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Abstract. We introduce NPIC, an image classification system that focuses on
synthetic (e.g., non-photographic) images. We use class-specific keywords in an
image search engine to create a noisily labeled training corpus of images for each
class. NPIC then extracts both content-based image retrieval (CBIR) features and
metadata-based textual features for each image for machine learning. We evaluate
this approach on three different granularities: 1) natural vs. synthetic, 2) map
vs. figure vs. icon vs. cartoon vs. artwork 3) and further subclasses of the map
and figure classes. The NPIC framework achieves solid performance (99%, 97%
and 85% in cross validation, respectively). We find that visual features provide
a significant boost in performance, and that textual and visual features vary in
usefulness at the different levels of granularities of classification.

1 Introduction

Images created entirely by digital means are growing in importance. Such synthetic
images are an important means for recording and presenting visual information. The
accurate classification of these images — such as icons, maps, figures and charts — is
increasingly important. With the advent of the web, images are being used not just
to communicate content but also for decoration, formatting and alignment. An image
classification system can improve image search and retrieval engines and can act an
input filter for downstream web processing as well as image understanding systems.

We introduce NPIC, an image classification system that is specifically trained on
synthetic images. The implemented system uses semi-supervised machine learning to
create its classifier. It does this by first using class-specific keywords to build a corpus
of associated images via an image search engine. Textual features are extracted from the
filename, comments and URLSs of the images and content-based image retrieval features
are also extracted. These features are strung together as a single feature vector and fed
to a machine learner to learn a model. The resulting system is able to enhance the
performance of text-only based image search, as the addition of visual features allows
some spurious image matches to be correctly rejected.

A classifier needs ground truth labels to classify against. Existing image classifica-
tion taxonomies are a good starting point. However, our dataset comes from the web,
and in our opinion, a suitable taxonomy of content images available on the web does
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not exist. After sampling synthetic images culled from the web, we decided to create
our own hierarchy for the classification of web images, loosely based on portions of the
Getty Art and Architecture Thesaurus (AAT).

NPIC obtains very good classification accuracy on all three granularities that we
have trained the system on. A key point in the analysis of our study shows that although
textual features are an immense help to synthetic image classification, their efficacy can
be eclipsed by CBIR features at finer granularities.

After reviewing past related work on image classification, we discuss our method-
ology, including the design for the image hierarchy and how we construct our training
data set using the commodity image search engine, Google Image Search. We then
inventory both the textual and visual features in Section 4. Finally, we describe our ex-
periments using cross-validation on the training set as well as using another synthetic
dataset drawn from the Wikipedia.

2 Reated Work

Image classification is a relatively young field of research, with many published systems
being created after the year 2000. As of today, although many image categorization
systems have been created, most classify against a very general classification scheme.
A representative example is [1], who implemented and evaluated a system that per-
forms a two-stage classification of images: first, distinguishing photo-like images from
non-photographic ones, followed by a second round in which actual photos are sepa-
rated from artificial, photo-like images, and non-photographic images are differentiated
into presentation slides, scientific posters and comics. The WebSeer system [2] investi-
gates how to classify images into three categories: photographs, portraits and computer-
generated drawings. Both schemes are neither exclusive nor exhaustive; many images
fall into multiple categories or none. Work has also focused on specific synthetic image
classes. [3] and [4] deal only with chart images. These works aim to classify and then
extract the data and semantic meaning of several types of charts: such as bar, pie and
line charts. Similar to our work, [5]’s system classifies web images found in news sites
by their functionality: including classes for story images, advertisements, server host
images, icons and logos.

Textual features. Quite a bit of research focuses on the textual features related to
an image. [2] and [5] performed classification based on textual features such as the file-
name, alternate text, hyperlink and text surrounding the image. Both papers deal only
with web-accessible images, so hyperlinks are always available to be used. Attempts
have also been made to detect and recognize text embedded in images. [6] and [7]
use spatial variance and color segmentation techniques to separate text segments from
graphics on an image. OCR or similar techniques often can extract the text from regions
of the image. Using this technique, [8] detects text on images by examining connected
components that satisfy certain criteria. Structure or comment metadata (i.e., MPEG-
7) may also provide useful textual features in the future, but currently is not prevalent
enough to affect classification performance. Taken altogether, it is probably unsurpris-
ing that [9] argues that textual features of images are far more useful in determining
which images to return for a search query.
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This will not work in cases where an image to be classified does not come from
the web. Reliance on textual features might degrade the system performance when an
image is not identifiable by these features, yet is easily associated with a category by
the image’s visual features.

Visual features. Most systems use simple visual features such as the most prevalent
color, width-to-height ratio, image file type, among others. Using additional features
from the image itself is the focus of Content Based Image Retrieval (CBIR). CBIR sys-
tems have progressively advanced, but practically all systems share a body of features
based on the image’s color histogram, texture, edge shape, and regions. From these low-
level features, higher-level features that may have semantic meanings can be identified
and built. For single images, region segmentation [10, 11] or block segmentation [12] is
usually done followed by spatial layout based matching of regions or statistical feature
extraction [13]. Feature analysis of the same color, salient points [14], texture and line
features can then be assessed for individual regions and matched.

While CBIR has undoubtedly improved much over recent years, it remains a tech-
nology that has been mostly omitted from standard image search. This is largely due
to the fact that searchers would rather type in a textual description to start. Automatic,
content-based blind feedback on the top ranked images also does not seem to work, as
text-based search followed by CBIR is computationally expensive.

3 Methodology

Given these observations, one architecture for improved image classification incorpo-
rates CBIR visual features with textual ones. This captures both the high accuracy and
semantic nuances that textual features can garner, but enables classification based purely
on visual features when text is not available.

In a nutshell, NPIC performs its task in three steps. Given a taxonomy of image clas-
sification, NPIC: 1) Constructs a dataset of sample images each class using traditional
image search engines; 2) Extracts both textual and visual features from each sample
image to create feature vectors for learning; 3) Builds discriminative models for each
set of sibling classes in the hierarchy that originate from a common parent. Images can
then be programmatically classified by generating their feature vector representations
(step 2), followed by classification against the inferred models.

While this approach can be applied to any classification, we have specifically trained
the NPIC system for synthetic images. We address synthetic images specifically as they
often carry semantic content and data that are of interest to scholars and as well as the
image analysis and digital library community.

An ontology of synthetic images

What is a proper taxonomy of synthetic images? To our knowledge, few classifica-
tions of synthetic images exist. In our exploration of related research, only Lienhart and
Hartmann’s work [1] addressed synthetic images specifically. In their work, synthetic
images found on the web are classified into four distinct categories of photo-like im-
ages, presentation slides, scientific posters and comics. Another possible classification
is the widely-used Getty Art and Architecture thesaurus [15]. The AAT is used mainly
by museums and libraries to catalog visual materials. It employs a faceted classification
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for objects, materials, activities, styles and periods (among others) and consists of over
133,000 generic terms.

A successful classification scheme must ensure that it can classify most items and
that items clearly belong to distinct classes. For us, a successful classification needs to
be simple enough such that an ordinary layman can understand and employ the clas-
sification scheme without needing specialist knowledge. Given these criteria, we feel
neither Lienhart and Hartmann’s classification (covers only certain types of web im-
ages) nor the Getty AAT schemes (too complex) work well.

Instead, our classification is based on what types of synthetic images a user en-
counters during her daily computing tasks. Our classification has five broad categories:
maps, figures, icons, cartoons and artwork. We include icons as many images on a com-
puter are icons associated with programs or data files. Artwork includes work drawings
and pictures representing aesthetic images; figures include all types of abstract data
representations. In our empirical analysis, this classification covers a large portion of
important functional image types that users encounter.

As most images do not come labeled as synthetic or natural, we must include and
implement a superordinate classifier to distinguish between natural and synthetic im-
ages for NPIC to be useful. Also, the two classes of maps and figures can be refined
as they are quite general. We use the AAT to refine these two image types. The AAT
has classifications for maps based on its form, function, production method, or sub-
ject. Based on our analysis, we conflated these schemes to produce a single subordinate
classification of five categories: plans, chorographic maps (i.e., maps of large regions),
relief maps, weather maps and zip code maps. Following the same editorial selection
of the relevant AAT categories, we construct a categorization of figures into seven cate-
gories: block diagrams, venn diagrams, bar graphs, pie charts, line graphs, tables, and
illustrations. Figure 1 shows our resulting classification hierarchy.
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Fig. 1. NPIC’s classification hierarchy.

We would like to emphasize that the hierarchy developed here constitutes a working
attempt to compile a useable and useful classification to typical end users, and should
not be construed as a formal model for synthetic image classification. Other image
classes or alternate organizations can be also considered; such alternative classification
schemes may work equally well in the NPIC framework.
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Automatic corpus collection using image search

Given this classification, NPIC needs to collect labeled image samples to extract fea-
tures for supervised learning. However, publicly available labeled synthetic datasets do
not exist and creating one through manual efforts of annotating and selecting clean im-
ages is quite costly. However, as most machine learning algorithms are robust to small
amounts of noise in their training data, we opt to create an image dataset by automatic
means that may contain small amounts of mislabeled data. NPIC thus relies on the ratio
of correctly labeled to mislabeled instances in training.

We do this by employing web image search engines. By searching for keywords that
are indicative of the desired image category, we can form a noisy collection of images
to use in training (hence our method is semi-supervised, as supervision is equated with
image search engine relevance). The returned image dataset from any search is noisy, as
image search engines occasionally return false matches. As long as the number of false
hits is minimal, the image sets should generate useful training features for classification.

We follow this procedure to build image datasets for each of the image classes in
the hierarchy. After associating each image class with a set of representative keywords
(as shown in Table 1), we input these terms to Google’s Image Search to find matching
images. We build this dataset from the bottom up, as sample images from each child
class can serve as positive examples for its parent. Given a ranked list of images for a
class, we programmatically extract the URLSs of the images for the first n hits. To help
minimize the skew of the dataset, we extract a balanced corpus for each level (10K, 5K
and .6K images for each of the three levels, respectively), balancing the number of im-
ages extracted from each keyword. We followed this procedure for all of the categories,
except for icons, as we had access to a clean collection of icons.

Table 1. Some representative keywords for classes in our image hierarchy.

[Level 1]photographaerial, birthday, bedroom, central library, concert, face|

Level |artwork painting, drawing, artwork
2 icons < separate icon collections used>
cartoons |cartoon, disney, anime, garfield
Level [plans floor, plan, fire escape
3 table data, excel
illustration [illustration, DNA molecule, engine

4 Features

Once the corpus was collected, each image was processed to extract textual and visual
features for training and testing. As our paper does not focus on the feature creation,
we only give a brief inventory of the features used in Table 2. These features have been
chosen as they have been shown to be useful for image classification (natural as well as
synthetic) in past work, as referenced in the final column of the table. We use standard
utilities to extract both sets of features: the i dent i fy utility from the ImageMagick
library to extract image metadata from the header; and for visual features, the OpenCV
suite of visual detectors and the x pmpackage to examine the raster data.

A short discussion about the features is necessary. Textual features were created
by extracting tokens from the filename, extension, and path information from the URL
(when available) of the image. For this, simple tokenization was done to create a more
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meaningful inventory of features (garfi el d 2. jpg —garfield 2 jpg)andto
reduce problems with sparse data.

Table 2. Features in NPIC. References indicate past published work using this feature.

Feature [Description [Refs.
Textual Features - via analysis and header metadata
Filename Image filename without extension [2,9,5]
File extension Extension of the file, if any [2,9,5]
Comments Comments in Image metadata header new
Image URL URL components of the location of the image on the Web (if applicable) [2,9,5]
Page URL URL components of the enclosing page of the image [2,9,5]
Visual Features - header information, raster via XPM or shape detection via OQpenCV
Height Image dimensions in pixels [2,1,5]
Width [2,1,5]
X resolution Number of pixels per inch (dpi) along X and Y dimensions new
Y resolution
C1 Most common color [5,2]
C'; Fraction Fraction of pixels in the image that have color Cy [5,2]
F1 Fraction of pixels with the neighbor metric greater than zero [1]
F2 Fraction of pixels with the neighbor metric greater than 1/4 of the maximum [1]
F2/F1 The ratio of F2 to F1 [1]
L1 distance Ll = Z(lhi — k;|), where H = {h;} is the image histogram, and K = {k; }|[16]
represents the average histogram in each category
L2 distance 2= (3" ki — ki)'/? [16]
L-oc distance L-oo = (O (Jhi — ki])*°)*/*°°, a large value of 100 is chosen to represent|[16]
infinity
Jeffrey divergence dis- Z((hilc)g(hi/mi) + kilog(ki/m;)), wherem; = (h; + k;)/2 [16]
tance
Chi? distance Z((hl —m;)2/m;) where m; = (h; + k;)/2 [16]
Quadratic distance da(H,K) = 4/ (h—k)TA(h — k), where h and k are vectors that list every|[16]
entry in H and K. Cross-bin information is incorporated via a similarity matrix A =
[ai;] where a;; denotes similarity between bins 7 and j.
i . djsfiq
EMD Earth Movers Distance: EM D (P, Q) = %ﬂj};’ [L7][16]
i=1 j=1""
Rectangles 2 features: Number of rectangles whose sides are parallel tJo the image frame, fraction|[17]
of entire image occupied by rectangles
Circles Number of circles with certain radius new
Corners Number of corners found on the image new
Lines 5 features: Number of horizontal, vertical and slanted lines; average line length and |new
average line gradient

We have chosen to use many color features for visual features as they are relatively
straightforward to calculate given raster data. We follow the literature and use both
the HSV and RGB color spaces for analysis. For neighbor metrics, we create features
using the standard RGB and HSV color spaces, as well as reduced HS and H spaces.
Color histogram features are calculated using a simplified 9-bit RGB color space. This
is done by first obtaining an average histogram over all training samples in a class.
Then for each testing image, we calculate the difference between the class average
and the image’s histogram. A total of n features are generated, where n is the number
of classes in the classifier (e.g., 5 for the second level). A number of different distance
measures are used: Minkowski-form (L1, L2 and L-o00), Jeffrey Divergence, Chi-square,
Quadratic distances as well as EMD.
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For the rectangle, line, circle and corner detection features, we need to specific
settings for the spatial and scaling constraints of the detectors. Using a laissez faire
approach, we use a wide variety of parameter settings to create different features and
forward these to the learner to decide which group of parameter settings should be used.

5 Evaluation

There are two questions that we would like to answer with our evaluation: 1) how
well does NPIC perform? 2) how do the different textual and visual features interact
to achieve its performance?

I mage datasets. We tested NPIC’s performance on two datasets of image data. The
first is the original corpus of 15,600 images that was obtained by automatically down-
loading pictures from Google Image Search. The second corpus consists of a subset of
1,300 images (200, 500 and 600 images for levels 1, 2 and 3, respectively) retrieved
from the Wikipedia Commons. The Wikipedia Commons is a license-free repository
of media files free for anyone to use in any way. These datasets are available from our
NPIC website, to facilitate further research in the field®. These datasets are entirely
independent of each other.

Procedure. After obtaining the datasets, each dataset was hand-labeled by the first
author (for evaluation only — we rely on the assigned labels from the keyword search
in training). For the Google dataset, we performed five-fold cross validation; that is, we
used 4/5ths of the data to train a model and 1/5 for testing, and repeated this process
five times and averaging the performance. For the Wikipedia dataset, the entire Google
dataset was used for training a model, and tested on the Wikipedia set. A boosted deci-
sion list learner, BoosTexter [18], was used as the machine learner, as its inferred rules
are easy to interpret. The learner was asked to do 300 rounds of boosting (i.e., 300 serial
rules inferred) for each classifier. The rules also easily lend themselves to an analysis of
which features are helpful. For succinctness, Table 3 shows only the resulting accuracy;
precision, recall and F; are intentionally omitted.

We observe several trends from the results. First, accuracy increases as we go from
the specific Level 3 classifiers towards the Level 1 classifier. This is expected, as the
Level 3 classifiers are more fine-grained and are harder, 5- or 7-way decision prob-
lems. Second, accuracy on the Wikipedia dataset is lower across the board. Specifically,
the textual features are less helpful than the visual ones. This is partially due to the
fact that URLs are not available in this dataset and that the filenames are not nearly
as indicative of the class as in the Google dataset (after all, filenames are partial evi-
dence for relevance in Google’s image search, used to construct the dataset). The visual
features show roughly the same performance on both data sets. As such, we feel that
the test on the Wikipedia dataset is more realistic and representative of what would be
encountered in practice. Third, maps are harder to classify than figures, as the figure
subcategories have notably different visual features that are captured by the OpenCV
detectors. Fourth, icons do extremely well, as their extension in Windows is a fixed
. 1 co and we start with a clean corpus, unlike any of the other sets. Finally, although

Yhttp://w ng. conp. nus. edu. sg/ npi ¢/
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Table 3. Performance of NPIC on the two datasets, with different feature sets.

Level |Class Average C.V. accuracy (Google)|Testing accuracy (Wikipedia)
TextM[Visual (V)] V+T [ T [ V [ V+T
Level 1 |Synthetic 99.4% | 95.9% 99.9% 94% | 93% 95%
Natural 99.7% | 93.5% 99.9% 90% | 92% 94%
Total 99.6% | 94.7% 99.9% 92% (92.5% 94.5%
Level 2 (Map 94.3% | 87.6% 98.5% 78% | 77% 86%
Figure 90.5% | 82.9% 98.7% 74% | 78% 90%
Icon 100.0%| 77.6% 100.0% || 95% | 91% 96%
Cartoon 89.2% | 73.6% 97.6% 69% | 84% 81%
Artwork 92.5% | 67.0% 93.2% 73% | 74% 79%
Total 933% | 77.7% 97.6% ||77.8%|80.8% 83.4%
Level 3 |Block diagram 84% 86% 84% 72% | 82% 86%
(Figure)|Venn diagram 88% 86% 90% 70% | 88% 90%
Bar graph 84% 78% 82% 78% | 78% 74%
Pie chart 82% 86% 90% 80% | 86% 86%
Line graph 80% 78% 80% 66% | 74% 76%
Table 78% 68% 82% 2% | 72% 76%
Ilustration 82% 78% 82% 74% | 80% 82%
Total 82.6% | 80.0% 84.3% ||73.1%(79.9% 81.4%
Level 3 [Plan map 86% 76% 86% 82% | 78% 84%
(Map) |Chorographic map| 86% 80% 88% 78% | 82% 82%
Relief map 90% 68% 84% 70% | 70% 72%
Weather map 84% 64% 84% 74% | 66% 72%
Zip code map 96% 72% 92% 88% | 72% 86%
Total 88.4% | 72.0% 86.8% |[|78.4%|73.6% 79.2%

the performance is not directly comparable with prior reported results (as the problem
specifications and datasets differ), the NPIC classifiers show similar performance. The
advantage here is that NPIC system uses a set of very general, coarse features that are
inexpensive to compute and applicable to a wide range of problems. Classifiers aimed
at specific tasks (c.f., [19]) are bound to do better in their stated problem domain.

Given that image search primarily employs textual features, are the improvements
by incorporating visual features significant? We compared the textual versus the com-
bined feature judgments using Student’s 2-tailed T-test. Our findings indicate a signifi-
cant (p < .05) for both Level 2 classifiers but not the Level 1 or 3 classifiers. We believe
the reason for this is simply because there are too few images for the Level 3 classifiers
(600 for both Level 3 classifiers) and for the Level 1 Wikipedia classifier (1000).

To assess the efficacy of the feature sets, we explore the resulting classifiers. Table
4 shows the first 100 features used by each of the four inferred models (with repetitions
omitted). We see that individual words (each a separate feature) constitute a large frac-
tion the useful features in the Level 1 and 2 classifiers, but a smaller fraction of Level
3 features (validating our earlier claim). We also see that the color histogram distance
measures play a larger role in the fined-grained classifiers, and that no one distance
measure is best: they all seem to be used by the classifier for discriminating in different
instances. Finally, our OpenCV features have been effective for the classes we suspect:
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circles are used in the figure classifier and vertical/slanted lines in the map classifier
(perhaps for deciding between building plans vs. natural region maps).

For the OpenCYV detectors, the learner found optimal settings through cross-validation
separation. For the circle detector, a diameter setting of d = 0.3 x min(height, width)
performed best, as lower settings of d would find many spurious results; the rectangle
detector was set to detect only ones parallel to the image frame.

Table 4. Salient features found in the BoosTexter models.

[Cevel

[Textual Features

[Visual Features

Level 1

Jpeg smsu co jennifer friends azoft stylefest gif map
painting pie shtml a search drawing areas iconfan seri-
als paris freeyellow online ru tv sponsors sponsors k12
eastburtonhouse

Quantum, C,, F1/D2, Magick, L-oo, C; Fraction, Col-
ors, Height, Background sz

Level 2

map painting artwork drawing ico cartoon venn graph di-
agram disney pie anime garfield maps physics www di-
rectory chemistry comics com world artwork art maths
archie chem. page street au image tintin gifs sg city hein
edu books chinese asp sun moaa gov nr 278 nice chart
assembled ga, region

Width, F1/D3, #slantedLines, F2/D1, Quady,twork
#HorizontalLines, Quad;..», Height, AvgLine-
Length, Backgroundy;, averageLineGradient, F1/D4,
F1/D1, Size, F1-F2/D1, EMDg;agram, JDartwork:
EMD gt work, X-resolution

Level 3

(Figure)

block pie venn bar table diagram data archives illustration
2 barograph none gov charts htm cty us edu venndiagram

#SlantedLines, #circles, Chi3, ., AvgLineGradi-
ent, #HorizontalLines, Width, X-resolution, Size,

fag articles hisoftware en cfm 0805rettable pubs Chiftmw,am, #VerticalLines, Colors, AvgLineLength,
EMDy; ¢, Background, Y-resolution, EMDyiechart,
Dpicchart: Llparcraphs L2graph, EMDpiock,
Height, Quadyiock, L-biock

#SlantedLines, EMD,cgion, #HorizontalLines,
AvgGradient, #Corners, Ll,ciicr, EMDicricy,
AVgLineLengthr EMDweather: le'ipATeaC’odev
L-0Oreticf, EMDyeather zipAreaCode:
JDpian, QuadDist.iparcacode, #VerticalLines,
Height, EMD,;.., FractionOccupiedByRectangles,

L-c0yeather

Level
(Map)

weather plan relief noaa gov weather country map us
maps com plan wunderground leone schtvsworld graph-
ics planning wr php province map asp files ca

6 Conclusion

We have introduced NPIC, a system specifically trained for synthetic image classifi-
cation. This system is fully automated and distinguishes between natural vs. synthetic
images, and types synthetic images into five classes, of which maps and figures are
further subdivided. We obtain the image datasets by standard text-based image search
using keywords highly correlated with each class. This noisily labeled corpus serves
as training data, making our classification scheme semi-supervised. In all cases, per-
formance of the classifiers increases when simple color and geometric shape detection
features (specifically for particular synthetic image classes) are added. A key result is
that visual features make a stronger contribution than the textual ones when fine grained
classification is needed.

NPIC is based on a general framework that relies on the scale of image search
engines to sift away noise from the training data. Such a framework could be extended
to natural image classification, where much of image retrieval research is centered on.
We expect to further improve NPIC in the future by 1) using the relevance ranking of the
images from search engine in weighting examples for training, and 2) exploring how to
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find keywords automatically for training data acquisition. We plan to achieve the latter
using mutual information which can provide a list of statistically correlated modifiers
for a base keyword. We have already done a detailed error analysis on the dataset, and
have additional features in mind that may help to improve performance.
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