datetime, number, etc.).

Generation

QGwithAns (Text D, Answer A)→ QuestionQ Generate a single-hop questionQ with answer A
from the input text D

QGwithEnt (Text D, Entity E)→ QuestionQ Generate a single-hop questionQ that contains
the given entity E from the input text D

DescribeEnt (Table T , Entity E)→ Sentence S Generate a sentence S that describes the given
entity E based on the information of the table T

QuesToSent QuestionQ→ Sentence S Convert a questionQ into its declarative form S

Fusion
BridgeBlend

(QuestionQ, Sentence S, Bridge EB)
→ Bridge-type multi-hop questionQB

Generate a bridge-type multi-hop questionQB

by fusing the single-hop question Q and the
sentence S given the entity EB as the bridge

CompBlend
(QuestionQ1, QuestionQ2)→
Comparative multi-hop questionQC

Generate a comparison-type multi-hop question
QC by fusing two single-hop questions

Table 1: The 8 basic operators for MQA-QG, categorized into 3 groups. Selection: retrieve relevant informa-
tion from contexts. Generation: generate information from a single context. Fusion: fuse retrieved/generated
information to construct multi-hop questions. Each operator is defined as a function mapping f(X)→ Y .

have largely been addressed. QG research has
started to generate more complex questions that
require deep comprehension and multi-hop reason-
ing (Tuan et al., 2020; Pan et al., 2020; Xie et al.,
2020; Yu et al., 2020). For example, Tuan et al.
(2020) proposed a multi-state attention mechanism
to mimic the multi-hop reasoning process. Pan et al.
(2020) parsed the input passage as a semantic graph
to facilitate the reasoning over different entities.
However, these supervised methods require large
amounts of human-written multi-hop questions as
training data. Instead, we propose the first unsuper-
vised QG system to generate multi-hop questions
without the need to access those annotated data.

3 Methodology

The setup of Multi-hop QA is as follows. Given
a question q and a set of input contexts C =
{C1, · · · , Cn}, where each context Ci can be a pas-
sage, table, image, etc., the QA model pθ(a|q, C)
predicts the answer a for the question q by integrat-
ing and reasoning over information from C.

In this paper, we consider two-hop questions
and denote the required contexts as Ci and Cj . For-
mally, each time our model takes as inputs 〈Ci, Cj〉
to generate a set of (q, a) pairs. We focus on two
modalities: the heterogeneous case where Ci, Cj
are table and text and the homogeneous case where
Ci, Cj are both texts. However, the design of our
framework is flexible enough to generalize to multi-
hop QA for other modalities.

Our model MQA-QG consists of three compo-

nents: operators, reasoning graphs, and question
filtration. Operators are atomic operations imple-
mented by rules or off-the-shelf pretrained models
to retrieve, generate, or fuse relevant information
from input contexts (Ci, Cj). Different reasoning
graphs define different types of reasoning chains
for multi-hop QA with the operators as building
blocks. Training (q, a) pairs are generated by ex-
ecuting the reasoning graphs. Question filtration
removes irrelevant and unnatural (q, a) pairs to give
the final training set D for multi-hop QA.

3.1 Operators

In Table 1, we define eight basic operators and di-
vide them into three types: 1) selection: retrieve
relevant information from a single context, 2) gen-
eration: generate information from a single context,
and 3) fusion: fuse multiple retrieved/generated in-
formation to construct multi-hop questions.

• FindBridge: Most multi-hop questions rely on
the entities that connect different input contexts,
i.e., bridge entities, to integrate multiple pieces of
information (Xiong et al., 2019). FindBridge takes
two contexts (Ci, Cj) as inputs, and extracts the
entities that appear in both Ci and Cj as bridge en-
tities. For example, in Figure 1, we extract “Jenson
Button” as the bridge entity.

• FindComEnt: When generating comparative-
type multi-hop questions, we need to decide what
property to compare for the bridge entity. Find-
ComEnt extracts potential comparative properties



Medal Championship Name Event

Silver 2010 Pruszkow Tim Veldt Men’s omnium

Bronze 2011 Apeldoorn Kristen Wild Women’s omnium

Gold 2013 Apeldoorn Elis Ligtlee Women’s keirin

Gold 2013 Apeldoorn Elis Ligtlee Women’s sprint

Input Table + Target Entity

Netherlands at the European Track Championships

The table title is Netherlands at the European Track Championships . The
Medal is Bronze . The Championship is 2011 Apeldoorn . The Name is
Kirsten Wild . The Event is Women's omnium . Start describing Kirsten Wild : 

Kirsten Wild of Netherlands won the 
bronze medal in the 2011 Apeldoorn.

Table Templatization

Pretrained GPT-2

Figure 2: The implementation of DescribeEnt operator.

from the input text. We extract entities with NER
types Nationality, Location, DateT ime, and
Number from the input text as comparative prop-
erties (cf, “Comparison” in Figure 4).

• QGwithAns, QGwithEnt: These two operators
generate simple, single-hop questions from a sin-
gle context, which are subsequently used to com-
pose multi-hop questions. We use the pretrained
Google T5 model (Raffel et al., 2019) fine-tuned on
SQuAD to implement these two operators. Given
the SQuAD training set of context-question-answer
triples D = {(c, q, a)}, we jointly fine-tune the
model on two tasks. 1) QGwithAns aims to gener-
ate a question q with a as the answer, given (c, a)
as inputs. 2) QGwithEnt aims to generate a ques-
tion q that contains a specific entity e, given (c, e)
as inputs. The evaluation of this T5-based model
can be found in Appendix A.1.

• DescribeEnt: Given a table T and a target en-
tity e in the table, the DescribeEnt operator gener-
ates a sentence that describes the entity e based on
the information in the table T . We implement this
using the GPT-TabGen model (Chen et al., 2020a)
shown in Figure 2. The model first uses template
to flatten the table T into a document PT and then
feed PT to the pre-trained GPT-2 model (Radford
et al., 2019) to generate the output sentence Y . To
avoid irrelevant information in PT , we apply a tem-
plate that only describes the row where the target
entity locates. We then finetune the model on the
ToTTo dataset (Parikh et al., 2020), a large-scale
dataset of controlled table-to-text generation, by
maximizing the likelihood of p(Y |PT ;β), with β
denoting the model parameters. The implementa-
tion details and the model evaluation are in Ap-
pendix A.1.

• QuesToSent: This operator convert a question
q into its declarative form s by applying the linguis-
tic rules defined in Demszky et al. (2018).

𝒆: Kirsten Wild

𝒒: What is the birthdate of Kirsten Wild? Answer: 15 October 1982

𝒔: Kirsten Wild of Netherlands won the bronze medal in the 2011 Apeldoorn.

What is the birthdate of the _____ that of Netherlands won the bronze medal in 
the 2011 Apeldoorn?

What is the birthdate of the athlete that of Netherlands won the bronze medal in 
the 2011 Apeldoorn? Answer: 15 October 1982 

Figure 3: An example of the BridgeBlend operator.

• BridgeBlend: The operator composes a bridge-
type multi-hop question based on: 1) a bridge entity
e, 2) a single-hop question q that contains e, and
3) a sentence s that describes e. As exemplified in
Figure 3, we implement this by applying a simple
yet effective rule that replaces the bridge entity e
in q with “the [MASK] that s” and employ the
pretrained BERT-Large (Devlin et al., 2019) to fill
in the [MASK] word.

• CompBlend: This operator composes a
comparison-type multi-hop question based on two
single-hop questions q1 and q2. The two questions
ask about the same comparative property p for two
different entities e1 and e2. We form the multi-hop
question by filling p, e1, and e2 into pre-defined
templates (Further details in Appendix A.2).

3.2 Reasoning Graphs

Based on the basic operators, we define six types
of reasoning graphs to generate questions with dif-
ferent types. Each reasoning graph is represented
as a directed acyclic graph (DAG) G, where each
node in G corresponds to an operator. A node si
is connected by an incoming edge 〈sj , si〉 if the
output of sj is given as an input to si.

As shown in Figure 4, Table-Only and Text-Only
represent single-hop questions from table and text,
respectively. The remaining reasoning graphs de-
fine four types of multi-hop questions. 1) Table-to-
Text: bridge-type question between table and text,
where the answer comes from the text. 2) Text-to-
Table: bridge-type question between table and text,
where the answer comes from the table. 3) Text-
to-Text: bridge-type question between two texts.
4) Comparison: comparison-type question based
on two passages. These four reasoning chains can
cover a large portion of questions in existing multi-
hop QA datasets, such as HotpotQA and HybridQA.
We generate QA pairs by executing each reasoning
graph. Our framework can easily extend to other
modalities and reasoning chains by defining new
operators and reasoning graphs.



𝑄𝐺𝑤𝑖𝑡ℎ𝐸𝑛𝑡

Kirsten Wild

When was Kristen Wild born?    
Answer: 15 October 1982

Medal Championship Name Event

Silver 2010 Pruszkow Tim Veldt Men’s omnium

Bronze 2011 Apeldoorn Kristen Wild Women’s omnium

Gold 2013 Apeldoorn Elis Ligtlee Women’s keirin

𝐹𝑖𝑛𝑑𝐵𝑟𝑖𝑑𝑔𝑒#𝟏Kirsten Wild

𝐷𝑒𝑠𝑐𝑟𝑖𝑏𝑒𝐸𝑛𝑡#𝟐
Kirsten Wild of Netherlands 
won the bronze medal in the 
2011 Apeldoorn. 

𝑄𝐺𝑤𝑖𝑡ℎ𝐸𝑛𝑡#𝟑

What medal did Kristen Wild win in the 2011 
Apeldoorn? Answer: Bronze

Kirsten Carlijn Wild (born 15 October 1982) is 
a Dutch professional racing cyclist,⋯⋯⋯. 
Wild competed in two track cycling events at 
the 2012 Summer Olympics.

Kirsten Wild

Kirsten Wild of Netherlands 
won the bronze medal in the 
2011 Apeldoorn.

What is the birthdate of 
Kirsten Wild? 
Answer: 15 October 1982

𝐵𝑟𝑖𝑑𝑔𝑒𝐵𝑙𝑒𝑛𝑑
#𝟒

What is the birthdate of the athlete that of Netherlands won the bronze medal 
in the 2011 Apeldoorn? Answer: 15 October 1982

Kirsten Wild

Kirsten Wild of Netherlands 
won the bronze medal in the 
2011 Apeldoorn. 

𝑄𝐺𝑤𝑖𝑡ℎ𝐴𝑛𝑠 #𝟐 Who was born in 15 October 
1982? Answer: Kirsten Wild

#𝟔

What medal did the athlete that was born in 15 October 1982 win in the 
2011 Apeldoorn? Answer: Bronze

𝑄𝑢𝑒𝑠𝑇𝑜𝑆𝑒𝑛𝑡 #𝟒 Kirsten Wild was born 
in 15 October 1982.

What medal did Kristen Wild
win in the 2011 Apeldoorn?
Answer: Bronze

#𝟏 Slade

When did the rock band that sang "All Join Hands" rise to 
prominence? Answer: Early 1970s

Paragraph A: All Join Hands
"All Join Hands" is a song by the 
British rock band Slade, released in 
1984 ⋯⋯

Paragraph B: Slade
Slade are an English glam rock band from 
Wolverhampton. They rose to prominence 
during the early 1970s with ⋯⋯⋯

#𝟐

When did the rock band 
Slade rose to prominence?
Answer: Early 1970s

#𝟑

What rock band sang 
“All Join Hands”?
Answer: Slade

#𝟒Slade sang “All 
Join Hands”?

#𝟓

Text-Only

Table-Only

Text-to-Table

Table-to-Text

Text-to-Text

#𝟏
October 10, 1924
December 10, 1978
American

Were Scott Derrickson and Edward Wood of the same 
nationality? Answer: Yes

Paragraph A: Edward Wood
Edward Davis Wood Jr. (October 10, 
1924 – December 10, 1978) was an 
American filmmaker, actor, writer, 
producer, and director.

Paragraph B: Scott Derrickson 
Scott Derrickson (born July 16, 1966) 
is an American director, screenwriter 
and producer. He lives in Los Angeles, 
California. 

#𝟐

What is the nationality 
of Scott Derrickson?
Answer: American

#𝟑

What is the nationality 
of Edward Wood?
Answer: American #𝟓

Comparison

#𝟏
July 16, 1966
American
Los Angeles, California

Medal Championship Name Event

Silver 2010 Pruszkow Tim Veldt Men’s omnium

Bronze 2011 Apeldoorn Kristen Wild Women’s 
omnium

Gold 2013 Apeldoorn Elis Ligtlee Women’s keirin

𝐹𝑖𝑛𝑑𝐵𝑟𝑖𝑑𝑔𝑒#𝟏

𝐷𝑒𝑠𝑐𝑟𝑖𝑏𝑒𝐸𝑛𝑡#𝟐

𝑄𝐺𝑤𝑖𝑡ℎ𝐸𝑛𝑡#𝟑

Kirsten Carlijn Wild (born 15 October 1982) is 
a Dutch professional racing cyclist,⋯⋯⋯. 
Wild competed in two track cycling events at 
the 2012 Summer Olympics.

𝐹𝑖𝑛𝑑𝐵𝑟𝑖𝑑𝑔𝑒#𝟏

𝑄𝐺𝑤𝑖𝑡ℎ𝐸𝑛𝑡#𝟐

Kirsten Carlijn Wild (born 15 October 1982) is 
a Dutch professional racing cyclist,⋯⋯⋯. 
Wild competed in two track cycling events at 
the 2012 Summer Olympics.

Medal Championship Name Event

Silver 2010 Pruszkow Tim Veldt Men’s omnium

Bronze 2011 Apeldoorn Kristen Wild Women’s omnium

Gold 2013 Apeldoorn Elis Ligtlee Women’s keirin

𝐹𝑖𝑛𝑑𝐵𝑟𝑖𝑑𝑔𝑒#𝟏

𝐷𝑒𝑠𝑐𝑟𝑖𝑏𝑒𝐸𝑛𝑡#𝟑

𝑄𝐺𝑤𝑖𝑡ℎ𝐸𝑛𝑡#𝟓

𝐵𝑟𝑖𝑑𝑔𝑒𝐵𝑙𝑒𝑛𝑑

𝑄𝐺𝑤𝑖𝑡ℎ𝐴𝑛𝑠 𝑄𝐺𝑤𝑖𝑡ℎ𝐸𝑛𝑡

𝐹𝑖𝑛𝑑𝐶𝑜𝑚𝐸𝑛𝑡 𝐹𝑖𝑛𝑑𝐶𝑜𝑚𝐸𝑛𝑡

𝐶𝑜𝑚𝑝𝑎𝑟𝑒𝐵𝑙𝑒𝑛𝑑

𝐹𝑖𝑛𝑑𝐵𝑟𝑖𝑑𝑔𝑒

𝑄𝐺𝑤𝑖𝑡ℎ𝐴𝑛𝑠

𝐵𝑟𝑖𝑑𝑔𝑒𝐵𝑙𝑒𝑛𝑑

𝑄𝑢𝑒𝑠𝑇𝑜𝑆𝑒𝑛𝑡

Figure 4: The 6 types of reasoning graphs for MQA-QG. Each graph is represented as a DAG of operators.

3.3 Question Filtration
Finally, we employ two methods to refine the qual-
ity of generated QA pairs. 1) Filtration. We use a
pretrained GPT-2 model to filter out those questions
that are disfluent or unnatural. The top N samples
with the lowest perplexity scores are selected as the
generated dataset to train the multi-hop QA model.
2) Paraphrasing. We train a question paraphras-
ing model based on the BART model (Lewis et al.,
2020) to paraphrase each generated question. Our
experiments show that filtration brings noticeable
improvements to the QA model. However, we show
in Section 4.5 that paraphrasing produces more
human-like questions but introduces the semantic
drift problem that harms the QA performance.

4 Experiments

We evaluate our framework on two multi-hop QA
datasets: HotpotQA (Yang et al., 2018) and Hy-
bridQA (Chen et al., 2020b). HotpotQA focuses
on multi-hop QA over homogeneous inputs, while
HybridQA deals with multi-hop QA over hetero-
geneous information. HotpotQA contains ∼100K
crowd-sourced multi-hop questions, where each
question requires reasoning over two supporting
Wikipedia documents to infer the answer. Hy-
bridQA contains ∼70K human-labeled multi-hop
questions, where each question is aligned with a
structured Wikipedia table and multiple passages
linked with the entities in the table. The questions



Split Train Dev Test Total
HotpotQA

Bridge 72,991 5,918 − 78,909 (81 %)
Comparison 17,456 1,487 − 18,943 (19 %)

Total 90,447 7,405 − 97,852
HybridQA

In-Passage 35,215 2,025 2,045 39,285 (56 %)
In-Table 26,803 1,349 1,346 29,498 (43 %)
Compute 664 92 72 828 (1.1 %)

Total 62,682 3,466 3,463 69,611

Table 2: Basic statistics of HotpotQA and HybridQA.

are designed to aggregate both tabular information
and text information, i.e., lack of either form ren-
ders the question unanswerable.

Table 2 shows the statistics of these two datasets
and Appendix B.1 gives their data examples. There
are two types of multi-hop questions in HotpotQA:
bridge-type (81%) and comparison-type (19%).
For HybridQA, questions are divided by whether
their answers come from the table (In-Table ques-
tion, 56%) or from the passage (In-Passage ques-
tion, 44%). Around 80% HybridQA questions re-
quires bridge-type reasoning.

4.1 Unsupervised QA Results

Question Generation. In HybridQA, we extract
its table–text corpus consisting of (T,D) input
pairs, where T denotes the table and set of its
linked passages D. We generate two multi-hop QA
datasets Qtbl→txt and Qtxt→tbl with MQA-QG by
executing the “Table-to-Text” and “Text-to-Table”
reasoning graphs for each (T,D), resulting in a
total of 170K QA pairs. We then apply question fil-
tration to obtain the training setQhybrid with 100K
QA pairs. Similarly, for HotpotQA, we first gener-
ateQbge andQcom, which contains only the bridge-
type questions and only the comparison-type ques-
tions, respectively. Afterward, we merge them and
filter the questions to obtain the final training set
Qhotpot with 100K QA pairs. In Appendix B.2, we
gives the statistics of all the generated datasets.

Question Answering For HybridQA, we use the
HYBRIDER (Chen et al., 2020b) as the QA model,
which breaks the QA into linking and reasoning
to cope with heterogeneous information, achieving
the best result in HybridQA. For HotpotQA, we use
the SpanBERT (Joshi et al., 2020) since it achieved
promising results on HotpotQA with reproducible
codes. We use the standard Exact Match (EM) and
F1 metrics to measure the QA performance.

Baselines. We compare MQA-QG with both
supervised and unsupervised baselines. For Hy-
bridQA, we first include the two supervised base-
lines Table-Only and Passage-Only in Chen et al.
(2020b), which only rely on the tabular information
or the textual information to find the answer. As
we are the first to target unsupervised QA on Hy-
bridQA, there is no existing unsupervised baseline
for direct comparison. Therefore, we construct a
strong baseline QDMR-to-Question that generate
questions from Question Decomposition Meaning
Representation (QDMR) (Wolfson et al., 2020), a
logical representation specially designed for multi-
hop questions. We first generate QDMR expres-
sions from the input (table, text) using pre-defined
templates and then train a Seq2Seq model (Bah-
danau et al., 2014) to translate QDMR into ques-
tion. Details of this baseline are introduced in
Appendix C. For HotpotQA, we introduce three
unsupervised baselines. SQuAD-Transfer trains
SpanBERT on SQuAD and then transfers it for
multi-hop QA. Bridge-Only / Comparison-Only
use only the bridge-type / comparison-type ques-
tions by MQA-QG to train the QA model.

Performance Comparison. Table 3 and Table 4
summarizes the QA performance on HybridQA and
HotpotQA, respectively. For HybridQA, we use the
reported performance of HYBRIDER as the super-
vised benchmark (S3) and apply the same model
setting of HYBRIDER to train the unsupervised
version, i.e., using our generated QA pairs as the
training data (U2 and U3). For HotpotQA, the orig-
inal paper of SpanBERT only reported the results
for the MRQA-2019 shared task (Fisch et al., 2019),
which only includes the bridge-type questions in
HotpotQA. Therefore, we retrain the SpanBERT
on the full HotpotQA dataset to get the supervised
benchmark (S4) and using the same model setting
to train the unsupervised versions (U7 and U8).

Our unsupervised model MQA-QG attains 30.5
F1 on the HybridQA test set and 68.6 F1 on the
HotpotQA dev set, outperforming all the unsuper-
vised baselines (U1, U4, U5, U6) by large margins.
Without using their human-annotated training data,
the F1 gap to the fully-supervised version is only
19.5 and 14.2 for HybridQA and HotpotQA, re-
spectively. In particular, the results of U2 and U3
even outperform the two weak supervised base-
lines (S1 and S2) in HybridQA. This demonstrates
the effectiveness of MQA-QG in generating good
multi-hop questions for training the QA model.



Model In-Table In-Passage Total
EM / F1 EM / F1 EM / F1

Supervised
S1. Table-Only (Chen et al., 2020b) 14.7 / 19.1 2.4 / 4.5 8.4 / 7.1
S2. Passage-Only (Chen et al., 2020b) 9.2 / 13.5 26.1 / 32.4 19.5 / 25.1
S3. HYBRIDER (Chen et al., 2020b) 51.2 / 58.6 39.6 / 46.4 42.9 / 50.0

Unsupervised
U1. QDMR-to-Question 25.7 / 29.7 12.8 / 16.5 17.7 / 21.4
U2. MQA-QG -w/o Filtration 33.0 / 37.1 18.6 / 23.4 23.8 / 28.2
U3. MQA-QG 36.2 / 40.6 19.8 / 25.0 25.7 / 30.5

Table 3: Performance comparison between supervised models and unsupervised models on HybridQA.

Model Bridge Comparison Total
EM / F1 EM / F1 EM / F1

Supervised S4. SpanBERT (Joshi et al., 2020) 68.2 / 83.5 74.2 / 80.3 69.4 / 82.8

Unsupervised

U4. Bridge-Only 55.4 / 71.4 12.4 / 19.1 46.7 / 60.9
U5. Comparison-Only 9.8 / 14.5 38.2 / 45.0 15.5 / 20.6
U6. SQuAD-Transfer 54.6 / 69.7 25.3 / 35.2 48.7 / 62.8
U7. MQA-QG -w/o Filtration 55.2 / 71.2 44.8 / 52.9 53.1 / 67.5
U8. MQA-QG 56.5 / 72.2 48.8 / 54.4 54.9 / 68.6

Table 4: Performance comparison between supervised models and unsupervised models on HotpotQA.

Setting
Components Reasoning Types Performance

Text Table Fusion Filtration Table→Text Text→Table In-Table In-Passage Total
EM / F1 EM / F1 EM / F1

A1 X 12.4 / 14.9 2.7 / 4.3 6.4 / 8.3
A2 X 19.4 / 23.3 3.4 / 5.5 9.6 / 12.3
A3 X X 14.8 / 19.2 5.6 / 7.8 9.1 / 12.1
A4 X X X X 11.1 / 15.2 17.3 / 21.9 14.9 / 19.4
A5 X X X X 41.5 / 47.9 0.2 / 1.9 16.2 / 19.8
A6 X X X X X 33.0 / 37.1 18.6 / 23.4 23.8 / 28.2
A7 X X X X X X 36.2 / 40.6 19.8 / 25.0 25.7 / 30.5

Table 5: Ablations on the HybridQA development set. Text/Table: whether we utilize the information in the
text/table. Fusion: whether we fuse the information from table and text. Filtration: whether we perform question
filtration. Reasoning Types: which types of multi-hop questions are generated.

4.2 Ablation Study
To understand the impact of different components
in MQA-QG, we perform an ablation study on the
HybridQA development set. In Table 5, we com-
pare our full model (A7) with six ablation settings
by removing certain the model components (A1–
A4) or by restricting the reasoning types (A5 and
A6). We make three key observations.

Single-hop questions vs. multi-hop questions.
A1 to A3 generates single-hop questions using
the reasoning graph of Text-Only (A1), Table-Only
(A2), or a union of them (A3). Afterwards, we
use them to train the HYBRIDER model and test
the multi-hop QA performance. In these cases,
the model is trained to answer questions based on
either table or text but lacking the ability to rea-

son between table and text. As shown in Table 5,
A1–A3 achieves a low performance of EM and F1,
especially for In-Passage questions, showing that
single-hop questions alone are insufficient to train
a good multi-hop QA system. This reveals that
learning to reason between different contexts is es-
sential for multi-hop QA and justifies the necessity
of generating multi-hop questions. However, for
HotpotQA, we observe that the benefit of multi-
hop questions is not as evident as in HybridQA: the
SQuAD-Transfer (U6) achieves a relatively good
F1 of 62.8. A potential reason is that the examples
of HotpotQA contain reasoning shortcuts through
which models can directly locate the answer by
word-matching, without the need of multi-hop rea-
soning, as observed by Jiang and Bansal (2019).



(a) HybridQA (b) HotpotQA

Figure 5: The few-shot learning experiment. The figure shows the F1 score on the HybridQA (a) / HotpotQA (b)
development set for progressively larger training dataset sizes. Note the difference in scales for the Y-axes.

Effect of reasoning types. When we train the
model with only the Text-to-Table questions (A5),
the model achieves 47.9 F1 for In-Table questions
and nearly zero performance for In-Passage ques-
tions. However, training with only the Table-to-
Text questions (A4) also benefits the In-Table ques-
tions (15.2 F1). We believe the reason is that the
information in the text can also answer some In-
Table questions. Using both reasoning types (A6),
the model improves on average by 8.6 F1 compared
with the models using a single reasoning type (A4,
A5). This shows that it is beneficial to train the
multi-hop QA model with diverse reasoning chains.

Effect of question filtration. Question filtration
also helps to train a better QA model, leading to
a +2.3 F1 for HybridQA and +1.1 F1 for Hot-
potQA. We find that the GPT-2 based model can
filter out most ungrammatical questions but would
keep valid yet unnatural questions such as “Where
was the event that is held in 2016 held?”.

4.3 Few-shot Multi-hop QA
We then explore MQA-QG’s effectiveness in the
few-shot learning setting where only a few human-
labeled (q, a) pairs are available. We first train
the unsupervised QA model based on the training
data generated by our best model. Then we fine-
tune the model with limited human-labeled data.
The blue line in Figure 5(a) and Figure 5(b) shows
the F1 scores with different numbers of labeled
training data for HybridQA and HotpotQA, respec-
tively. We compare this with training the QA model
directly on the human-labeled data without unsu-
pervised QA pretraining (grey lines in Figure 5).

With progressively larger training dataset sizes,
our model performs consistently better than the

Figure 6: Question type distribution for our generated
dataset and the human-labeled dataset for HybridQA.

model without unsupervised pretraining for both
two datasets. The performance improvement is es-
pecially prominent in very data-poor regimes; for
example, our approach achieves 69.3 F1 with only
100 labeled examples in HotpotQA, compared with
21.4 F1 without unsupervised pretraining (47.9 ab-
solute gain). The results show pretraining QA with
MQA-QG greatly reduce the demand for human-
annotated data. It can be used to provide a “warm
start” for online learning QA system in which train-
ing data are quite limited for a new domain.

4.4 Analysis of Generated Questions

Although the generated questions are used to op-
timize for downstream QA performance, it is still
instructive to examine the output QA pairs to better
understand our system’s advantages and limitations.
In Figure 6, we plot the question type distribution
for both the human-labeled dataset and the gen-
erated data for HybridQA. We find that the two
datasets have a similar question type distribution,
where “What” questions constitute the major type.



Type # Generated Question Answer
Table-
to-Text

1 When did the one that won the Eurovision Song Contest in 1966 join Gals and Pals? 1963
2 How many students attend the teams that played in the Dryden Township Conference? 1900

Text-
to-Table

3 What album did the Oak Ridge Boys release in 1989? American Dreams
4 When was the name that is the name of the bridge that crosses Youngs Bay completed? 1921

Text-
to-Text

5 Which Canadian cinematographer is best known for his work on Fargo? Craig Wrobleski
6 What is illegal in the country that is Bashar Hafez al - Assad ’s father? Cannabis

Comp. 7 Who was born first, Terry Southern or Neal Town Stephenson? Terry Southern
8 Are Beth Ditto and Mary Beth Patterson of the same nationality? Yes

Table 6: Examples of multi-hop question–answers generated by MQA-QG, categorized by reasoning graphs. The
two major error types are highlighted: red for inaccurate reference and blue for redundancy.

HybridQA In-Table In-Passage Total
EM / F1 EM / F1 EM / F1

MQA-QG 36.2 / 40.6 19.8 / 25.0 25.7 / 30.5
+ Paraphrasing 37.7 / 43.5 12.1 / 15.8 21.8 / 26.2

HotpotQA Bridge Comparison Total
EM / F1 EM / F1 EM / F1

MQA-QG 56.5 / 72.2 48.8 / 54.4 54.9 / 68.6
+ Paraphrasing 51.7 / 67.0 45.7 / 51.1 50.5 / 63.8

Table 7: Unsupervised multi-hop QA performance
with/without question paraphrasing.

However, our model generates more “When” and
“Where” questions but fewer “Which” questions.
This is because the two reasoning graphs we ap-
ply for HybridQA are bridge-type questions while
“Which” questions mostly compare.

Table 6 shows representative examples gener-
ated by our model. Most questions are fluent and
exhibit encouraging language variety, such as Ex-
amples 2, 3, 5. Our model also shows almost no
sign of semantic drift, meaning most of the ques-
tions are valid despite sometimes being unnatural.
The two major deficiencies are inaccurate refer-
ences (in red) and redundancies (in blue), shown in
Examples 1, 4, 6. This can be addressed by incor-
porating minimal supervision to guide the fusion
process; i.e., more flexible paraphrasing in fusion.

4.5 Effects of Question Paraphrasing
As discussed in Section 3.3, to generated more
natural-looking questions, we attempted to train a
BART-based question paraphrasing model to para-
phrase each generated question. We finetune the
pretrained BART model on the Quora Question
Paraphrasing dataset1, which contains over 100,000
question pairs with equivalent semantic meaning.

The evaluation results are shown in Table 7. Sur-
prisingly, we observe a performance drop for both

1https://www.quora.com/q/quoradata/First-Quora-
Dataset-Release-Question-Pairs

the HybridQA and the HotpotQA dataset, with a
4.3 and 4.8 decrease in F1, respectively. We ob-
serve that paraphrasing indeed produces more flu-
ent questions by rewriting the redundancy parts of
the original questions into more concise expres-
sion. However, paraphrasing introduces the “se-
mantic drift” problem, i.e., the paraphrased ques-
tion changes the semantic meaning of the original
question. We believe this severally hurts the QA
performance because it produces noisy samples
with inconsistent question and answer. Therefore,
we argue that in unsupervised multi-hop QA, se-
mantic faithfulness is more important than fluency
for the generated questions. This explains why we
design hand-crafted reasoning graphs to ensure the
semantic faithfulness. However, how to generate
fluent human-like questions while keeping seman-
tic faithfulness is an important future direction.

5 Conclusion and Future Works

In this work, we study unsupervised multi-hop QA
and propose a novel framework MQA-QG to gen-
erate multi-hop questions via composing reasoning
graphs built upon basic operators. The experiments
show that our model can generate human-like ques-
tions that help to train a well-performing multi-hop
QA model in both the unsupervised and the few-
shot learning setting. Further work is required to
include more flexible paraphrasing at the fusion
stage. We can also design more reasoning graphs
and operators to generate more complex questions
and support more input modalities.
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A Implementation Details of Operators

In this section, we give the detailed implementation
of four key operators, including QGwithAns, QG-
withEnt, DescribeEnt, and CompBlend. We also
separately evaluate their performance.

A.1 The QGwithAns, QGwithEnt, and
DescribeEnt Operators

In summary, QGwithAns, QGwithEnt are T5-based
question generation model trained on the SQuAD
dataset, and DescribeEnt is a GPT-2 based model
trained on the ToTTo dataset.

Implementation Details For the question gen-
eration model (the QGwithAns and QGwith-
Ent operators), we use the SQuAD data split
from Zhou et al. (2017) to fine-tune the Google
T5 model (Radford et al., 2019). We implement
this based on the pretrained T5 model provided
by https://github.com/patil-suraj/
question_generation.

For the table-to-text generation model (the De-
scribeEnt operator), we adopt the GPT-TabGen
model proposed in Chen et al. (2020b). The
model first uses a template to flatten the input ta-
ble T into a document PT and then feed PT to
the pre-trained GPT-2 model to generate the out-
put sentence Y . We fine-tune the model on the
ToTTo dataset (Parikh et al., 2020), a large-scale
dataset for controlled table-to-text generation. In
ToTTo, given a Wikipedia table and a set of high-
lighted table cells, the objective is to produce a
one-sentence description that best describes the
highlighted cells. The original dataset contains
120,761 human-labeled training samples and 7,700
testing samples. To implement the DescribeEnt
operator, we select the ToTTo samples that focuses
on describing a given target entity e rather than
the entire table, based on the following criteria:
1) the highlighted cells are in the same row and
contains the target entity, 2) the description starts
with the target entity. This gives us 15,135 training
(T, e, s) triples and 1,194 testing triples, where T
is the table, e is the target entity, and s is the target
description.

Evaluation Setup We employ BLEU-4 (Pap-
ineni et al., 2002), METEOR (Lavie and Agarwal,
2007), and ROUGE-L (Lin, 2004) to evaluate the
performance of our implementation. For question
generation, we compare the T5-based model with
several state-of-the-art QG models, using their re-

ported performance on the Zhou split of SQuAD.
For the table-to-text generation, we compare GPT-
TabGen with the Seq2Seq baseline with attention.

Evaluation Results Table 8 shows the evalua-
tion results comparing against all baseline meth-
ods. For question generation, the Google-T5
model achieves a BLEU-4 of 21.32, outperforming
NQG++, S2ga-mp-gsa, and CGC-QG by large mar-
gins. This is as expected since these three baselines
are based on Seq2Seq and do not apply language
model pretraining. Compared with the current state-
of-the-art model UniLM, the Google-T5 model
achieves comparable results, with slightly lower
BLEU-4 but higher METEOR. For the table-to-text
generation model, we find that GPT2-TabGen out-
performs Seq2Seq with attention by 5.61 in BLEU-
4. When switching to GPT-2-Medium as the pre-
training model, the BLEU-4 further improves by
2.04. In our final model MQA-QG, we use the
Google-T5 and the GPT2-Medium in the opera-
tors.

A.2 The CompBlend Operator
The inputs of the CompBlend operator are two
single-hop questions Q1 and Q2 that ask about
the same comparative property p; for example, Q1

= “What is the nationality of Edward Wood?”, Q2

= “What is the nationality of Scott Derrickson”,
and p = “Nationality”. We then identify the en-
tity appearing in Q1 and Q2, denoted as e1 and
e2, respectively. To form the multi-hop question,
we fill in the comparing entities e1 and e2 into
the corresponding templates that we define for the
comparative property p. One of the resulting com-
parison question for the above example is “Are
Edward Wood and Scott Derrickson of the same
nationality?”. This paper considers four compar-
ative properties and defined a total number of 11
templates for them, summarized in Table 9.

B Dataset Details

In this section, we give further details for both the
HotpotQA and the HybridQA dataset, as well as
the generated datasets by our model MQA-QG.

B.1 HotpotQA and HybridQA Examples
Figure 7 gives data examples for the HotpotQA and
the HybridQA dataset. The evidence used to com-
pose the multi-hop question is highlighted, with
different colors denoting information from differ-
ent input contexts.

https://github.com/patil-suraj/question_generation
https://github.com/patil-suraj/question_generation


Operator Model BLEU-4 METEOR ROUGE-L

QGwithAns &
QGwithEnt

NQG++ (Zhou et al., 2017) 13.51 18.18 41.60
S2ga-mp-gsa (Zhao et al., 2018) 15.82 19.67 44.24
CGC-QG (Liu et al., 2020) 17.55 21.24 44.53
Google-T5 (Radford et al., 2019) 21.32 27.09 43.60
UniLM (Dong et al., 2019) 23.75 25.61 52.04

DescribeEnt
Seq2Seq Attention (Bahdanau et al., 2014) 28.31 27.61 56.63
GPT2-TabGen (Chen et al., 2020b) 33.92 32.46 55.61
GPT2-Medium (Chen et al., 2020b) 35.94 33.74 57.44

Table 8: Performance evaluation of the QGwithAns, QGwithEnt, and DescribeEnt operator for different models.
The best performance is in bold. We adopt the Google-T5 and the GPT2-Medium in our model MQA-QG.

Comparative Property # Question Template Answer
born, birthdate 1 Who was born first, e1 or e2? e1 / e2

located, location

2 Are e1 and e2 located in the same place? Yes / No
3 Which one is located in a1, e1 or e2? e1
4 Which one is located in a2, e1 or e2? e2
5 Are both e1 and e2 located in a1? Yes / No

nationality, nation, country

6 Are e1 and e2 of the same nationality? Yes / No
7 Which person is from a1, e1 or e2? e1
8 Which person is from a2, e1 or e2? e2

live, live place, hometown

9 Are e1 and e2 living in the same place? Yes / No
10 Which person lives in a1, e1 or e2? e1
11 Which person lives in a2, e1 or e2? e2

Table 9: The comparative properties and their corresponding question templates used in the CompBlend operator.
a1 / a2 denotes the answer for the single-hop question Q1 / Q2.

B.2 Statistics of generated datasets

For baselines and ablation study, we generate dif-
ferent synthetic training sets by executing differ-
ent reasoning graphs. For example, we generate
two datasets with single-hop questions Qtbl and
Qtxt for HybridQA by executing the “Table-Only”
and “Text-Only” reasoning graphs, respectively.
They are applied to train the ablation model A1 and
A2. Table 10 summarizes all the generated datasets
generated by our model MQA-QG. The column
“Train Model” denotes each dataset is used to train
which model in our experiments.

C Baseline: QDMR-to-Question

In this section, we introduce our proposed QDMR-
to-Question, a strong unsupervised multi-hop QA
baseline for HybridQA. We propose this baseline
to investigate whether we can generate multi-hop
questions from logical forms and compare them
with our model MQA-QG.

The QDMR Representation The basic idea of
QDMR-to-Question is first to generate a structured
meaning representation from the source contexts
and then convert it into the multi-hop question. We
use the Question Decomposition Meaning Repre-
sentation (QDMR) (Wolfson et al., 2020), a logi-
cal representation specially designed for multi-hop
questions as the intermediate question represen-
tation. QDMR expresses complex questions via
atomic operations that can be executed in sequence
to answer the original question. Each atomic oper-
ation either selects a set of entities, retrieves infor-
mation about their attributes, or aggregates infor-
mation over entities. For example, the QDMR for
the question “How many states border Colorado?”
is “1) Return Colorado; 2) Return border states of
#1; 3) Return the number of #2”. In contrast to
semantic parsing, QDMR operations are expressed
through natural language.

Based on the QDMR representation, Wolfson
et al. (2020) crowdsourced BREAK, a large-



2004 United States Grand Prix

Question: 
What nationality was the driver who finished in position 4 
in the 2004 United States Grand Prix?
Answer: British

Pos No Driver Constructor Time Gap

1 2 Rubens Barrichello Ferrari 1:10.223 —

2 1 Michael Schumacher Ferrari 1:10.400 +0.177

3 10 Takuma Sato BAR - Honda 1:10.601 +0.378

4 9 Jenson Button BAR - Honda 1:10.820 +0.597

5 3 Juan Pablo Montoya Williams - BMW 1:11.062 +0.839

Jenson Alexander Lyons Button MBE (born 19 January 1980) is a 
British racing driver and former Formula One driver. He won the 
2009 Formula One World Championship, driving for Brawn GP.

Paragraph A: All Join Hands
"All Join Hands" is a song by the British rock band Slade, 
released in 1984 as the lead single from the band's 
twelfth studio album "Rogues Gallery".

Paragraph B: Slade
Slade are an English glam rock band from 
Wolverhampton. They rose to prominence during the early 
1970s with 17 consecutive top 20 hits and six number ones 
on the UK Singles Chart.

Question: 
When did the rock band that sang "All Join Hands" rise to 
prominence?
Answer: The early 1970s

HotpotQA HybridQA

Figure 7: Data examples for the HotpotQA and the HybridQA dataset. Different colors (red and blue) highlight
the evidences that are required to answer the multi-hop question from different sources.

Dataset Size Description Train Model

HotpotQA

Qbge 129,508 Bridge-type Questions U4. Bridge-Only
Qcom 115,162 Comparison-type Questions U5. Comparison-Only
Qbge+com 244,220 Qbge ∪Qcomp U7. MQA-QG -w/o Filtration
Qhotpot 100,000 filtration(Qbge+com) U8. MQA-QG

HybridQA

Qtbl 56,448 Table-Only Questions A2
Qtxt 47,332 Text-Only Questions A1
Qtxt+tbl 103,780 Qtxt ∪Qtbl A3
Qtxt→tbl 56,448 Text-to-Table Questions A5
Qtbl→txt 70,661 Table-to-Text Questions A4
Qtxt↔tbl 127,109 Qtxt→tbl ∪Qtbl→txt U2. MQA-QG -w/o Filtration
Qhybrid 100,000 filtration(Qtxt↔tbl) U3. MQA-QG

Table 10: Basic statistics of all the generated datasets by our model MQA-QG.

scale question decomposition dataset consisting of
83,978 (QDMR, question) pairs over ten datasets.

Multi-hop Question Generation Given the
table-text (T,D) as inputs, we first generate
QDMR representations using two pre-defined tem-
plates that represent the Table-to-Text question and
the Text-to-Table question, respectively. The tem-
plates with examples are given in Table 11. We gen-
erate QDMRs by randomly filling in the templates.
Afterward, we translate the QDMR representation
into a natural language question. To this end, we
train a Seq2Seq model with attention (Bahdanau
et al., 2014) on the BREAK dataset, where the input
is a QDMR expression, and the target is the corre-
sponding natural language form labeled by humans.
We directly apply this Seq2Seq model trained on
BREAK as the translator to transform our QDMR
representations into multi-hop questions.

Netherlands at the European Track Championships

QDMR-to-Question: 
What is the birthdate of the name that medal is bronze in 
the Netherlands at the European Track Championships? 
MQA-QG: 
What is the birthdate of the athlete that of Netherlands 
won the bronze medal in the 2011 Apeldoorn?

Medal Championship Name Event

Silver 2010 Pruszkow Tim Veldt Men’s omnium

Bronze 2011 Apeldoorn Kristen Wild Women’s omnium

Gold 2013 Apeldoorn Elis Ligtlee Women’s keirin

Gold 2013 Apeldoorn Elis Ligtlee Women’s sprint

Kirsten Carlijn Wild (born 15 October 1982) is a Dutch 
professional racing cyclist, who currently rides for UCI 
Women's Continental Team Ceratizit–WNT Pro Cycling. 

Figure 8: Examples of generated questions for the
QDMR-to-Question model and the MQA-QG.



QDMR Template Example Question
Table-to-Text

What is the birthdate of
the driver that pos is 4 in
the 2004 United States
Grand Prix?

1) Return 〈column A〉 1) Return Driver
2) Return #1 that 〈column B〉 is 〈row A〉 2) Return #1 in Pos 4
3) Return #2 in 〈table title〉 3) Return #2 in 2004 United States Grand Prix
4) Return what is the 〈text attribute〉 of #3 4) Return what is the birthdate of #3

Text-to-Table
What is the pos of the
driver in the 2004 United
States that was born in
19 January, 1980?

1) Return 〈column A〉 1) Return Driver
2) Return #1 in 〈table title〉 2) Return #1 in 2004 United States Grand Prix
3) Return #2 that 〈predicate〉 〈object〉 3) Return #2 that born 19 January 1980
4) Return what is the 〈column B〉 of #3 4) Return what is the Pos of #3

Table 11: The QDMR templates used in the QDMR-to-Question model for HybridQA.

Evaluation and Discussions As shown in Sec-
tion 4.1, QDMR-to-Question achieves 21.4 F1 on
the HybridQA dataset, lower than our model MQA-
QG by 9.1 F1. A typical example of generated
question is shown in Figure 8. We believe that the
main reason for the low performance of QDMR-to-
Question is that it lacks a global understanding of
the table semantics. Specifically, the model lacks
an understanding of the table headers’ semantic
meaning and the semantic relationship between
different headers because table columns and table
rows are randomly selected to fill in the QDMR
template. For example, in Figure 8, the model
generates an unnatural expression “the name that
medal is bronze” because it directly copies the table
header “name” and “medal” without understanding
them. Instead, as our MQA-QG applies the GPT2-
based table-to-text model, which encodes the entire
table as an embedding, it tends to produce more
natural expressions that consider the general table
semantics. For the same example, MQA-QG gen-
erates a better expression “the athlete that won the
bronze medal”.


