
Retrieving Skills from Job Descriptions: A Language Model Based
Extreme Multi-label Classification Framework

Akshay Bhola1,3 Kishaloy Halder4∗ Animesh Prasad2,3 Min-Yen Kan2,3

1 Indian Institute of Technology Kanpur
2 School of Computing, National University of Singapore

3 Institute for Applied Learning Sciences and Educational Technology,
National University of Singapore

4 Zalando SE
akbhola.bhola@gmail.com kishaloy.halder@zalando.de

animesh.prasad@u.nus.edu kanmy@comp.nus.edu.sg

Abstract

We introduce a deep learning model to learn the set of enumerated job skills associated with a job
description. In our analysis of a large-scale government job portal mycareersfuture.sg, we
observe that as much as 65% of job descriptions miss describing a significant number of relevant
skills. Our model addresses this task from the perspective of an extreme multi-label classification
(XMLC) problem, where descriptions are the evidence for the binary relevance of thousands of
individual skills. Building upon the current state-of-the-art language modeling approaches such
as BERT, we show our XMLC method improves on an existing baseline solution by over 9% and
7% absolute improvements in terms of recall and normalized discounted cumulative gain.

We further show that our approach effectively addresses the missing skills problem, and helps
in recovering relevant skills that were missed out in the job postings by taking into account the
structured semantic representation of skills and their co-occurrences through a Correlation Aware
Bootstrapping process. To facilitate future research and replication of our work, we have made
the dataset and the implementation of our model publicly available.

1 Introduction

Finding prospective employees with the correct set of skills required for a job is an important aspect
of the recruitment process (Brenčič and Pahor, 2019; Lochner et al., 2020). In the current digital age,
many recruiters seek to find suitable candidates through multiple channels — e.g., online job portals,
professional networks — as well as traditional avenues, such as word of mouth and mass media (Shenoy
and Aithal, 2018). In this work, we focus on online job portals (e.g., LinkedIn, Glassdoor), which have
emerged as critical players in the job market with millions of active users.

Despite the reach of job portals, finding candidates with the right skill fit still remains challenging.
These portals often receive thousands of applications, among which fewer than 10% have the appropriate
skills (cielotalent.com, 2014). This bottleneck has attracted both academic and industry researchers
from social science and machine learning communities to build automated means to better organize the
information present in job descriptions (Boselli et al., 2018). An approach facilitating the matching
of jobs to candidates has been to associate a set of enumerated skills from the job descriptions (JDs).
Candidate job-seekers can also list such skills as part of their online profile explicitly, or implicitly via
automated extraction from résumés and curriculum vitae (CVs). Such categorical skills can then be used
to induce a match score between JDs and candidate profiles.

We examine the challenge of inferring appropriate job skills from JDs (cf., Fig. 1). JDs consist of
a textual description of the job requirements and a list of required skills. The latter helps in indexing
JDs to facilitate ease of search through facet navigation. We note that there exist crucial skills that are
mentioned in job requirements (in the job description), but are not listed as required skills (skill labels).
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Job Requirements: Looking for a dynamic individual keen to join a growing organization in the fast-paced and expanding
Supply Chain Software Industry. As Singapore goes through the digital revolution, the individual will play a paramount role
in developing and upgrading our SaaS tools and valued added services for our clients.

Responsibilities:

1. Work with Architect, Framework Designer to develop the next generation of Cloud base Micro Services Suite

2. Design and implement Micro Service modules primary for Supply Chain systems. Design must be flexible and scalable
for any future expansion or upgrade.

3. Establish API services in the API gateway for both internal and external communications and integrations.

4. Document all design works in proper standard formats with detail descriptions. Ensure all design documentations,
include module, data are always follow standards and up to date.

5. Conduct Agile development methodology in the Micro Services development life cycle.

6. Carry out unit and integration testing regularly with the QC team.

7. Intensive knowledge on several Java platform technologies, such as JavaEE, DOM/SAX, Annotation, AOP, DI, REST,
workflow, etc. Familiar with infra layer technology such as Docker

.....

Required Skills: .NET, Agile Methodologies, AJAX, ASP.NET, C#, C++, HTML, Java, JavaScript, jQuery, Linux, Microsoft
SQL Server, MySQL, Scrum, Software Development, SQL, Subversion, Web Applications, Web Services, XML

Figure 1: Sample job description from the mycareersfuture.sg website. Note that Job Require-
ments constitutes the textual description and Required Skills constitutes the skill labels of the dataset.

We believe such inconsistencies may be due to the communication gap between the target em-
ployer (who are domain experts) and recruiters (who may have little in-domain expertise). To
measure the extent of the mismatch, we analyzed JDs from a Singaporean government job portal,
mycareersfuture.sg. We observe that 40% of JDs miss listing 20% or more explicitly-stated
skills in the prose description. In total, 78.86% of such skills were missing.

We propose an automated system to predict the set of required skills given a textual JD. Formally,
given an input text t ∈ T , we find a mapping f : T −→ [0, 1]S , where S = |S| and S is the global skill
set. f yields a probability score for each s ∈ S labels given t,

f(t) = P (ri = 1|t)
where i ∈ {1, · · · , S}, and ri is the label corresponding to ith skill.

In a nutshell, the task involves labeling the textual descriptions with its corresponding labels selected
from a vast set of labels. We approach this problem from a natural language modeling perspective and
treat this as an Extreme Multi-label Classification (XMLC) (Lui et al., 2017) task. Our contributions are
as follows:

1. We release the large mycareersfuture dataset, and provide benchmark results with state-of-
the-art baselines to foster research on this important problem1;

2. We propose a deep learning-based model and a novel Correlation Aware Bootstrapping approach
that exploits the correlation between skills and their linguistic footprints;

3. We provide the performance comparison of the proposed methodology with suitable state-of-the-art
baseline models.

2 Related Work

We describe the key relevant work from extreme text classification, language modeling and sequence
labeling pertinent in developing our approach.

1Available at https://github.com/WING-NUS/JD2Skills-BERT-XMLC
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EXtreme Multi-label Text Classification (XMLC) refers to the text classification scenarios where
cardinality of the set of labels is large, i.e., thousands or millions (Liu et al., 2017).

One-vs-All (OVA) (Lui et al., 2017) corresponds to a popular class of approaches for text classification
task with high prediction accuracy. This approach is computationally efficient for the XMLC task for
modest-sized label sets (up to an order of a few thousand labels).

Embedding-based approaches have also proven effective for this task. They effectively reduce the
number of labels by assuming that the label space is well-approximated by a computed low-rank matrix.
They reliably learn embeddings for a lower-dimensional label space, then use suitable decompression
techniques to map them back to the original label space (Bhatia et al., 2015; Cisse et al., 2013). More
recently, methods have been proposed to reduce the information loss during the decompression phase,
such as LPSR (Weston et al., 2013) and MLRF (Agrawal et al., 2013).

Following the success of Computer Vision community, deep learning-based approaches have led to a
surge of performance in multiple natural language modeling tasks. Neural approaches to natural language
processing (e.g., (Kim, 2014)) have also been applied to XMLC tasks (Halder et al., 2018). Methods
such as XML-CNN have been proposed, which uses a bottleneck layer to reduce the number of learnable
parameters (Liu et al., 2017). A cluster sensitive attention mechanism has also been explored to capture
the correlation between labels (Halder et al., 2018), in conjunction with RNN-based text encoders, such
as the GRU (Chung et al., 2014). These methods have been used in downstream applications such as tag
prediction on Wikipedia articles and news articles, as well as recommending textual articles to potentially
interested users.

Language Modeling: Recent developments in language modeling are also relevant to our task. The
objective here is to model the syntactic and semantic structure of input language utterances through
model training to predict tokens, based on the available contextual information. Models such as ELMo
(Peters et al., 2018), Transformer and BERT (Vaswani et al., 2017; Devlin et al., 2019) have significantly
improved a bevy of NLP tasks through their unsupervised pre-trained representations.

Another relevant and widely-used approach is Sequence Labelling. These tasks involve prediction of
a label for each of the tokens present in the textual content. Contiguous chunks of text are then treated
as the prediction target. In the Named Entity Recognition (NER) task, entities such as organization,
person, location are extracted from the text. Typically these methods employ Bidirectional Long Short
Term Memory (BiLSTM) stacked with Conditional Random Field (CRF) layers to decode the sequence
(Huang et al., 2015; Ma and Hovy, 2016). Context-sensitive character embedding methods also enhance
the effectiveness (Akbik et al., 2018).

Although our task can be formulated as a sequence labeling task, we take the multi-label classification
perspective for two reasons. First, the label space is finite: most job portal interfaces allow the user to
choose a subset from a predefined list of skills in the system. Second, to the best of our knowledge, there
is no existing dataset with manually-annotated labels from textual JDs, making it sub-optimal to train a
sequence labeling model.

The existing approaches do not address all the unique challenges associated with our skill extraction
problem. Alternate techniques of exploiting large scale pre-trained language models for general informa-
tion extraction tasks have been explored. X-Transformer is a solid representative of such methods (Chang
et al., 2020). This BERT-based model first encodes the input query representation, then matches the rep-
resentation with the clustered labels in an embedding space, formed either by ELMo (Peters et al., 2018)
representations or by tf-idf scores. However, obtaining reliable representation for sparse textual label
sets featuring domain-specific terminology (e.g., JDs) is challenging. This motivates us to explore alter-
nate approaches – techniques which potentially do not require explicit label representation or predefined
semantic meaning of labels. To address these shortcomings, we develop a novel bootstrapping technique
to achieve semantic label space mapping without explicitly labelled examples. We aim to define a model
that is end-to-end trainable and does not depend on large, domain-specific corpora to learn an embedding
space from scratch, in contrast to the higher prerequisite requirements of the X-Transformer.



3 Method

We introduce a neural XMLC framework, BERT–XMLC. The architecture is inspired by the models
proposed in (Chang et al., 2020) and (Halder et al., 2018). The model comprises two major components:

Figure 2: Architecture of our proposed model BERT–XMLC.

1. Text Encoder: The model takes the textual JD (t) as input, consisting of n words (t =
{w1, w2, ..., wn}) . We use the pre-trained BERTBASE model to encode the text into low-dimensional
dense vectors (Devlin et al., 2019). Internally, it first looks up the WordPiece embeddings (Wu et
al., 2016), then applies a pre-trained bi-directional transformer-based language model to yield a hid-
den representation of the input. We consider the encoding of the [CLS] token as the representation
of the textual input.

ht = BERTBASE(t) (1)

2. Bottleneck Layer: Inspired by (Liu et al., 2017), we feed the encoded textual representation to a
bottleneck layer. This layer alleviates overfitting by (significantly) limiting the number of trainable
parameters. It compresses the encoded representation ht using, zt = tanh(W · ht + b), where W
and b are the weight, and bias matrices respectively. Finally, zt is fed to a fully connected layer
using sigmoid activations with S output units, to induce the probability of each possible target label
(i.e., skill). Following standard multi-labelling classification approaches, the final layer treats it as
S independent binary classification problems. It uses binary cross-entropy loss and optimizes the
network using Adam (Kingma and Ba, 2014).

3.1 Correlation Aware Bootstrapping
Let us take a step back and take a closer look at the data. As mentioned, along with the textual JD,
we also observe a (rather incomplete) list of required skills. Through our BERT–XMLC model, we are
trying to find a relationship between the text and the associated labels (skills). We argue that there are
two critical signals which are not explicitly captured in this traditional training method, i.e, (a) semantic
representation of the skill labels, and (b) co-occurrences of skills. We introduce a bootstrapping process
that uses these two assumptions to create artificial training data that guides the initial stages of training.

Semantic Representation of Skills: As shown in Figure 1, the skill labels are essentially phrases in
natural language e.g., “Agile Methodologies”, “Software Development” and so on. These phrases (or its



constituent words) might also occur in the textual description. Hence, to get a richer representation of
the skills, we bootstrap the network with:

Dsem = {< s, encodeOH(s) > ∀ s ∈ S} (2)

where encodeOH(s) represents a one-hot encoding for skill s, where S is the set of all skills. This
process yields S additional training points, irrespective of the training data.

Co-occurrence based Correlation of Skills: The network should also learn the correlation between the
skills themselves. We direct the network to focus on the skill co-occurrences by additionally training on:

Dcorr = {< concatenate(s ∈ Sk), label(k) > ∀ k ∈ {1, · · · ,M}} (3)

where label(·) is the original label of kth sample (binary vector), Sk is the set of all the skills mentioned
in the kth sample, and M is the number of training samples. We obtain M additional training points by
this method.

We conduct standard training of the model after bootstrapping with these additional {Dsem ∪Dcorr}
samples, using the original learning objectives. Our bootstrapping process, which we term Corre-
lation Aware Bootstrapping (CAB), sizeably increases the number of training examples from M , to
M + |Dsem| + |Dcorr| = 2 ∗M + S. We hypothesize that these added examples help the network to
better capture the correlation among skills, which we validate later in our experiments. Note that this
bootstrapping method is generic; it can be applied to any off-the-shelf XMLC model for text, as long as
the labels have titles that originate from the same vocabulary distribution of input text.

4 Experiments

We have collected data from the Singaporean government website, mycareersfuture.sg with per-
mission consisting of over 20, 000 richly-structured job posts having 16 informative fields about the
details and the current status of the advertisements. The statistics of the dataset are shown in Table 1.
To the best of our knowledge, there is no relevant large-scale publicly available dataset comprising job
descriptions with their corresponding list of required skills at the time of conducting the experiments.

For our task, we consider concatenation of “roles & responsibilities” and “job requirements” fields
as the textual description, and “required skills” as the set of target discrete labels. We perform the pre-
processing operations on the text, inclusive of lower-casing, stopword removal, and rare word removal.
We split the dataset into assigned training, validation and testing dataset with an 80:10:10 proportion. To
aid the reproduction of our results and to encourage further research in this domain in general, we have
made both the code and the dataset publicly available. We might provide updated datasets in the future
as more JDs are continuously being posted.

Table 1: MyCareersFuture.sg Dataset (Version 1.0) Statistics.
# of job posts 20, 298

# of distinct skills 2, 548

# of skills with 20 or more mentions 1, 209

Average skill tags per job post 19.98

Average token count per job post 162.27

Maximum token count in a job post 1, 127

4.1 Baseline Models
To show the effectiveness of different aspects of our approach, we evaluate our model perfor-
mance against competitive XMLC baselines. These constitute (1) CNN-Kim (Kim, 2014), (2)
LSTM (Rocktäschel et al., 2015), (3) BiLSTM (Sun et al., 2017), (4) BiGRU (Halder et al., 2018),
(5) BiGRU w/ Cluster Sensitive Attention (CSA) (Halder et al., 2018). For all the RNN-based methods



(i.e., Models 2–5, and our proposed model), we fix the architecture to 2 layers to ensure a fair compari-
son. We implemented our model in PyTorch2. Further details about the hyperparameters can be found in
our sources.

Metrics: The central theme of this work centers around the concept that the required skills in the
ground truth are incomplete. As a result, we do not treat the negatives in the ground truth as true nega-
tives, since they could have just missed out during the manual construction of the JD by the job poster.
Hence, we rely on recall-oriented metrics to evaluate our model. We use the following set of metrics:

• Mean Reciprocal Rank (MRR) indicates the (reciprocal) position of first true positive in the pre-
dicted list of skills. It yields a score between 0− 1.

• Recall@M captures the recall based on the top-M number of skills in the prediction. This ranges
between 0− 100.

• Normalized Discounted Cumulative Gain (nDCG@M) discounts the true positives that occur
later in the prediction rankings. This score ranges between 0− 100, similar to recall.

Note that M varies between 5–100 for the metrics of recall and nDCG.

Table 2: Mean Reciprocal Rank (MRR) Comparison.
Model MRR
1. CNN-Kim (Kim, 2014) 0.8195

2. LSTM (Rocktäschel et al., 2015) 0.8417

3. BiLSTM (Sun et al., 2017) 0.8565

4. BiGRU (Halder et al., 2018) 0.8716

5. BiGRU w/ CSA (Halder et al., 2018) 0.8840

6. BERT–XMLC 0.9019

7. BiGRU w/ CSA + CAB 0.8995∗

8. BERT–XMLC + CAB (our proposal) 0.9049

Table 3: Recall Comparison for various M .

Model Recall
@5 @10 @30 @50 @100

1. CNN-Kim (Kim, 2014) 16.38 29.59 59.60 70.40 82.47

2. LSTM (Rocktäschel et al., 2015) 16.83 29.35 57.09 68.65 81.46

3. BiLSTM (Sun et al., 2017) 17.51 31.19 61.77 73.25 84.89

4. BiGRU (Halder et al., 2018) 17.73 31.27 60.84 72.80 84.88

5. BiGRU w/ CSA (Halder et al., 2018) 18.34 32.52 64.19 75.75 87.02

6. BERT–XMLC 19.60 35.58 70.10 80.91 90.26

7. BiGRU w/ CSA + CAB 18.93∗ 33.84∗ 66.36∗ 77.66∗ 88.28∗

8. BERT–XMLC + CAB 21.67* 40.49* 79.59* 86.60* 92.24*
* using proposed methodology

4.2 Quantitative Analysis
Tables 2, 3 and 4 present MRR, Recall@M , and nDCG@M performance on the skill prediction task.
We discuss our observations in two parts.

Effectiveness of BERT–XMLC: Rows 1–6 correspond to the models when they are trained without the
bootstrapping steps (cf Section 3.1). We observe that our BERT–XMLC model consistently outperforms
2https://pytorch.org/
Boldface results represent best results in corresponding categories

https://pytorch.org/


Table 4: Normalized Discounted Cumulative Gain (nDGC) Comparison at various M .

Model nDCG
@5 @10 @30 @50 @100

1. CNN-Kim (Kim, 2014) 28.21 40.23 60.60 66.37 71.96

2. LSTM (Rocktäschel et al., 2015) 29.27 40.68 59.43 65.61 71.53

3. BiLSTM (Sun et al., 2017) 30.32 42.77 63.50 69.64 75.04

4. BiGRU (Halder et al., 2018) 30.80 43.11 63.09 69.49 75.09

5. BiGRU w/ CSA (Halder et al., 2018) 31.71 44.62 66.04 72.23 77.46

6. BERT–XMLC 33.64 48.18 71.66 77.45 81.79

7. BiGRU w/ CSA + CAB 32.72∗ 46.28∗ 68.33∗ 74.38∗ 79.30∗

8. BERT–XMLC + CAB 35.93* 52.84* 79.32* 82.96* 85.41*
* using proposed methodology

the baselines by comfortable margins over all metrics. Particularly, in terms of nDCG, we observe
a relative improvement of 6.08% for M as small as 5. Unlike the BiGRU with CSA (Row 5), our
BERT–XMLC model (Row 6) lacks the additional Cluster Sensitive Attention layer on top of the text
encoder. We believe our use of the Transformer model as a base provisions basic attention mechanisms,
which partially compensates for the lack of cluster sensitivity.

Effectiveness of Correlation Aware Bootstrapping: Rows 7–8 represent the performance of mod-
els which are trained over additional instances imputed by our correlation aware bootstrapping (CAB)
process. We observe a surge in model performance, as BERT–XMLC with CAB achieves the best
scores consistently with a relative improvement as high as 10.5%, and 6.8% in terms of Recall@5 and
nDCG@5, respectively, over its vanilla counterpart (Row 6).

We also note that CAB yields performance boosts consistently even across methods: we observe
a jump in the performance for BiGRU with CSA model as well (3.2%, and 3.18% respectively for
Recall@5 and nDCG@5). These improvements give empirical evidence that support our hypothesis
about the correlation among related skills and skills’ intrinsic natural language representation.

4.3 Qualitative Analysis

CAB directs the network to learn the correlation among skills. It is helpful to also visualize this qualita-
tively on actual instances, in addition to the macroscopic, quantitative improvement. Figure 3 presents a
case study sample job advertisement, along with the corresponding gold standard required skills, and the
BERT–XMLC & BERT–XMLC+CAB predictions. In the sample, we validate BERT–XMLC+CAB’s:

• Improved recall. BERT–XMLC with CAB predictions are visibly more accurate compared to
BERT–XMLC. Skills such as “Web Services”, “C++”, “PHP”, “Linux” are skills predicted correctly
by the bootstrapped model, whereas the vanilla model does not retrieve them.

• Relevant missing skill prediction. BERT–XMLC with CAB predicts “Databases” as a re-
quired skill, whereas BERT–XMLC does not. Upon manual inspection, we believe that the skill
“Databases” is actually relevant and was probably missed out while creating the JD. BERT–
XMLC+CAB retrieves this correctly, likely by associating “Databases”, and the tokens present
in the text such as “SQL” and “databases”.

• Recall of redundant and similar skills. The JD text has both “SQL” and “databases” tokens, which
the BERT–XMLC with CAB likely uses as a basis for predicting –“SQL”, “MySQL”, “Microsoft
SQL Server”, “Databases”. We believe that the co-occurrence based correlation of skills (cf Section
3.1) captured by our model is crucial in predicting semantically similar skills. This is a critical trait
for skills recall, as both prospective job seekers and job posters may not use the same terminology
to indicate the same skill semantically. We observe that many skills in the top-100 predictions
look relevant in our judgement, although they are missing in the ground truth (both in the JD and
gold-standard required skill labels).



Job Requirements: Requirements performing end end software development cycle coding using Java
j2ee spring framework Oracle pl SQL Multithreading angular js hibernate rest soap api oracle databases
shell scripting degree Information Technology Engineering background minimum 5 9 years experience
information technology software development must proven experience performing end end software de-
velopment cycle strong experience coding using java j2ee spring framework strong knowledge angular
js hibernate spring rest soap api experience knowledge css html must 4 6 years full stack development
frontend design development backend strong knowledge databases good experience agile methodology
test driven development self started keen learner new technologies good communication skills

Required Skills: Agile Methodologies, Java, Software Development, .NET, C#, C++, HTML,
Javascript, jQuery, Linux, Microsoft SQL Server, MySQL, SQL, Web Services, XML, C, CSS, PHP,
Python, Software Engineering

BERT–XMLC Predictions: SQL, Java, XML, JavaScript, Software Development, Web Services, Ag-
ile Methodologies, MySQL, Microsoft SQL Server, C#, HTML, jQuery, .NET, Web Applications

BERT–XMLC + CAB Predictions: Java, SQL, JavaScript, Software Development, XML, Agile
Methodologies, HTML, MySQL, Web Services, jQuery, C#, C++, Linux, Scrum, PHP, Microsoft SQL
Server, Web Applications, .NET, CSS, Databases

Figure 3: Sample job description (omitting stop words), with required skills and those predicted by the
BERT–XMLC and BERT–XMLC+CAB models.

5 Discussion: On Implicit versus Explicit Skills

We can think of job descriptions and their required skills as two different forms of the same underly-
ing job. The job’s manifestation in both forms ideally should corroborate and support each other, but
sometimes maybe incongruous. This results in incomplete ground truth in both forms. Our BERT–
XMLC+CAB model is architected to overcome this challenge when the two forms do not reinforce each
other as expected.

We now analyze how required skills are demographically represented in the JD explicitly (present as
substrings in the JD) and implicitly (absent in the JD, but likely inferrable from context). We assess the
level of implicitness in the required job skills. As an extreme, if all skills are explicitly mentioned in the
JD, our task is easy: it is trivial to list the required skills, as they are all explicit substrings in the JD – a
simple string matching algorithm would suffice. At the other extreme, if all required skills are implicit,
our task is challenging: every skill needs to be inferred from the context given by the JD. The complexity

Figure 4: Required Skill Histogram, binned by the percentage of occurrences where it is an implicit skill.



Figure 5: EIM, RIIM, REIM measures over different models.

of the task increases with presence of more implicit skills in the required skill set. Figure 4 shows a
macroscopic view of this phenomenon in our dataset through a skill histogram. Each of the 2,548 skills
in the dataset is accounted in the figure. We place the skill in one of 30 bins by the percentage of times
it occurs as an implicit skill in the JDs where it is required. The average shows that 86.13% of skills are
implicit. As the figure is strongly biased towards implicit skills (over 1,500 skills are always implied,
never explicitly mentioned), we can see the problem is difficult, and extraction-based models hopelessly
fail. Abstractive or generalising approaches such as our model are required for implicit skills.

To study this in more depth, we also propose and plot (Figure 5) the following metrics3 that capture
model performance in a manner sensitive to the implicit and explicit status of skills:

1. EIM (Explicit Inference Measure): micro, instance-based measure of explicit skills predicted by
the model, compared against gold-standard explicit skills mentioned for a JD. As an example, if the
model declares 4 substrings of the JD as skills, and there are 5 explicit skills present in skill labels
of JD, EIM = 4

5 = 0.8(80%)

2. RIIM (Relative Implicit Inference Measure): macro, recall-based measure of implicit skills pre-
dicted by the model, relative to the entire set of implicit skills. As an example, if the model recovers
2 of 6 skills that are implied but not explicitly substrings in the JD, RIIM = 2

6 = 0.33(33.3%)

3. REIM (Relative Explicit Inference Measure): macro, recall-based measure of explicit skills pre-
dicted by the model compared to the entire set of explicit skills.As an example, if the model de-
clares 4 substrings of the JD as skills, and there are total 8 explicit skills present in JD, REIM =
4
8 = 0.5(50%)

Here, again, the results are consistent: increasing model complexity (leftmost model to rightmost model
among the eight models compared) improves both instance-level and macro-level recall. More impor-
tantly, these results are also consistent for our BERT–XMLC+CAB model, which performs best in all
three metrics. Improvement is most pronounced with the implicit (EIM and RIIM) metrics, clearly show-
ing the improved abstractive generalisation capability of our model.

Note also the EIM measure of BERT–XMLC+CAB tallies to over 100%, suggesting that the model
captures a larger number of explicit skills than is actually mentioned in the skill labels (in job descrip-
tions).

3Note that these metrics are evaluated based on the skills retrieved by comparing the skill activation with the threshold activation
of 0.5.



6 Conclusion

We address the prediction of required skills from job descriptions (JDs). Although job descriptions
and their associated required skills can be thought of as two views of the same underlying job, our
analysis reveals that many required skills are implicitly signaled. We develop an Extreme Multi-label
Classification method that utilizes BERTBASE within a Transformer model to predict the required skills
from a textual job description. Importantly, we propose a novel bootstrapping approach that exploits
the underlying natural language representation of skills and their co-occurrence relationships with other
skills. We perform experiments on a large real-world dataset from a popular Singaporean government job
portal, mycareersfuture.sg. We show that our model outperforms recent competitive baselines,
especially in recalling such implicit skills.
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