
Scrutinizing Mobile App Recommendation:
Identifying Important App-related Indicators

Jovian Lin1, Kazunari Sugiyama1, Min-Yen Kan1,2, and Tat-Seng Chua1,2

1 School of Computing, National University of Singapore,
2 Interactive and Digital Media Institute, National University of Singapore, Singapore

jovian.lin@gmail.com, sugiyama@comp.nus.edu.sg

kanmy@comp.nus.edu.sg, chuats@comp.nus.edu.sg

Abstract. Among several traditional and novel mobile app recommender tech-
niques that utilize a diverse set of app-related features (such as an app’s Twitter
followers, various version instances, etc.), which app-related features are the most
important indicators for app recommendation? In this paper, we develop a hybrid
app recommender framework that integrates a variety of app-related features and
recommendation techniques, and then identify the most important indicators for
the app recommendation task. Our results reveal an interesting correlation with
data from third-party app analytics companies; and suggest that, in the context
of mobile app recommendation, more focus could be placed in user and trend
analysis via social networks.

Keywords: Recommender systems, Mobile apps, Gradient tree boosting

1 Introduction

Traditional recommendation approaches either learn a user’s preference from their rat-
ings (i.e., collaborative filtering) or the contents of previously-consumed items (i.e.,
content-based filtering). Despite the pervasive use of collaborative filtering in several
domains such as books, movies, and music, its effectiveness is hindered by insuffi-
cient ratings, particularly towards newly-released items — a problem that is commonly
known as the “cold-start.” Moreoever, due to noisy and unreliable descriptions of apps,
content-based filtering does not work well in the app domain [10].

With the widespread interest and pervasiveness of mobile apps, several novel rec-
ommendation techniques that take advantage of the unique characteristics of the app
domain have emerged. The first type focuses on collecting additional internal informa-
tion from the user’s mobile device, which analyzes the usage behavior of individual
apps via anonymized network data from cellular carriers [18] as well as usage patterns
of users via their in-house recommender systems [19, 6, 1]. The second type makes use
of external information such as spatial data from GPS sensors to provide context-aware
app recommendations [22, 7]. These two types, however, rely on data that is generally
difficult to obtain, causing the secondary problem of data-sparsity. On the contrary, the
third type consists of works that capitalize on more unique characteristics of the app
domain that may not be applicable to other domains. For instance, “follower” informa-
tion of an app’s Twitter account was used to substitute missing user ratings [10], which
proved to be useful in cold-start situations. Another work tried to find the likelihood
of which a current app would be replaced by another [20]. Alternatively, by taking the
fact that apps change and evolve with every new version update, a “version-sensitive”

2 Jovian Lin, Kazunari Sugiyama, Min-Yen Kan, and Tat-Seng Chua

recommendation technique was constructed to identify desired functionalities (from
various version descriptions of apps) that users are looking for [11].

With a variety of app recommendation techniques utilizing different sources of in-
formation, of which some may be available while others are not (e.g., not all apps have
user ratings), we explore the advantages of a hybrid app recommendation framework
that combines traditional and novel techniques. More importantly, through the hybrid
framework, we seek to identify the most important app-related indicators for the rec-
ommendation task.

The steps are as follows: First, using gradient tree boosting (GTB) [8], several rec-
ommendation techniques and their information sources are integrated to form a hybrid
app recommender framework. After that, we further look into each component of the
feature set to find the most significant features in the hybrid framework. Our findings
show an interesting correlation with data from third-party app analytics companies, and
suggest that, in the context of mobile app recommendation, more focus could be placed
in user and trend analysis via social networks.

2 Related Work

2.1 Mobile App Retrieval

Chen et al. [5] proposed a framework for detecting similar apps by constructing kernel
functions based on multi-modal heterogeneous data of each app (description text, im-
ages, user reviews, and so on) and learning optimal weights for the kernels. They also
applied this approach to mobile app tagging [4]. While Chen et al.’s work utilized dif-
ferent modalities of an app, Park et al. [14] exclusively leveraged text information such
as reviews and descriptions (written by users and developers, respectively) and designed
a topic model that can bridge vocabulary gap between them to improve app retrieval.
Zhang et al. [21] developed a mobile query auto-completion model that exploits in-
stalled app and recently opened app. In addition, Martin et al. [13] has published a nice
survey on app store analysis that identifies some directions for software engineering
such as requirements engineering, release planning, software design, testing, and so on.

2.2 Mobile App Recommendation

In order to deal with the recent rise in the number of apps, works on mobile app rec-
ommendation are emerging. Some of these works focus on collecting additional infor-
mation from the mobile device to improve recommendation accuracy. Xu et al. [18]
investigated the diverse usage behaviors of individual apps by using anonymized net-
work data from a tier-1 cellular carrier in the United States. While Yan and Chen [19],
Costa-Montenegro et al. [6], and Baeza-Yates et al. [1] analyzed internal information
such as the usage patterns of each user to construct app recommendation system, Zheng
et al. [22] and Davidsson and Moritz [7] utilized external information such as GPS
sensor information to provide context-aware app recommendation. Lin et al. [10] uti-
lized app-related information on Twitter to improve app recommendation in cold-start
situations. Their subsequent work focused on app’s uniqueness of version update, and
then proposed an app recommendation system that leverages version features such as
textual description of the changes in a version, version metadata [11]. These two works
are compiled into [9]. Yin et al. [20] considered behavioral factors that invoke a user
to replace an old app with a new one, and introduced the notion of “actual value” (sat-
isfactory value of the app after the user used it) and “tempting value” (the estimated

Scrutinizing Mobile App Recommendation 3

satisfactory value that the app may have), thereby regarding app recommendation as a
result of the contest between these two values. Zhu et al. [23] and Liu et al. [12] incorpo-
rated both each user’s interest and privacy preferences to provide app recommendation
as apps could have privileges to access the user’s sensitive personal information such as
locations, contacts, and messages. While the aforementioned works recommend apps
that are relevant to each user’s interests, Bhandari et al. [2] proposed a graph-based
method for recommending serendipitous apps.

3 Methodology

3.1 Feature Set

Inspired by Wang et al.’s work [17], the features that we use can be categorized into the
following three distinct groups:

1. the app’s marketing-related metadata (M),
2. the user’s history-related information (H), and
3. the recommendation scores of different recommender systems (R).

As illustrated in Figure 1, every candidate app’s feature vector Xu,a is composed of

all three groups of information: Xu,a = {XM
a ,XH

u,a,X
R
u,a} where Xu,a represents

the feature vector of the app a for user u, while M , H , and R represent the features
from the users’ history, apps’ metadata, and recommendation scores from various rec-
ommendation techniques, respectively.

3.1.1 App’s Marketing-related Metadata (M)

The features here pertain to the app’s metadata or marketing-related information. We
include most of the components of an app’s official metadata from the iTunes App Store,
such as the various genres that the app is assigned to, its price, average ratings, etc. We
also include external information, particularly ubiquitous data from social networks,
such as the number of versions an app has, the number of Facebook “likes” it has (zero if
the app has no Facebook handle), and the number of Twitter followers it has (zero if the
app has no Twitter handle). The blue components in Figure 1 show all the information
of an app’s marketing-related features.

3.1.2 User’s History-related Information (H)

User history is primarily extracted from the rating history of users, and it is a crucial
component for the purpose of providing personalized recommendations. In addition,
inspired by Wang et al.’s method [17] for generating additional user metadata by scruti-
nizing the genres of items that users have consumed, we also consider the user’s prefer-
ence of each app genre g. For instance, a user might be a loyal consumer of the “games”
genre, yet not in the “food & drink” genre. We thus include the number of times (i.e.,
the “count”) that apps in genre g were consumed by user u (represented in green in
Figure 1).

3.1.3 Recommendation Scores from Different Recommender Techniques (R)

We also include the recommendation scores generated from four recommendation tech-
niques: i) collaborative filtering, ii) content-based filtering, iii) “Twitter-follower-based
app recommendation” (TWF) [10], and iv) “version-sensitive recommendation” (VSR) [11].
These are represented by the red components in Figure 1.

4 Jovian Lin, Kazunari Sugiyama, Min-Yen Kan, and Tat-Seng Chua

(xu,a , r)

����

�����	�
����

�	����	���
�	��������������������	��������
�

��������	����������������
����
�����

�������� ����������
�	��

�
�	�

�����	�
����

����������	�

��	�
����

	���
��	�� 	���
��	�� 	���
��	�� 	���
��	��

�� ����� �� ����� ���� ����� �� �����

�� ���� ���

����	
������

����

���������

������

�
����	�

��������
�����

���
�

����������
��

������
��

�����

����	��

��
���
�

����	�

���������	��

����� �
��

��
���
�����	�

����� �
��

������

	�
�

�
	���

����������

�	�
��������	

����

�� �����

Fig. 1. An app’s feature vector (Xu,a, r), which contains app features, user features, the various
recommendation scores, and the user’s rating.

We employ probabilistic matrix factorization (PMF) [15] to implement collabo-
rative filtering as it is a state-of-the art technique that models the user-item ratings
matrix as a product of two lower-rank user and item matrices, and it has been used
in many previous recommendation works due to its highly flexibility and extendabil-
ity. We also employ latent Dirichlet allocation (LDA) [3] to implement content-based
filtering (on apps’ textual descriptions) as it effectively provides an interpretable and
low-dimensional representation of the items. In addition, we select TWF and VSR due
to their ability to make use of ubiquitous information from Twitter’s API and version
data from third-party app analytics companies, respectively. With the hybrid app rec-
ommendation that is modeled by gradient tree boosting (GTB) [8], we further look into
each component of the feature set (i.e., M , H , and R) in the hybrid model based on
relative influence3.

3.2 Combining App Features

Inspired by BellKor’s winning solution for the Netflix Prize4, we turn to Gradient Tree
Boosting (GTB), a machine learning algorithm that iteratively constructs an ensemble
of weak decision tree learners through boosting [8]. It produces an accurate and ef-
fective off-the-shelf procedure for data mining that can be directly applied to the data
without requiring a great deal of time-consuming data preprocessing or careful tuning
of the learning procedure.

To generate recommendations, the learned GTB predicts the rating that a user may
give to an app. After which, it ranks all recommended apps in descending order of rating

3
Friedman [8] proposed the relative influence for boosted estimates to reflect each feature’s contribution of reducing the
loss by splitting on the feature.

4
Y. Koren: “The BellKor Solution to the Netflix Grand Prize,” http://www.stat.osu.edu/ dmsl/GrandPrize2009 BPC BellKor.pdf

Scrutinizing Mobile App Recommendation 5

to produce a ranked list for each user. Here, we use a popular Python machine learning
package from scikit-learn5 to implement GTB.

4 Experimental Setup

We construct our experimental dataset by crawling the information on Apple’s iTunes
App Store6 (app metadata, users, and ratings), App Annie7 (version information of
apps), Twitter (for the Twitter followers of apps), and Facebook (for the “likes” in-
formation of apps). Our dataset includes 33,802 apps, 16,450 users, and 3,106,759 rat-
ings after we retain only unique users who give at least 30 ratings. Among the 33,802
apps, 7,124 (21.1%) have Twitter accounts, 9,288 (27.5%) have Facebook accounts, and
10,520 (31.1%) have at least five versions. Note that 678 (2.0%) apps have both Twit-
ter and Facebook accounts. We perform 5-fold cross validation, where in each fold,
we take the first 80% of the apps (chronologically) as training data for the individual
recommendation techniques, use the following 10% as the training data for the unified
model (i.e., the probe set of GTB), and use the remaining 10% for testing.

4.1 Comparative Recommender Systems

We compare two types of recommender systems: individual and hybrid. For individual
systems which are baselines, we implement the four recommender algorithms men-
tioned in Section 3.1.3, namely, collaborative filtering (PMF) [15], content-based fil-
tering (LDA) [3], TWF [10], and VSR [11]. For the hybrid systems, we create three
subsets of the GTB framework using a smaller set of features. That is, on top of our
gradient boosting hybrid framework GTB(M, H, R), we create three more hybrid sys-
tems: GTB(R), GTB(H, R), and GTB(M, R), where “M”, “H”, and “R” represent the
various information XM

a , XH
u,a, and XR

u,a mentioned in Section 3.1, respectively.
Table 1 shows the details of the various recommendation techniques and their fea-

ture set. For the individual recommender systems, the feature set contains the user’s
history-related features (XH

u,a) that are generated from the user’s previous ratings his-
tory as well as the app data. The hybrid models further integrate the product’s marketing-
related metadata (XM

a) and the recommender scores generated by the individual rec-
ommender systems (XR

u,a).

4.2 Evaluation Metric

Our system ranks the recommended apps based on the probability in which a user is
likely to download the app. This methodology leads to two possible evaluation metrics:
precision and recall. However, a missing rating in the training set is ambiguous as it
may either mean that the user is not interested in the app, or that the user does not
know about the app (i.e., truly missing). This makes it difficult to accurately compute
precision [16]. But since the known ratings are true positives, recall is a more pertinent
measure as it only considers the positively rated apps within the top M , namely, a high
recall with a lower M will be a better system. We thus chose Recall@M (especially,
M = 50) as our primary evaluation metric.

5
http://scikit-learn.org/stable/modules/ensemble.html (Ver 0.15.0)

6
https://itunes.apple.com/us/genre/ios/id36?mt=8

7
https://www.appannie.com/

6 Jovian Lin, Kazunari Sugiyama, Min-Yen Kan, and Tat-Seng Chua

Table 1. Various recommendation techniques.

Technique Feature Set

PMF [15] Collaborative filtering with Xu,a = {XH
u,a}

LDA [3] Content-based filtering with Xu,a = {XH
u,a}

TWF [10] Twitter-follower recommender with Xu,a = {XH
u,a}

VSR [11] Version-sensitive recommendation with Xu,a = {XH
u,a}

GTB(R) Xu,a = {XR
u,a}

GTB(H, R) Xu,a = {XH
u,a,X

R
u,a}

GTB(M, R) Xu,a = {XM
a ,XR

u,a}
GTB(M, H, R) Xu,a = {XM

a ,XH
u,a,X

R
u,a}

5 Experimental Results

5.1 Individual Recommender Techniques

Figure 2 shows Recall@50 obtained by different recommender systems. Among the in-
dividual recommender techniques (i.e., the first four bars from the left), content-based
filtering (LDA) achieves the best performance, i.e., it outperforms collaborative filter-
ing (PMF), TWF, and VSR. At first, it is surprising that content-based filtering (LDA) is
the best individual technique among the other individual algorithms, especially against
state-of-the-art ones. But given that the dataset contains some apps that: i) do not have
enough ratings for collaborative filtering, ii) do not have Twitter accounts (78.9%), and
iii) do not have sufficient version information (68.9%), it is reasonable that these tech-
niques underperform due to the lack of sufficient information for every app, whereas
content-based filtering (LDA) works better because apps always have app descriptions
to construct a recommendation model. In other words, in general and practical situations
where there are a variety of apps that have and do not have ratings, Twitter accounts,
and version information, content-based filtering is the more reliable technique.

5.2 Hybrid Recommender Techniques

Next, we explore the GTB models in Figure 2 (the last four bars). All of our GTB
models outperform the individual techniques described in Section 5.1. This is expected
as many other works that use GTB, particularly those involved in the Netflix prize,
have also reported improvements against individual baselines. We also observe a gen-
eral improvement in recall when we incorporate more components into the feature set.
For example, GTB(M,R) and GTB(M,H,R) outperform GTB(R) and GTB(M,R), re-
spectively. We observe an interesting small anomaly, in which GTB(H,R) slightly un-
derperforms GTB(R), whereas GTB(M,R) significantly outperforms both GTB(R) and
GTB(H,R). In other words, the recommendation scores (R) is more effective when it is
combined with app metadata (M) than when it is combined with user features (H). This
suggests that app metadata (M) complements the feature of recommendation scores (R)
— which actually makes sense as, given the assortment of app metadata (M) that co-
incides with recommendation scores (R), a correlation pattern can be better identified.
For example, the app metadata of Twitter followers would complement the recommen-
dation score provided by TWF, while the number of versions would complement the
recommendation score generated by VSR; likewise, the number of ratings would com-
plement the recommendation score given by collaborative filtering. On the contrary, as

Scrutinizing Mobile App Recommendation 7

�

�	�

�	�

�	�

�	�

�	�

�	

�	

�	�

�	�

�
�
��
��
�
�
�

��� ��� ��� ��� !"##$%"&$'()* �(#'*&(+,

-./�0 ��1

��� 234 ��� ��� !"+'*+'5%$6*7 �(#'*&(+,

-�890 �:

;��-40 ;��-<= 40 ;��-/= 40> ;��-/= <= 40>

Fig. 2. Recall@50 obtained by individual and hybrid recommender systems. “BL” stands
for “baselines.” “*” denotes the difference between combined techniques (GTB(M,R) and
GTB(M,H,R)) and the best baseline (content-based filtering (LDA)) is statistically significant
for p < 0.01.

features from user history (H) mainly consists of the number of times each genre is
consumed, it has less obvious correlations.

5.3 Ablation Testing

5.3.1 Ablation Testing for Hybrid Recommendation Techniques

The experimental results described in Section 5.2 show the overall effectiveness of all
four combined recommendation techniques as well as user features and app informa-
tion. To gain a deeper understanding of the individual recommendation techniques, we
further perform ablation testing by excluding one of the four recommendation tech-
niques from GTB(M,H,R), while at the same time, using the user features and app
metadata, XH

u,a and XM
a .

Table 2 shows recall@50 obtained by the ablation testing in which we ablate one
recommendation technique out of the four. We observe the followings from Table 2:

– Content-based filtering (LDA), which achieves the best recall among all individual
baselines, also causes the largest dip in recall when we ablate it from the unifying
model. That is, “GTB(H,M,R) excluding content-based filtering” has the lowest
score (0.237) among the four ablation baselines. This is unsurprising as it is ex-
pected when we omit the strongest individual predictor.

– Although VSR individually outperforms collaborative filtering (0.141 against 0.094),
ablating it from the unifying model does not have very much impact; in fact, ablat-
ing collaborative filtering (PMF) has more impact than ablating VSR.

– It would seem that, from this initial ablation study, both of the traditional rec-
ommendation techniques, collaborative filtering (PMF) and content-based filtering
(LDA) are more effective than VSR and TWF as the two traditional techniques
bring about the two biggest dips in recall when we ablate them.

8 Jovian Lin, Kazunari Sugiyama, Min-Yen Kan, and Tat-Seng Chua

Table 2. Recall@50 obtained by ablation testing.

Feature Recall@50

GTB(M, H, R) 0.403

GTB(M, H, R), excluding TWF [10] 0.363
GTB(M, H, R), excluding VSR [11] 0.346
GTB(M, H, R), excluding Collaborative Filtering (PMF) [15] 0.292
GTB(M, H, R), excluding Content-based Filtering (LDA) [3] 0.237
TWF [10] 0.082
VSR [11] 0.141
Collaborative Filtering (PMF) [15] 0.094
Content-based filtering (LDA) [3] 0.225

– However, we should not let this relative ablation comparison undermine the im-
provements that VSR and TWF have brought about. In fact, VSR and TWF im-
prove recall by 16.5% and 11.0%, respectively. More importantly, by utilizing these
unique and less obvious signals in the app domain (compared with other traditional
domains in recommender systems), we have gained significant improvements for
general app recommendation8. In other words, different pieces of evidences (e.g.,
Twitter followers and versions) that, when present, can be utilized sufficiently to
create a discernible improvement in recommendation quality.

Still, this initial ablation testing does not paint a full picture, especially regarding
VSR and TWF, as 68.9% of apps do not have sufficient version information while 78.9%
of apps do not have Twitter accounts (see Section 4). Therefore, the lack of information
does not provide a well grounded conclusion. In order to investigate the real utility of
VSR and TWF, we further scrutinize our data by utilizing a subset of data that has
sufficient Twitter and version information in the unifying model.

5.3.2 Ablation Testing Using Sufficient Twiter Information

Similar to Section 5.3.1, we also perform ablation testing using a dataset with full Twit-
ter information. Table 3 shows recall@50 obtained by this study where GTBTWF (. . .)
represents the model that uses full Twitter information in our controlled ablation testing.
Table 3 indicates the followings:

– Under a dataset with full Twitter information, we observe a reordering of recom-
mendation techniques whereby TWF becomes consequential — ablating it causes
the largest dip in recall scores (0.338) for the unifying model.

– Not only does this justify TWF’s effectiveness but more importantly, it indicates
that when certain evidence is available (here, Twitter followers information), this
changes the signals that are used in the unifying model, allowing TWF to displace
the traditional, well-established recommendation techniques.

5.3.3 Ablation Testing Using Sufficient Version Information

Furthermore, we perform another ablation testing using a dataset with full version in-
formation. Table 4 shows the recall@50 obtained by this study where GTBV SR(. . .)
represents the model that uses full version information in our controlled ablation test-
ing. According to Table 4, we observe the followings:

8
In fact, on 21 September 2009, the grand prize of US$1,000,000 was given to the BellKor’s Pragmatic Chaos team which
bested Netflix’s own algorithm for predicting ratings by 10.06%. That is, US$1M for an improvement of 10.06%.

Scrutinizing Mobile App Recommendation 9

Table 3. Recall@50 obtained by controlled ablation testing using sufficient Twitter information.

Feature Recall@50

GTBTWF (M, H, R) 0.446

GTBTWF (M, H, R), excluding VSR [11] 0.412
GTBTWF (M, H, R), excluding Collaborative Filtering (PMF) [15] 0.390
GTBTWF (M, H, R), excluding Content-based Filtering (LDA) [3] 0.386
GTBTWF (M, H, R), excluding TWF [10] 0.338

Table 4. Recall@50 obtained by controlled ablation testing using sufficient version information.

Feature Recall@50

GTBV SR(M, H, R) 0.418

GTBV SR(M, H, R), excluding TWF [10] 0.396
GTBV SR(M, H, R), excluding Collaborative Filtering (PMF) [15] 0.361
GTBV SR(M, H, R), excluding VSR [11] 0.344
GTBV SR(M, H, R), excluding Content-based Filtering (LDA) [3] 0.335

– Similar to our ablation testing with TWF in Section 5.3.2, under a dataset with full
version information, we observe a reordering of recommendation techniques.

– Even though VSR does not displace collaborative filtering in this ablation testing, it
still results in the second largest dip in recall scores (0.344) when we ablate it from
the unifying model. In addition, under this dataset, improvement in recall obtained
by VSR increases from 16.5% (in Table 2) to 22%.

– This further substantiates that when certain evidence is accessible, it changes the
way signals are used in the unifying model, which the reordering of recommenda-
tion techniques in our ablation study suggests.

The ablation studies on the two controlled datasets (pertaining to full Twitter and
version information) clearly demonstrate the importance of TWF and VSR in app rec-
ommendation, without which we would not have been able to capture Twitter and ver-
sion signals for the purpose of improving recommendation quality.

5.4 Feature Importance in GTB

We further analyze each component of the feature set in Figure 1 of the GTB(M, H, R)
model based on the relative influence. GTB allows us to measure the importance of each
component feature. Basically, the more often a feature is used in the split points of a
tree, the more important the feature is. Feature importance is essential because the input
features are seldom equally relevant. While only a few of them often have substantial
influence on the response, the vast majority are irrelevant and could just as well have
not been included. Thus, it is helpful to learn the relative importance or contribution of
each input feature in predicting the response. Figure 3 shows the relative importances
of the top features and gives the following insights (starting with the most important
feature):

– Not surprisingly, the average rating (all versions) is the most important factor as,
when the average rating is high, it is natural for users to download the app because
of its positive ratings. Therefore, this feature can be used as a strong signal in the
unifying framework to make a split in the decision tree. This reasoning is also
similar for the average rating (current version).

10 Jovian Lin, Kazunari Sugiyama, Min-Yen Kan, and Tat-Seng Chua

? @? A? B? C? D? E? F? G? H? @??

IJKLMNK OMPQRN

SMTT JKLUQVRUW

XLQYK

ZV[V\ OMPQRNU

]KRLK^

]M`KU

ZV[V\ abQPPKL

\VTTVbKLU

IJKLMNK OMPQRN

SYcLLKRP JKLUQVRW

ZV[V\ dKLUQVRU

ZV[V\ eMYKfVVg

hQgKU

]KRLK^

iRPKLPMQR`KRP

]KRLK^

jVYQMT ZKPbVLgQRN

Fig. 3. Top features with the highest relative influence.

– Price (i.e., free vs paid) is also an important factor, and this evidence coincides
with the trend that apps in the app store are heading towards the freemium model
— with the proportion of free apps taking up 90% of the app store. Therefore, the
price of an app could be a strong signal for a split in the decision tree.

– The number of ratings is also a strong indicator, as the more ratings an app has
garnered, the clearer the sign that it is popular and hence, likely to be consumed. It
is also a clear sign that the collaborative filtering technique can be employed.

– Not only the number of Twitter followers to the app’s Twitter handle is an indica-
tor of a strong social reach, but also the availability of additional Twitter-followers
information is an indicator that our Twitter-followers based recommendation tech-
nique can be utilized. Additionally, on a related note, the same reasoning could be
used to explain why the number of Facebook likes is also one of the top features,
as this indicator from Facebook is also a hint of the app’s social presence on the
popular social networking site.

– The number of versions also plays an important role as this is a sign that our
version-sensitive recommendation technique (VSR) may be employed. Given that
this feature is one of the top features of GTB, it suggests that the version-sensitive
recommendation technique [11] is useful here.

– We also observe that some app genres fall under the top features, notably “games,”
“entertainment,” and “social networking” — with “games” having a much more
significant influence score. The three genres are consistent with alternate findings
by Flurry Analytics9 whereby they discovered that people spend most of their time
in apps in the “games,” “social networking,” and “entertainment” genres across iOS
and Android devices.

Finally, we also observe that our results of the top GTB features in Figure 3 coincide
with another set of findings from Flurry Analytics, ComScore, and NetMarketShare10.

9
Flurry Analytics; “iOS & Android Smart Device Time Spent per App Category”; http://cl.ly/image/3m0P0g2r3f2C

10
Flurry Analytics, ComScore, NetMarketShare; “Time Spent on iOS and Android Connected Devices”;
http://cl.ly/image/201x2H1Q1j3H

Scrutinizing Mobile App Recommendation 11

For instance, the significant chunks that relate to genres (i.e., “game,” “entertainment,”
and “social messaging”) coincide with our genre labels shown in Figure 3. Additionally,
the “Facebook” and “Twitter” chunks also coincide with the “# of Facebook likes” and
“# of Twitter followers” features in Figure 3, which suggests that apps that have a strong
presence on these two popular social networks have a tendency to be spotted and subse-
quently consumed, making them popular candidates to be recommended. The data from
the alternate user studies11,12 demonstrates a strong correlation with our GTB feature
component analysis shown in Figure 3. It indicates how two disciplines (i.e., user stud-
ies and GTB feature component analysis) from two different sources of opinions and
quantitive angles managed to arrive at similar findings. This further suggests a future
direction in mobile app recommendation whereby more focus could be placed in user
and trend analysis through social networks — a direction that deviates from traditional
research in recommender systems.

6 Conclusion

Given that different recommendation techniques work in different settings, we evalu-
ate a method for integrating the various sources of information into a hybrid model
that can recommend a set of apps to a target user. We propose incorporating the user’s
prior history, app metadata, and the recommendation scores of various individual rec-
ommendation techniques into a hybrid recommendation model for app recommenda-
tion. We then use gradient tree boosting (GTB) as the core of the unifying framework
to integrate the recommendation scores by using user features and app metadata as
additional features for the decision tree. Experimental results show that the unifying
framework achieves the best performance against individual and hybrid baselines. We
also performed a series of in-depth analysis through ablation studies, and demonstrated
how different pieces of evidences (such as Twitter and version information) that, when
available, could be utilized sufficiently, and how the unifying model dynamically alters
the recommendation based on available signals. Finally, we discovered an interesting
correlation between important feature components in our unifying framework and user
analysis from third-party data analytics companies, which further suggests a future di-
rection in mobile app recommendation, where more focus could be placed in user and
trend analysis via social networks.

References

1. R. Baeza-Yates, D. Jiang, F. Silvestri, and B. Harrison. Predicting The Next App That You
Are Going To Use. In Proc. of the 8th ACM International Conference on Web Search and
Data Mining (WSDM’15), pages 285–294, 2015.

2. U. Bhandari, K. Sugiyama, A. Datta, and R. Jindal. Serendipitous Recommendation for Mo-
bile Apps Using Item-Item Similarity Graph. In Proc. of the 9th Asia Information Retrieval
Societies Conference (AIRS 2013), pages 440–451, 2013.

3. D. M. Blei, A. Y. Ng, and M. I. Jordan. Latent Dirichlet Allocation. Journal of Machine
Learning Research (JMLR), 3:993–1022, 2003.

4. N. Chen, S. C. H. Hoi, S. Li, and X. Xiao. Mobile App Tagging. In Proc. of the 9th ACM
International Conference on Web Search and Data Mining (WSDM’16), pages 63–72, 2016.

11
Flurry Analytics; “iOS & Android Smart Device Time Spent per App Category”; http://cl.ly/image/3m0P0g2r3f2C

12
Flurry Analytics, ComScore, NetMarketShare; “Time Spent on iOS and Android Connected Devices”;
http://cl.ly/image/201x2H1Q1j3H

12 Jovian Lin, Kazunari Sugiyama, Min-Yen Kan, and Tat-Seng Chua

5. N. Chen, S. C. H. Hoi, and X. Xiao. SimApp: A Framework for Detecting Similar Mobile
Applications by Online Kernel Learning. In Proc. of the 8th ACM International Conference
on Web Search and Data Mining (WSDM’15), pages 305–314, 2015.

6. E. Costa-Montenegro, A. B. Barragáns-Martı́nez, and M. Rey-López. Which App? A Rec-
ommender System of Applications in Markets: Implementation of the Service for Monitoring
Users’ Interaction. Expert Systems with Applications, 39(10):pages 9367–9375, 2012.

7. C. Davidsson and S. Moritz. Utilizing Implicit Feedback and Context to Recommend Mo-
bile Applications from First Use. In Proc. of the 2011 Workshop on Context-awareness in
Retrieval and Recommendation (CaRR’11), pages 19–22, 2011.

8. J. H. Friedman. Greedy Function Approximation: A Gradient Boosting Machine. The Annals
of Statistics, 29:1189–1232, 2001.

9. J. Lin. Mobile App Recommendation. PhD thesis, National University of Singapore, 2014.
10. J. Lin, K. Sugiyama, M.-Y. Kan, and T.-S. Chua. Addressing Cold-Start in App Recommen-

dation: Latent User Models Constructed from Twitter Followers. In Proc. of the 36th In-
ternational ACM SIGIR Conference on Research and Development in Information Retrieval
(SIGIR’13), pages 283–292, 2013.

11. J. Lin, K. Sugiyama, M.-Y. Kan, and T.-S. Chua. New and Improved: Modeling Versions to
Improve App Recommendation. In Proc. of the 37th International ACM SIGIR Conference
on Research and Development in Information Retrieval (SIGIR’14), pages 647–656, 2014.

12. B. Liu, D. Kong, L. Cen, N. Z. Gong, H. Jin, and H. Xiong. Personalized Mobile App
Recommendation: Reconciling App Functionality and User Privacy Preference. In Proc. of
the 8th ACM International Conference on Web Search and Data Mining (WSDM’15), pages
315–324, 2015.

13. W. Martin, F. Sarro, Y. Jia, Y. Zhang, and M. Harman. A Survey of App Store Analysis for
Software Engineering. Technical Report RN/16/02, University College London, 2016.

14. D. H. Park, M. Liu, C. Zhai, and H. Wang. Leveraging User Reviews to Improve Accuracy
for Mobile App Retrieval. In Proc. of the 38th International ACM SIGIR Conference on
Research and Development in Information Retrieval (SIGIR’15), pages 533–542, 2015.

15. R. Salakhutdinov and A. Mnih. Bayesian Probabilistic Matrix Factorization using Markov
Chain Monte Carlo. In Proc. of the 25th International Conference on Machine Learning
(ICML’08), pages 880–887, 2008.

16. C. Wang and D. M. Blei. Collaborative Topic Modeling for Recommending Scientific Arti-
cles. In Proc. of the 17th ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining (KDD’11), pages 448–456, 2011.

17. J. Wang, Y. Zhang, and T. Chen. Unified Recommendation and Search in E-Commerce. In
Proc. of the 8th Asia Information Retrieval Societies Conference (AIRS 2012), pages 296–
305, 2012.

18. Q. Xu, J. Erman, A. Gerber, Z. Mao, J. Pang, and S. Venkataraman. Identifying Diverse
Usage Behaviors of Smartphone Apps. In Proc. of the 2011 ACM SIGCOMM Conference
on Internet Measurement Conference (IMC’11), pages 329–344, 2011.

19. B. Yan and G. Chen. AppJoy: Personalized Mobile Application Discovery. In Proc. of the
9th International Conference on Mobile Systems, Applications, and Services (MobiSys ’11),
pages 113–126, 2011.

20. P. Yin, P. Luo, W.-C. Lee, and M. Wang. App Recommendation: A Contest between Sat-
isfaction and Temptation. In Proc. of the 6th International Conference on Web Search and
Data Mining (WSDM’13), pages 395–404, 2013.

21. A. Zhang, A. Goyal, R. Baeza-Yates, Y. Chang, J. Han, C. A. Gunter, and H. Deng. To-
wards Mobile Query Auto-Completion: An Efficient Mobile Application-Aware Approach.
In Proc. of the 25th International World Wide Web Conference (WWWW 2016), pages 579–
590, 2016.

22. V. W. Zheng, B. Cao, Y. Zheng, X. Xie, and Q. Yang. Collaborative Filtering Meets Mobile
Recommendation: A User-Centered Approach. In Proc. of the 24th AAAI Conference on
Artificial Intelligence (AAAI’10), pages 236–241, 2010.

23. H. Zhu, H. Xiong, Y. Ge, and E. Chen. Mobile App Recommendations with Security and Pri-
vacy Awareness. In Proc. of the 20th ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining (KDD’14), pages 951–960, 2014.

