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Abstract Neural network models enjoy success on lan-

guage tasks related to Web documents, including news

and Wikipedia articles. However, the characteristics

of scientific publications pose specific challenges that

have yet to be satisfactorily addressed: the discourse

structure of scientific documents crucial in scholarly

document processing (SDP) tasks, the interconnected

nature of scientific documents, and their multimodal

nature. We survey modern neural network learning meth-

ods that tackle these challenges: those that can model

discourse structure and their interconnectivity and use

their multimodal nature. We also highlight efforts to

collect large-scale datasets and tools developed to enable

effective deep learning deployment for SDP. We conclude

with a discussion on upcoming trends and recommend

future directions for pursuing neural natural language
processing approaches for SDP.
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1 Introduction

A large number of scientific articles are published every-

day, making it challenging for researchers to stay abreast
of current developments in their fields. In biomedicine

alone, researchers publish a new article every two min-

utes on average, resulting in more than a million publica-

tions per year [101]. This makes it difficult for researchers

to find and read publications, synthesize and summa-

rize them. Automated ways to help them in their daily

activities are necessary. Automatic Scientific Document

Processing (SDP) is such an avenue that it can enhance
and simplify research tasks. For example, SDP-enabled

digital libraries, such as Semantic Scholar1 and Aminer2,

equip researchers with tools that search and filter pa-

pers, track citation counts, extract figures, tables, and

equations, among other functions.

The current wave of modern neural network meth-

ods has enabled useful applications such as automatic

summarization [16], the extraction of figures, tables and

mathematical equations [31], and the recommendation

of articles based on user interests [12]. It is natural to

bring such advances to SDP, but so far the peculiarities

of scientific publications have challenged conventional

neural network models. For example, Long-Short-Term

Memory Networks (LSTMs) [79], which are widely used,

can process only a few hundred words at once, while

scientific publications are much longer. This requires in-

novations in neural network architectures to enable the

1 https://semanticscholar.org
2 https://www.aminer.org/

https://semanticscholar.org
https://www.aminer.org/
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Fig. 1 We organize this article by the challenges offered by SDP to modern machine learning methods. The first challenge is in
modeling and leveraging scientific discourse structure to improve the performance of models. A second challenge is in modeling
and leveraging the inter-connected nature of scientific documents for neural network processing. Multimodality forms a final
challenge, as neural methods currently handle non-textual modalities poorly.

processing of longer text [14]. Similar innovations are

required to consider the hierarchical discourse structure

of scientific documents (§ 2). Given these challenges of-

fered by scientific document processing, can researchers

reinvent modern methods to handle these peculiarities?

New methods and strategies to deal with the un-

conventional setting present in SDP have been on the

rise. This warrants a literature survey to better under-

stand the challenges and opportunities offered by SDP

and the techniques developed to address them. Here,

we synthesize the different challenges posed by SDP

for neural networks, concluding each challenge with a

representative rhetorical question.

First, scientific documents from STEM (Science,
Technology, Engineering and Mathematics) fields follow

a specific, conventionalized discourse structure [9]. In

addition to identifying the different sections of the doc-

ument, applications must effectively utilize this informa-

tion for SDP tasks, such as summarizing and classifying

citation intents, among others [32, 33]. For example, in-

terpreting the purpose of equations is section-dependent;

ones introduced in the evaluation section may explain

how a work is quantatively evaluated, but ones intro-

duced in a method section may describe key mathemati-

cal proofs. How can we adapt vanilla neural architectures

to deal with hierarchical document structure?

Second, scientific work has the intrinsic characteris-

tic of referencing prior work through citations. Citations

serve many purposes. Citations are used to acknowledge

the existence of closely related works, to refer to back-

ground knowledge beyond the scope of the current work,

and to compare or contrast with other works, among

others. The interconnected nature of scientific docu-

ments requires combining information from multiple

documents to solve tasks such as citation recommenda-

tion [50], paper recommendation, and summarization.

However, neural networks largely consider only one sen-

tence or paragraph at a time. How do we adapt neural

networks to effectively incorporate information from mul-

tiple related documents?

Third, scientific work is rich in its multimodal repre-

sentations. In many subject areas, scientific work incor-

porates tables, figures, diagrams as embedded artifacts

within the document itself. There are also auxilary ar-

tifacts related to the work, inclusive of data, computer

code and other forms of attachments, that together with

the manuscript provide a complete scientific package.
How can we represent and leverage such mulitmodal in-

formation to improve performance on key SDP tasks,

and how do these multimodal artifacts enrich such tasks?

We provide a review of the literature that answers

these questions. Our contributions can be summarized
as follows.

1. We identify three specific challenges (cf. Figure 1)

that SDP poses to modern neural network learn-

ing models: discourse structure (§ 3), citation net-

works(§ 4), and multimodal data (§ 5). Then we

outline the techniques to adapt such methods to

overcome these challenges.

2. We collate and compare recent tools, datasets, and

other resources that have been contributed by the

SDP community (§ 6), which can serve as a starting

point for parties in investigating possible solutions

for SDP tasks.

3. We outline our vision for future challenges in SDP, es-

pecially considering how advances in neural network

learning can be incorporated to forge meaningful

progress for SDP (§ 7).

2 Background

We start by defining scientific document terminology and

some representative tasks. These will feature through-

out this article, although the tasks are certainly not

exhaustive. Figure 2 illustrates the terms.
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We conclude this background section by reviewing

modern machine learning models that have spurred sig-

nificant advances in the underlying methods for perform-

ing SDP tasks: modern neural networks. Although their

mathematical underpinnings were present decades ago,

only recently were such models sufficiently expressive to

accurately capture detailed patterns from large amounts

of textual and visual data. A basic review of such models

helps frame the challenges we have identified.

2.1 Terminology

Discourse Structure: Scientific articles are divided

into logical parts. Documents follow a conventionalized

structure and typically contain an abstract (a summary
of the paper), followed by the introduction, related work,

methodology, and experimental results, often in this or-

der. They are typically identified by their section titles

or headers. We consider the logical organization of sci-
entific publications as a discourse structure that aids in

the discussion of scientific material. The logical parts

have their own function and style. For example, the in-

troduction provides the broader context of the research

and mostly contains text, whereas the experimental sec-

tion describes the experiments and may contain figures,

tables, and mathematical expressions.

Citation: Citing articles (Figure 2, right) refers to

older cited articles (left) using citations. Citations es-

tablish the claims made by authors, refer to methods

and datasets, and credit the foundational work of other

related papers. A citation marker — conventionally in-

dicated with a number or an abbreviated form with the

authors’ name (indicated by the text “compared to [1]”

in the figure) — marks the citation.

Citation Context: The text span around the citation

contains contextual information, such as the reason for

making the citation, information about the cited article.

The text span (inclusive of the citation marker) may be

limited just to the containing clause or sentence, but

also may scope significantly beyond (both before and

after) the immediate sentence. An example is marked in

Figure 2), where the context continues to the following

sentence and is marked in light blue.

Citation Intent / Citation Function: A citation can

be made for various purposes: referring to background

knowledge, comparing, and contrasting with another pa-

per, and providing evidence to corroborate a statement.

The citation intent provides the qualitative purpose of

the citation, in contrast to citation count which merely

provides the frequency of the citation of an article. The

citation in Figure 2 compares with another paper.

Citation Provenance: An appropriate citation can

refer to a specific text span in the cited article or, gen-

erally, to the entire work. The text spans in the cited

article that are relevant to this citation is termed its

citation provenance [162] (Figure 2, blue text in the

cited article). Occasionally, authors do erroneously cite

work – i.e., the cited work does not contain evidence

supporting the citation context.

Citation String: The bibliography or the reference

section of a scientific article contains a list of references,

conventionally found as footnotes or endnotes (Figure 2,

orange cross-hashed text in the citing article). Every

item in the list — individually termed citation strings —

contains necessary information to uniquely identify and

locate the work: its authors, the publication venue and

year, and other information.

2.2 Tasks

Scientific document processing encompasses many tasks
for many stakeholders. Instead of reviewing all such

tasks, our purpose is to highlight the challenges posed

by scientific document processing for modern methods.

As such, we focus our discussion on indicative exemplars

that align with our three challenge areas, and the ap-

proaches that address them.

Keyphrase Extraction: Keyphrases are words and

phrases that describe important aspects of an article: its
main topic, materials or reagents, or methods [73]. The

abstract section of Figure 2 shows the “cas-9 protein” —

a protein associated with gene editing. Keyphrases aid

different SDP tasks: indexing and searching documents

by topics, clustering documents, recommendation, etc.

Keyphrase extraction identifies and filters keyphrases

from a publication.

Keyphrase Generation: Keyphrases may also gen-

eralize salient topics or be selected from a controlled

vocabulary (keyphrase classification); and, as such, may

not actually appear in the text. Topics can be described

after reading and understanding a document. Genera-

tion differs from extraction, aiming to produce pertinent

keyphrases including those that do not appear as-is.

Document Summarization: Summarization condenses

a long document while still preserving key information.

For scientific text, the summaries should contain back-

ground information, results given the context of related

papers, the document’s contributions, and their implica-

tions. Such salient information may appear in different

parts of the scientific document. Extractive summariza-

tion extracts important sentences as-is from the docu-

ment, while abstractive summarization does not draw
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Title: subtitle
Author  Author

Abstract

Introduction

Subsection

References

Methodology

[1]

[2]

Our findings show

Results

Title
Author  Author  Author

Abstract

Introduction

Subsection
References

Methodology

compared to [1]

[1]

[2]

[3]

cas-9 protein Results

Citing Article (Younger)Cited Article (Older)

Table 1:

Citation 
Intent: 

Weakness

Citation
Provenance

Citation 
Sentence compared to [1]

Fig. 2 (Best viewed in color) Pictorial representation of the structure of a scientific document and its related terms. Articles
typically contain an abstract, and sectioned discourse such as introduction, methodology, etc. [169]. There are other discourse
elements such as tables of results, figures, sections, etc. which play an important role in SDP. One article (citing article) may
cite another article (cited article). The sentence which makes the citation is called the citing sentence. Relevant sentences
before and after an anchoring citing sentence are called citation text and also plays a role for SDP tasks like citation intent
classification. The text relevant to a citation in the cited article is called its provenance. The article may contain keyphrases
useful to indexing and searching; in the citing article cas-9 is a such keyphrase mentioned in the abstract.

sentences verbatim from the source. These forms of sum-

marization are common to standard text corpora, such

as news articles. However, the SDP summarization can

capitalize on its unique structure of citing and cited pa-

pers. Citing papers provide the community’s perspective

of the paper, and can be considered a complement to

the abstract. Summarization that consider citations is

called citation-based summarization.

Citation and Paper Recommendation: Researchers

may use aids to find relevant publications to cite or to

read. For example, given a sentence “adversarial au-

toencoders generate realistic images and show improved

performance”, Makhzani et al. [123] is an appropriate

citation providing background information about adver-

sarial auto-encoders. Citation recommendation aims to

suggest appropriate citations considering the statement,

the context around the statement, the aim of the publi-

cation, and the coverage of citations in prior sections.

Citation Intent Classification: Citations are not

equivalent. Citations express different sentiment — pos-

itive, negative, no sentiment — about the cited article

[216]. They may also reflect different purposes: refer-

ring to background knowledge; indicating weaknesses,

similarities, differences or improvements with respect to

other publications. This task’s aim is to automatically

identify such intents. The results can then be used to

selectively read specific related literature (e.g., list pa-

pers that provide an improvement over a target paper

or ones that create a benchmark evaluation metric).

2.3 Neural Networks

Supervised machine learning algorithms train a model

using a set of examples – also termed as labeled data

points. To predict outcomes, traditionally, features are

extracted from raw data. However, in real-world applica-

tions, manually extracting features is difficult. Modern

approaches solve this by automatically learning such

features. Modern neural network approaches specialize

in learning such complex features by means of using mul-

tiple layers that forms the network architecture. This

form of learning in which the user specifies the text

and its corresponding label — without engineering any

features — is called end-to-end learning. It is this ease-

of-use, coupled with its impressive performance gains,

that has led to the rapid adoption of modern neural

methods in many communities.

Recurrent Neural Networks (RNN): Standard neu-

ral networks process inputs from beginning to end in

one pass: they pass information to subsequent layers

but do not reuse intermediate information, although

such intermediate states can be useful. The recurrent

architecture addresses this by reusing these intermediate
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Fig. 3 An example of a graph neural network. It starts with sampling a set of neighborhood of the node. Within each layer of
the graph, the NN-based aggregator aggregates information from a node’s neighbors. The final representation of the node is
used to predict graph context and label [71]

results from previous data points for future ones. RNNs
are used to process sequences, where information from

previous states plays an important role for the current

state, such as text where previous words have predictive

power in determining the next words as well as the over-

all meaning. In SDP, they are commonly used to process

sequences of text from scientific articles for tasks like

classification. While RNNs made significant progress

in text processing, transformer models [44] have been

prominent in the recent past. We refer the reader to an

online post3 for an inituitive introduction.

Convolutional Neural Networks (CNN): Another

useful variation of general neural networks are Convolu-

tional Neural Networks. CNNs specialize in understand-
ing spatial inputs like images, 2D blocks of text, tables,
or figures. They build representations by considering

spatially local information, like a patch of image, and

further compose these local representations to build rep-

resentations of larger spatial blocks or volumes, until

the entire input is considered. In SDP, CNNs find their

application for tasks such as identifying discourse struc-

ture, where considering the entire article at different

resolutions is critical. Other applications like automatic

understanding of tables and figures also use CNNs, as

these inputs also have locally-spatial regularities in the
form of recursive, decomposable, top-down structure.

Graph Neural Networks (GNN): Unlike images or

text, a graph consists of unordered nodes of no fixed form.

Graph neural networks handle the complex topology of a

graph by adopting the idea of convolution to look at only

the local network neighborhoods of a node. Convolution

3 https://lilianweng.github.io/lil-log/2020/04/07/

the-transformer-family.html

builds representations using information from its local
neighbors, as in CNNs; but in GNNs, the set of spatially

local neighbors is dictated by the random graph and not

fixed as in 2D images and tables. As shown in Figure 3,

GNNs determine a computation graph for each node

and learn each node’s representation by aggregating its

neighboring information. The resulting representation

comprises both the node features and the graph topology.

GNNs produce state-of-the-art performance in node

classification, link prediction, and clustering tasks.

RNNs, CNNs and GNNs are all basic variants that

specialize in handling regularities in the input; specifi-

cally, sequential, fixed spatial and random spatial regu-

larities, respectively. All of these require sufficient data

to set the weights of these models appropriately. We

end by mentioning pre-training as a means to obtain

good initial weights for many of these models.

Pretrained Language Models: Supervised learning

requires large quantities of labeled data, often difficult

to obtain. Can we first learn general information from

the unlabeled, publicly-available text on the Web? Can

we further use this information to learn appropriate

tasks with limited labeled data? The answer to these

two questions is “yes,” where the first task is referred

to as “pretraining”, and the second as “finetuning”.

This pretraining revolution first uses unlabeled text to

learn useful associative patterns, which address many

shortcomings in language understanding and meaning

interpretation. While pretraining in natural language

research was first limited to the word level (Word2Vec),

computer vision researchers trained deep CNNs in the

ImageNet dataset for image recognition [42], learning

generic, hierarchical representations of images such as

edges, curves, and textures. They further finetuned these

https://lilianweng.github.io/lil-log/2020/04/07/the-transformer-family.html
https://lilianweng.github.io/lil-log/2020/04/07/the-transformer-family.html
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representations for advanced computer vision tasks such

as object detection [154] and image captioning [89].

This pretrain-and-finetune task decomposition is ap-

plicable for text processing as well. Researchers trained

deep neural networks to predict how likely the next word

is given a piece of text (language modeling). The aim is
to learn general patterns of language while performing

this task. As of current, the most extensively-used pre-

trained language model is BERT [44]. After learning the

general representation, finetuning the language model

improved performance of other NLP tasks: sentiment

analysis, semantic text similarity, assessing the linguistic

acceptability of text, etc. [178]; all of such finetuning

operations have been applied successfully to BERT.

3 Discourse Structure — Challenge #1

Scientific discourse structure divides the document into

logical parts. We consider any such logical organiza-

tion as discourse structure. Leveraging such a struc-

ture is crucial for SDP tasks. As an example, consider

keyphrase extraction. Keyphrases are often found in

particular sections (e.g., title, abstract, and introduc-
tion). However, neural networks do not natively incorpo-

rate discourse structure. Such a sequential, end-to-end

processing largely disregards the hierarchical discourse

structure of the scientific publications. Even the first step

in identifying the structure of the discourse is challeng-

ing. We discuss methods to identify discourse sections

(§ 3.1), then methods to take advantage of them (§ 3.2)

to improve the performance of downstream SDP tasks.

3.1 Identifying Discourse Structure

The backbone of several SDP tasks requires the identifi-

cation of logical sections in a scientific document, which

is a necessary step to leverage discourse structure in

downstream tasks. Here, we review neural network meth-

ods that analyze scientific publications, although there

has been significant informed work on other structured

documents such as receipts [43, 90, 91], web documents

[135], business documents [185], examination papers

[120], among others. The reader is invited to refer to

[49, 166] for a comprehensive survey on other types

of documents. Table 1 shows the comparison between

neural methods to identify the structure of scientific

discourse. We inventory such NN-based methods based

on two dimensions of comparison: the discourse elements

identified (Aim), and the NN approach used (Approach).

1. Aim: Kan et al. [88], a precursor non-NN method,

associates every line with one of 23 line functions

(i.e., section header, title, page number, figure cap-

tion, etc.) and further classifies sections (i.e., a sec-

tion header accompanied by body text) into one

of 13 generic logical types (introduction, related

work, methods, etc.). Recent NN methods [199] have

greatly improved the extraction of similar discourse

structures, albeit only at the coarse-grained section

level and without logical types (e.g., Allen AI’s Sci-

ence Parse; cf. Table 3).

In addition to text, scientific documents incorporate

visually-distinct figures, tables, and mathematical
equations. They provide a summary of the meth-

ods and results which aid in finding related papers,

among other uses. NN models also extract such mul-

timodal objects, such as figures [160] and tables [161].

We limit our discussion to the discourse structure

of text, leaving the details about the multi-modal

elements to Section 5.

All the papers discussed till now consider a high-

level structure within the document — such as the

abstract, introduction, and methodology — which

we term global. Identifying global structure aids in

document-level tasks such as recommendation, sum-

marization, retrieval, etc.

Finer, local structure within individual sections can

help researchers assess the appropriate reading and

writing strategies from other works. For example,

Jin and Szolovits [85] identify the background, objec-

tives, methods, results, conclusions, and order within

the abstract section of scientific publications. They

analyze the prevalent order in scientific publications,

which can help researchers structure their own ab-

stracts. Banerjee et al. [13] also identify the local
structure of abstracts. They first train a model on

biomedical data to identify categories before fine-

tuning on a small set of computer science articles.

Similarly, Dasigi et al. [41] identify the different com-

ponents of the experiment section: the problem, the
goal, and the results of the experiments. Analyzing

fine-grained sections aids in automatic literature re-

view by grouping works that use similar methods

and outcomes.

2. Approach: Researchers use two types of neural net-

work to identify discourse structure: Convolutional

neural networks (CNN) and recurrent neural net-

works (RNN) (cf. § 2). Researchers choose CNNs

or RNNs depending on the way they treat scientific

publications: preferring RNNs when they treat them

only as textual sequences [41, 85].

Recommendations: Neural methods are increasingly

used to identify the discourse structure of the textual

content. We find that the community is focused on iden-

tifying the global structure of scientific publications. But
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Paper Aim Approach Code
Avail-
ability

Soto and Yoo [161] Identify title, authors, abstract, body, etc
(Global)

Faster-RCNN (Vision)

Science Parse Identify title, authors, section headers, etc.
(Global)

Bi-LSTM (Text)

Yang et al. [199] Identify title, authors, abstract body, etc.
(Global)

CNN + text embeddings (Hybrid)

Dasigi et al. [41] Identify the problem, method, implications,
etc. within the experiment section (Local)

LSTM (Text) X

Jin and Szolovits [85] Analyze the abstract of the scientific paper
(Local)

Hierarchical LSTMs (Text) X

Madisetty et al. [122] Parse Mathematical Equations (Global) Bi-LSTM (Hybrid)

Wang and Liu [184] Generate Mathematical Latex Equations
(Global)

LSTM + CNN (Hybrid)

Siegel et al. [160] Extracting Figures (Global) CNN (Vision) X

Banerjee et al. [13] Identify background, techniuque and obser-
vation from abstracts local

Bi-LSTM Text X

Table 1 Overview of different neural network based prior work that identify the discourse structure of scientific documents.
Aim captures the diversity in the end goal of articles. The Approach identifies the neural network method used to identify
discourse structure. Code Availability refers to availablity of the project code; where available, URLs to codebases are listed
in the respective reference in the bibliography.

analyzing the local structure of publications can result

in tools for efficient reading and writing for scholars [13].

3.2 Leveraging Discourse Structure

Modeling the discourse structure of scientific publica-

tions provides several advantages to downstream SDP

tasks: division of long documents into small logical sec-

tions, providing prior information for certain tasks (cita-

tion intent classification), and allowing the comparison

of publications based on sections. Here, we review NN

methods that use discourse structure to benefit SDP

tasks. Table 2 summarizes works based on their task,

the modeling approach used to incorporate the discourse

structure, and the NN architecture used.

1. Task: The modeling of discourse structure informs

the downstream models in performing the key char-

acteristic SDP tasks (i.e., document summarization,

keyphrase extraction, and citation intent classifica-

tion). Summarization approaches based on models of

standard text [156, 157] underperform on scientific

documents, due to their long and conventionalized

document structure. Knowledge of discourse struc-

ture pinpoints where specific forms of knowledge lie

(key aspect of the methodology in Methods, discover-

ies in the Results section), allowing summarization

methods to model different functional aspects of the

document. Both extractive [35, 188] and abstrac-

tive SDP summarization [16, 22, 33, 61] leverage
discourse structure for this reason.

In addition to summarization, keyphrase extraction

benefits from incorporating discourse structure. As

keyphrases capture salient information about the

paper, they concentrate within certain sections, such

as in the methodology or the introduction. Similarly,

other works [30, 100, 203] observe that the title of the

document largely overlaps with keyphrases, and that

modeling titles for keyphrase extraction improves

performance.

The intent of the citations also depend on the sec-

tion in which they appear. For example, most com-

puter science papers compare and contrast with

other works in the literature review section, while

the citations in an introduction provide background

knowledge. Therefore, it is important to incorporate

discourse information for automatic classification of

citation intent. [32, 164] are exemplars that incorpo-

rate the discourse structure in neural networks for

citation intent classification.
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Paper Approach Task Method Description Code
Availability

Cohan et al. [33] End-to-End Abstractive Summary Hierarchical Attention Networks X

Xiao and Carenini [188] End-to-End Extractive Summary Attention over word, sentence and docu-
ment representations

X

Collins et al. [35] End-to-End Extractive Summary Categorical Feature added to neural net-
work

X

Gidiotis and Tsoumakas [61] Divide-and-
Conquer

Abstractive Summary Pointer Generator RNNs per section

Chaturvedi et al. [22] Divide-and-
Conquer

Extract + Abstractive
Summary

BioBERT + Graph based extractive sum-
maries + BART

X

Kobayashi et al. [99] Divide-and-
Conquer

Citation Recommen-
dation

Word Embeddings + Simple Classifier +
Graph Neural Networks + Recommen-
dation

Chen et al. [30] End-to-End Keyphrase Genera-
tion

Attention based Encoder-Decoder RNNs

Cohan et al.[32] Multitask Citation Intent Classi-
fication

LSTM networks X

Su et al. [163] Multitask Citation Provenance
and Intent

LSTM networks X

Cachola et al. [16] Multitask Abstractive Summary BART X

Ye and Wang [203] Multitask Keyphrase Genera-
tion

Encoder-Decoder RNNs

Table 2 Overview of methods incorporating discourse structure for an end task in scientific document processing. Approach:
We identify three main approaches to incorporate discourse structure into scientific articles. End-to-End, Divide-and-Conquer,
Multitask learning. Task: Incorporating discourse structure benefits different SDP tasks, and we identify the different tasks
tackled by different works. Method Description: A brief description of the neural networks used in the work. Code
Availability: where available, a hyperlink to the codebase is given in paper’s reference.

2. Approach: We identify three ways that neural net-

works incorporate discourse structure: end-to-end,
divide-and-conquer, and multitask.

End-to-end : End-to-end methods build continu-

ous representations for a discourse section, starting

from sequential text. Since forming representations

for longer scientific documents is harder for neural

networks, they compose representations of smaller el-

ements like words [130, 146] and sentences [36, 98] to

form representations of larger elements such as whole

documents. Hierarchical attention networks [200] are

one such framework that combine continuous word

representations with sentence representations, fur-

ther combining them to obtain section- or document-

level representations using the attention mechanism

[11]. Building document and section level representa-

tions using hierarchical networks have been shown to

be useful for abstractive summarization[33], extrac-

tive summarization [188] and keyphrase generation

[30]. Incorporating discourse structure to solve a SDP

task using the popular end-to-end paradigm requires

complex neural network architectural changes. Since
scholarly documents are long, using neural networks

to sequentially process documents is inefficient and

ineffective, due to high computation and memory

requirements.

Divide-and-Conquer : To ease the burden of pure

end-to-end learning, divide-and-conquer approaches

are helpful. As the discourse structure of the doc-

uments naturally helps to divide the problem into

smaller ones, smaller section-wise solutions can be

solved and combined later. For example, a separate

summary can be formed for different discourse sec-

tions and combined to form a final summary. Such

an approach is popular for summarizing [22, 61],

citation recommendation [99], and paper recommen-

dation [143].

Multitask : Multitask learning considers a main

task and a complementary auxiliary task together.
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The two tasks exploit the commonality and the differ-

ences between them to improve generalization [19]. It

has been used in innovative ways to employ discourse

structure in neural networks for various SDP tasks.

Generally, an objective — related to the discourse

section to be incorporated — is added as an auxil-

iary task to the main SDP task. For example, Cohan

et al. [32] predict the title of the section as an auxil-

iary task for citation intent classification. Su et al.

[163] show that the detection of citation intent and

citation provenance can enhance each other’s perfor-
mance in a multi-task setting. Cachola et al. [16] use

multi-task learning to generate extreme summaries

of scientific documents that are a couple of sentences

long; perfect as search result snippets. They use an

auxiliary task of title generation, finding this mul-

titask setup improved performance. Similarly, title

generation has been used as an auxiliary task for

keyphrase generation [203].

Multitask learning has multiple advantages: improv-

ing the generalization ability of a model’s solution,

and efficiently modeling a new task with minimal

data. This is accomplished by incorporating infor-

mation from discourse elements related to the task

to obtain performance gains.

Commonalities and differences : Most end-to-end based

approaches compose word and sentence representa-

tions to form discourse level representations using

attention-based RNN networks [11]. Cohan et al. [33]

uses RNN encoders to build sentence-level represen-

tations from word representations [33, 188]. Once the

document has been encoded, such methods employ
attention in the decoder to model differing levels

of section importance when generating summaries.

Similarly, Xiao and Carenini [189] uses the intuition

that a decision to include a sentence in the extractive

summary depends on not only the importance of the
sentence within a section, but also on its importance

within the entire document. To achieve this, they

use an attention mechanism over the hierarchically-

composed word, sentence, discourse section, and doc-

ument representations to decide whether to include

the sentence in the extractive summary.

On the other hand, instead of making complex ar-

chitectural changes that become infeasible to handle

long documents, the divide-and-conquer approaches

use a pipeline-based approach. For example, Gidio-

tis and Tsoumakas [61] first classifies an annotated

summary sentence into different discourse sections,

creating a pseudo section-summary supervised pair.

Then they use a neural network for abstractive sum-

marization of every section before combining them.

The divide-and-conquer also has inspired a hybrid

extract-abstract summarization approach that first

extracts a sentence and then perform abstractive

summarization. This method has become popular

not only in non-scientific domains [105, 129, 190] but

also in scientific documents [22]. Divide-and-conquer

approach can combine multiple existing methods to

achieve a better result [22, 61, 99] – allowing easy

switch of components for more advanced ones, it han-

dles longer documents effectively without complex

changes to neural network architectures.
Multitask-based approaches share a few layers of

a neural network like LSTMs [32, 163] and then

use separate layers for each complementary task

to capture task specificity. Although earlier works

used multitask learning for mainly classification tasks

[32, 163], it has found a resurgence in text generation

[16, 203].

Recommendations: Incorporating discourse structure

into neural network modeling is essential to improve
SDP tasks. Although traditional methods can incor-

porate discourse structure by considering them as ad-

ditional features, neural network methods best model

discourse structure by making appropriate architectural

changes to build hierarchical representations to incor-

porate such information. End-to-end methods for incor-

porating discourse representations are currently limited

by the length of text that can be processed at once –

ineffective in handling long paragraphs or documents.

New methods such as [14] have attempted to alleviate

this challenge recently. Our opinion is that the divide-

and-conquer approach can leverage existing technologies

creatively and provide more practical solutions.

4 Citation Networks — Challenge #2

Scientific documents link to each other using citations

(Figure 4). Citations relate the scholarly work to the

background and context of the works and relevant con-

cepts. A collection of papers forms a citation network

or graph, where edges model the citation relationship

between two papers. The bibliographic details (i.e., au-

thor, year, publication venue, title) and the content of a

paper are the node features in such a citation network.

The citation context highlights the purpose of a citation

or the edge type of citation network edge.

To properly utilize citation information under a neu-

ral scenario, it is essential to generate effective numerical

representations for both the node and edge features of

a citation network. In addition to component repre-

sentations, an appropriate neural architecture needs

to be chosen to represent such citation networks as a
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Fig. 4 Pictorial representation of a citation network. Articles cite the previous articles and are cited by future articles. The
number of citation consisted of and received varies across different articles.

whole. Despite the success of CNNs and RNNs in han-

dling computer vision and natural language processing

tasks, they are designed to handle tabular (raster) or

sequential data. However, citation networks have nei-

ther spatial logic nor fixed ordering of nodes. Graphical

representation models built with NNs, such as Graph

Convolutional Networks, yield superior performance in

extracting the node features and graph structure auto-

matically. We start by introducing the application of
the NN-based graph representation methods on citation

networks, then describe how these representations are

utilized in SDP tasks.

4.1 Representing Citation Networks

Although NN-based methods achieve outstanding graph

representation performance, näıve application of such

methods on citation networks fall short in performing

well. While some works have explored how to handle

the challenges posed by the unique characteristics of

citation networks, many areas remain to be explored.

Node characteristics. Bibliographical information in-

cludes nominal data (e.g., author, publication venue,

and year) as well as textual strings (e.g., title, abstract).

We discuss examples within these two classes of data in

turn.

Author information can be utilized to assist in topic

modeling, as authors preferentially publish on only cer-

tain topics. However, when a large number of co-authors

are present on a publication, it becomes more difficult

to characterize the work, making a low-dimensional rep-

resentation of author essential. A common method is

to aggregate all the titles of an author’s publications

[205]. Sugiyama and Kan [167] extend this representa-

tion method to the referenced paper and papers citing

the scholar’s work, while Bulut et al. [15] include the

documents related to the scholar’s research field. Ebesu

and Fang [47] build two networks to learn the embedding

of cited and citing authors separately, and incorporate

the output during decoding. Holm et al. [80] models the

author and venue with the total citations received.

In our view, the utilization of the venue and year

information is still superficial in contrast to the many
works that utilize author information. A venue repre-

sentation aggregates all work grouped under the same

research cluster could help to create a better represen-

tation for the target paper. Further, the prestige of a

publication venue (e.g., impact factor of a journal or

ranking of a conference) is important in deciding the
influence of the paper. The publication year of a work

can be used in tasks like citation recommendation, to

account for its fading novelty as a publication ages [127].

Most works extract textual features from title and

abstract using a recurrent network (specifically, LSTM)

[180, 201] or pretrained language model [84] for graph

representation learning. While titles and abstracts pro-
vide summaries of documents, the full text contains

information not available in these two. However, the

structured and lengthy nature of scientific documents

poses challenges for standard RNN or transformer archi-

tectures to encode. Future works should also consider a

faceted representation as introduced in Section 3, based

on the needs of downstream SDPs.

Edge characteristics. The edge in a citation network

represents the citation relation between two papers. Such

edges are directed from the citing paper to the cited one

and can be associated with a time lag and its citation

context. Li et al. [110] build Graph Neural Networks

(GNN) and handle the directions by using only the

incoming nodes in identifying important information

during aggregation. Jin and colleagues [86] model the

citation directions using two separate networks. The

time lags are the time difference between publication

date of the cited paper and citing paper, which shows

the diffusion speed of information from the cited paper.

Fu et al. [56] model the time lags using Monte Carlo sim-
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ulation. The resulting citation network is then deployed

to improve the results of a citation recommendation

task.

The citation function, or the reason a citation is

included, can be extracted from citation context [173].

The citation context often implies the function and

polarity (negative/neutral/positive) of a citation too

[2, 60]. Future works will be able to produce better

representation of citation relation by incorporating these

derived features. Citation context is also the basis for

certain SDP tasks. For example, a context-aware citation
recommender aims to find papers that best match a

given citation context [40, 84, 171, 180, 197, 198, 205].

And a stream of summarization models use citation

context as the input for summary construction [111,

201, 208]. Citation context can also be used to generate

document embedding by treating the citation context

as sentence and citation as word [58, 72].

In summary, a node in a citation network is associ-

ated with rich information including metadata (author,

year, publication venue, title, abstract) and a long doc-

ument content. The features of a citation include date,

function, and citation direction. Although research has

been done to utilize these features, the incorporation of

publication venue and year, the textual representation

of the document content and its application of citation

function/intention derived from citation context remain

as challenges in building an effective and universal cita-

tion network representations.

4.2 Incorporating Citation Networks

Appropriate modeling of citation networks using the

above methodologies significantly boosts performance

on various SDP tasks. Although many applications such

as citation forecasting [74] and extracting emerging con-

cepts from scientific documents [97], we select two key

SDP tasks — citation recommendation and citation-

based summarization — where network representation

is critical and forms the basis for their approach.

Citation Recommendation. Citation recommenda-

tion (and also § 2.2) is accomplished based on either

the global or local context. A global citation recommen-

dation model recommends papers according to their

similarity with a given document. Gupta and Varma

[68] randomly generate a set of short walks from the

citation network with each node as the origin, and find

the node representations to maximize the probability

of the generated walks. This topology representation is

combined with semantic features to yield document rep-

resentations by maximizing the correlation between the

two. Another method based on random walks generation

proposed by Guo et al. [67] merges the citation rela-

tion and content similarity between papers as the input

for node representation learning. Other works treat all

bibliography entities as nodes and build bibliographic

networks that contain nodes corresponding to different

entities such as author, venue, and paper (Heteroge-

neous Bibliographic Networks or HBNs). Cai et al. [17]

represent an HBN with an adjacency matrix to train a

GNN-based recommender. Models proposed by Ma and

colleagues [118, 119] generate node embedding by ex-

tracting topological features from HBNs using different
meta-path proximity methods. Mu et al. [133] model an

HBN as a multi-layered graph (for authors, papers and

words, respectively), while incorporating user queries

into the graph to yield a query-focused recommender.

In contrast, local (or context-aware) citation recom-

mendation produces recommendations for a specified

text span where a citation is needed. Such applications

can benefit writing assistance and can incorporate ci-

tation impact prediction as well [139]. These recom-

menders generate a representation for both the citation

context and each candidate paper, and make recom-

mendation based on the similarity score between the

two. Jeong et al. [84] predicts the probability of recom-

mending a paper based on the concatenation of citation

context embedding encoding generated using BERT, and

a document embedding produced with GNN. Medić and

Snajder [126] also tackle the local citation recommen-

dation problem, incorporating article title and abstract

information – hinting at the productivity of incorporat-

ing discourse structural information (c.f. § 3).

Other works compare the paper content and the

given citation context directly. Neural NLP methods
are commonly applied to create the text representation

[40, 142, 171, 180, 197, 198, 205]. In contrast to the

aforementioned works, which generate one representa-

tion for each paper, [51, 72] build two vectors per paper:

one for each case of citing and being cited, respectively.

Citation-based summarization. Citation graphs en-

able improved contextual modeling of a paper, and hence

can improve summarization performance. As an exam-

ple, certain scientific concepts may not be explicitly

explained, where the document authors refer the reader

to other documents through citations to explain the

necessary concepts. The citation graph-based summa-

rization model proposed by [7] incorporate this infor-

mation in the referenced paper using GAT. The input

features of the nodes are the textual features extracted

from the abstracts of the referenced paper, inferred

from an LSTM. The node representations are then fed

to a LSTM-based decoder to yield attention weights,

which are then applied to choose content for document

summaries.
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Citation sentences are usually in the form of a sum-

mary of the aim, method, or results of the cited work.

A set of such sentences for the cited documents become

useful data sources for generating a summary. Qazvinian

and Radev [149] proposes citation summary networks

where each node represents a citation sentence referenc-

ing the document of interest, and where similarity scores

between nodes determine edge weights. Sentences ex-

tracted from a clustering of the weighted graph form the

summary. Chen and Zhuge [26] design a multi-document

summarizer employing citation sentences. They cluster
the citation sentences to identify common facts and

them as weights (in the same guise as attention weights)

to select sentences from input documents to form a

summary.

However, such citation sentences are written from

the referrer’s perspective, hence tend to be subjective.

Recent works solve this issue by also utilizing citation

provenance. Here, citation provenance refers to the most

similar to the citation sentences found in the target doc-

ument, which serve as the proxy for the provenance or

reason for the citation. Classifiers built with pretrained

BERT [208] or CNN [111] find citation provenance by

treating it as a sentence pair classification problem. Ya-

sunaga et al. [201] uses the abstract and the citation

provenance as input to build a GNN. The node represen-

tation output from GNNs serves as a salience estimation

in selecting summary sentences.

Recommendations: Incorporating citation informa-

tion boosts the results of many SDP tasks. As discussed,

a node representation of a document in the citation

network provides a community view of the document;
hence, it is useful in identifying related papers for cita-

tion recommendation. The citation context serves as a

query to indicate the users’ interests in citation recom-

mendation. As for summarization, appropriate modeling

of citation networks helps in understanding scientific

concepts. Citation contexts are used directly as candi-

date summary sentences, or indirectly as the references

for document sentence extraction.

In this review, we have only concentrated on core

tasks in SDP in which citation network modeling is essen-

tial. Our opinion finds that citation modeling can assist

in tasks where the contextual positioning of how a pub-

lication fits in the community’s understanding is needed.

Such applications extend beyond summarization and rec-

ommendation and could include trend analysis, survey

paper construction, field and topic characterization, ex-

pert finding, author and institution reputation tracking,

among many other future creative uses. However, the

current studies apply task-agnostic graph representation,

resulting in suboptimal performance. Further enhance-

ments should be made by incorporating or attending to

document information for the task of representing the ci-

tation networks. Besides, while each discipline demands

its own metadata in the references [46], identifying the

optimal set of metadata entities in effective citation

networks construction requires further study.

5 Multimodality — Challenge #3

Scholarly documents are richly formatted documents,

in the sense that they are not exclusively corpora of
running text. Tables, figures, line art, and workflow di-

agrams are among some of the artifacts that are used

to communicate scholarly work. Such artifacts are often

embedded within the document itself (we term these

internal artifacts) that allow a reader to peruse data to

validate the findings highlighted by the authors. These

internal artifacts are often accompanied by a textual

caption, allowing these independent artifacts to be bet-

ter understood and contextualized within the parent

scholarly work. At the one end of the spectrum of mul-

timodality, scholarly documents also have other inlined

textual artifacts, usually symbolic notation — such as

ones for music, chemistry and mathematics — or domain-

specific entities that are used to encode and transmit

domain-specific information. At the other end of the

spectrum, datasets, program code, posters, presentation

slides and videos, are satellite, complementary exter-

nal artifacts that serve to complete a scholarly work,

often facilitating secondary uses of the work, inclusive

of replication, communication and use.

However, many tasks requiring modality consider-

ations appeal to methods that concern just a single

modality. As such, specific, single-modality methods are

utilized. For example, techniques in computer vision uti-

lizing deep learned CNNs are used for representing and

modeling internal artifacts such as figures and tables.

5.1 Representing Multimodality

To focus on the challenges in multimodality, we con-

strain our discussion to the representation of more than

one modality. We summarize multimodal representa-

tion methods in different combinations of modalities,

constraining our discussion to modalities common in sci-

entific documents. As the textual modality is central in

scientific document processing, we examine multimodal

representations in which text is combined with other
modalities.

Text + Figures/Tables. Figures and tables are inter-

nal artifacts commonly seen in a scholarly document,
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containing information not covered by the text. To gen-

erate a joint representation of texts and figures of a

document, a general framework is to extract the uni-

modal high-level features separately and then combine

the two sets of features. Anastasopoulos et al. [8] apply

concatenation to fuse the textual and visual features

extracted using two pre-training models. The models

proposed by Lu et al. [117] and Tan and Bansal [170]

are of similar structure, but fuse features differently.

They consist of two single-modal networks to separately

encode input text sequences and images, and a cross-
modal transformer to combine modalities. Zhang et al.

[209] project features from one modality to the other as

cross-modal attention, and design a cross-modal trans-

former that models both self-attention and cross-modal

attention. Li et al. [113] and Yu et al. [206] include the

object tags, attributes, and relations extracted from

the source image as input to ease the text-image align-

ment. Although they have only tested on neural images,

similar methods can be applied to scientific document

representation by extracting features of scientific charts,

such as the data’s trend (rise and fall), minimum and

maximum.

Bilinear pooling, which originated in the computer

vision community, is another common method for com-

bining features of different modalities [172]. It com-

bines every pair of multimodal input channels. However,

while powerful, this results in an explosion in feature

dimensionality and can result in overfitting and poor

performance. To address this, multimodal low-rank bilin-

ear pooling [57, 96] targets to solve this dimensionality

problem by means of a low-dimensional approximation.

Furthermore, multiple attempts have been made to in-

tegrate the attention mechanism with multimodal bilin-

ear pooling to improve representation effectiveness. For

example, Kim et al. [95] introduces bilinear attention

networks to find bilinear attention distributions of a

bimodal input before proceeding with low-rank bilinear

pooling.

Tables contain text content as cells, thus can be lin-

earized and concatenated with the textual inputs [191]

for multimodal representation. However, although such

a method requires no feature fusion, it neglects the 2-D

structure of tables. Table parsers [78] solve this problem
by including the cell locations in the modeling process,

but how to fuse the extracted table features and textual

features effectively becomes a challenge.

Text + Layouts. Layout is an important visual compo-

nent of a scientific document. As the relative positions

of document components (text blocks/figures/tables)

significantly contribute to the document’s semantics, in-

corporating layout information improves the multimodal

representation of a visually-rich document. Layout in-

formation is included as a 2-D position of a document

component to build its representation. For example, Xu

et al. [194] build a layout-aware transformer with text

tokens and their 2-D positions as input. To utilize the

visual information, Li et al. [112] slice the document im-

ages into rows, representing text and images with their

textual/visual features and positional encodings, and

then combine the two modalities using a cross-modality

encoder. Wu et al. [187] divide the documents into blocks

to accommodate the various size of document compo-
nents, and represent the location of the block with its

top-left and bottom-right coordinates. They design a

two-level structure to encode each block, then aggregate

block-level representations, and pretrain using hierar-

chical objectives. For scientific documents that contains

multiple pages, Pramanik et al. [147] utilize a special

transfomer [14] network architecture, in which the atten-

tion mechanism scales linearly with the sequence length,

to encode the multimodal information. The model uses

page images and page numbers as inputs, in addition

to token features. The system proposed by Huang et al.

[83] is an extension to [194], with an emphasis on align-

ment between word and image patches. It projects the

patches and word tokens linearly to generate contextual-

ized vector representations. The model is pretrained to

learn cross-modal alignment between words and patches.

Recommendations: The commonality in such repre-

sentation works is that both image and visual input

content can be represented by extracting their features

first separately and then to apply some fusion means

them to generate a joint representation. However, be-

cause of the nature of the images (natural images vs.

scientific figures) and length of the document (short

paragraphs vs. long documents), practitioners should

make modeling adjustments based on the characteris-

tics of the target scientific documents. Possible adjust-

ments include replacing the generic CNN image encoder

with encoders specifically designed for scientific figures

[23, 24, 25], and using transformers designed to repre-

sent long documents [147]. Representing the table with

a pretrained table parser has yet to be tested in repre-

senting the tabular and textual content of a scientific

document. While including layout information in the

modeling process improves the representation results,

additionally incorporating discourse structure (§ 3.2)

to better represent multimodal documents remains a

fertile area to be explored, in our view. Similarly, the

scope of what constitutes multimodality — in terms of

both inlined and external multimodal artifacts — can

be expanded to more holistically represent scientific

discourse for downstream tasks that may benefit from
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this auxiliary pathways for computing relevance and

similarities.

5.2 Incorporating Multimodality

Multimodal SDP tasks can operate either in a trans-

modality setting (where information in single input

modality is transferred or translated into another) or in

a true multimodal setting (where multiple modalities are

represented as input). We examine two representative

multimodal SDP tasks — captioning and summarization

— along these lines and conclude with our perspective of

the logical future directions in multimodal SDP.

Captioning. Internal artifacts such as figures and tables
include text captions to emphasize aspects of the data

[94, 102]. For visual information contained in charts,

captioning improves the recall and comprehension of
the data by drawing attention to some aspect of the

underlying information [75]. Due to the importance of

captions in understanding scholarly document content

and the presence of title-only captions, automated cap-

tion generators can assist in paper writing. Generating
captions is largely a trans-modality task, with the task

of appropriate encoding of the figure or table to decode

an appropriate output textual caption.

Trans-modality figure captioning. To automatically

generate captions for figures, a common process first

parses the figure with a CNN decoder, and then gen-

erates caption text based on the figure content using

an RNN decoder [23, 24, 25]. Attending to the labels

during decoding enables the model to utilize the text

contained in the figures [23]. The sequence-level training

with reinforcement learning improves the generation of

long captions by directly optimizing over the evaluation

metrics [25]. Such end-to-end models rely largely on the

quality and quantity of the training data to automati-

cally learn the caption generation process. To improve

the understanding of the caption generation problem,

Qian et al. [150]’s corpus-based study collected and an-

alyzed human-written captions, finding that a caption

often consists of a set of caption units, which refer to an

enumerated set of clause types (e.g., number and labels

of items, pairwise comparisons) describing specific types

of information in the figure. As such, to automatically

generate figure captions, a system should first generate

caption units according to the figures, then stitch the

units together using diverse patterns to form captions.

Specifically, Qian et al. [151]’s later model attends to

both the visual information and the metadata informa-

tion of the input figure to generate accurate caption

units.

Trans-modality table captioning. To generate table

captions, in contrast, prior work first serializes table

data, then processes them with a sequence encoder using

pre-trained language model [132]. Such models are fine-

tuned for numerical reasoning, but currently are still

unable to generate high-fidelity text. Therefore, Suadaa

et al. [165] introduce the use of the copy mechanism

during fine-tuning to reduce the occurrence of generated

phrases that are irrelevant to the table.

Multimodal figure and table captioning. Recent

work on captioning in the SDP context consider text

beyond the input figure and table. This form of the

task upgrades the task to a true multimodal task, as

the input includes relevant body text as well. Besides

being based on the target figure or table, Yang et al.

[196] consider texts relevant to the figure for caption

generation. The proposed system comprises of a figure
parsing module and a module to identify the sentences in

the body text related to the figure, fusing both together
using a rule-based algorithm.

Xu et al. [191] tackles a similar task, but for tables

instead of figures. They use a BM25-based retrieval

model to find sentences related to the text of the table

to augment the table input in a concentative method.

They feed the resultant text sequence to pretrained lan-

guage models to output a caption, or extend a partially

generated one in an auto-regressive manner.

Multimodal Summarization. Unlike the captioning task,

multimodal summarization must incorporate multimodal

sources, such as image and video as input [175] alongside

the text, so is a true multimodal application.

Accounting for tables and figures contained in a

scholarly document improves the quality of textual

summaries[175]. As figures and tables highlight impor-

tant messages of a paper, end-to-end multimodal summa-

rization focuses on critical aspects during text summary

generation. For example, Li et al. [108] and Chen and

Zhuge [27] design a modality-based attention mecha-

nism to summarize a sentence–image pair by attending

to different part of the images and text units simultane-

ously. Similarly, the multimodal selective gate network

proposed by Li et al. [109] considers both textual input

as well as visual features at the global, grid and object

levels.

Accounting for multimodal input also enables mul-

timodal summary output; i.e., summaries containing

both text and non-text modalities. A multimodal sum-

mary containing both text and figures provides the user

with additional visual information and ease the compre-

hension process as compared to a text-only summary

[213]. In addition to text, summarization incorporating

multimodal output system includes an image selector
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to include images into the summary based on evidence

from both the input text and images. Zhu et al. [213]

propose a multimodal attention model to jointly gen-

erate summary text and select the image that has the

highest visual coverage [108]. Chen and Zhuge [27, 28]

follow a similar framework in their two works, also con-

sidering both the visual features and the ordering of

those components in generating visual representations.

They accomplish this by encoding the visual features

with a CNN model, followed by an RNN model for the

ordering representation. To further improve the mul-
timodal representation, Zhang et al. [211] proposed a

unified approach to handle multimodal input by incor-

porating both multimodality and knowledge distillation

in representation.

Yet with these advances, there is still much room for

improvement. Performance of multimodal summarizers

degrade in the face of two connected problems: modal-

ity bias and insufficient data (resources). The problem

of modality bias occurs when models are optimized to

generate good text summaries but ignore the quality

of the selected images during training [215]. Zhu et al.

[215] design a multimodal objective function to include

the image selection loss in the training objective. Ye

et al. [204] further show that adding a residual connec-

tion to the model effectively alleviates modality bias.

Methods to improve the performance in low-resource

settings include utilizing cross-domain dataset and incor-

porating unsupervised training. One way to incorporate

pre-trained models proposed by Yamamoto et al. [195]

is to build visual-based image selector and language-

based text generator as two individual modules. While

this setup allows both modules to be trained with other

datasets, the improvement brought by fusing the other

modality in each task is neglected. To address this, Zhu
et al. [214] project the embeddings of the textual and

visual information to a common semantic space and

estimate the text–image similarity using a pre-trained

captioning model. They then build a graph-based extrac-

tive summarizer where the similarity (as edges) between

different information units (as nodes) is unsupervisedly

trained.

Summaries can also take special forms in scholarly

documents: as posters and presentation slides, which are

themselves multimodal views of a scholarly document. A

poster contains several panels, each covering a section of

the source document and containing both text and fig-

ures. A poster generator needs to identify the important

sections and extract the salient content for the panel.

The poster generation model by Xu and Wan [192, 193]

learns to predict important text and figures simultane-

ously based on their section-aware representations. The

extracted panels are then used to fill the predefined tem-

plate to form the poster. Similarly, a presentation slide

deck can inherit the structure of the source document.

It involves multimodal summary extraction and para-

phrasing of the source content to be more concise [55].

Furthermore, the identified information units need to

be arranged into the layout of presentation slides. The

system proposed by Fu et al. [55] contains modularized

components for each of these sub-tasks, and trains the

model end-to-end using a multi-objective loss function

covering both content selection and layout. In contrast,

Sun et al. [168] features a human-in-the-loop, leting
users input slide titles to retrieve the most relevant sen-

tences and figures to those titles. They use a question

answering paradigm, where the slide titles function as

questions and retrieve sentences as the source passage

for paraphrasing into concise forms.

Recommendations: In reviewing the prior work in

multimodal SDP, we notice an alignment gap. The prac-
tical work in multimodal SDP applications we reviewed

here (§ 5.2) have largely neglected the importance of

appropriate multimodal representation (§ 5.1). This

suggests a significant pathway forward: where the per-

formance of multimodal applications — such as our re-

viewed ones of captioning and summarization — improve

by careful and appropriate choice of their multimodal

representation. We note that in work related to both

applications, there has also been a focus on appropriate

selection: body text is long and laden with discourse

signals that help localize relevant text. Summarization

is an application also featured in Challenges #1 and

#2, such that both discourse structure and citation

networks can be thought of as modalities themselves.

This suggests that fusing representations across all three

challenges may benefit summarization performance.

In the larger context, we believe that the scope of

what multimodality is defined as in current scientific

document processing is still limiting. As SDP matures,

a broadened scope that includes the entire spectrum

of modalities — inlined, internal and external artefacts

— will afford new and interesting artefact-centric (i.e.,

equation, dataset, and grant funding mention indexing)

functionalities.

6 Resources

The proliferation of neural methods in SDP has spurred

the creation of many new large-scale datasets, and tools

to train and deploy modern neural network models and

make them accessible to downstream practitioners.
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Tool SDP tasks Neural
support

PDF
processing

Experimentation End-user
application

Code
availability

CERMINE
[174]

Extract reference string, Citation
string parsing

X X

GROBID [116] Header parsing, Reference extraction
and parsing, Citation context recog-
nition, Citation string parsing, Logi-
cal structure recovery

X

ParsCit [37] Logical structure recovery, Header
parsing, Citation string parsing

X X X

Neural-
ParsCit
[148]

Citation string parsing X X

Scienceparse4 Logical structure recovery X X X

SciSpacy [140] Biomedical named entity recognition,
Biomedical named entity linking

X X

SciWING
[153]

Logical structure recovery, Header
parsing, Citation string parsing, Ci-
tation intent classification, Clinical
notes parsing

X X X X X

Table 3 SDP related tools and frameworks, characterized based on a) SDP tasks: which tasks are directly supported, b)
Neural support: whether they include neural network based models, c) PDF processing: whether they support processing
PDF pipelines, d) Experimentation: whether they allow researchers to experiment with the machine learning models, e)
End-user application: whether they provide mechanisms to deploy models, and f) Code Availability: The availablity of
the project code. The url to the code is listed in the reference for those available.

6.1 Tools and Frameworks

Many recent generic NLP tools, like AllenNLP [59],

FLAIR [5], Texar [81], Spacy5 have been built on top
of deep learning frameworks like TensorFlow [1] and

Pytorch [145]. However, they do not cater to the specific
needs of SDP. We consider tools and frameworks specific

to SDP and use the following dimensions to compare

them as shown in the columns of Table 3: applicable

SDP tasks, neural support, PDF support, experimenta-

tion support and end-user applications. We make the

following observations:

1. SDP tasks: To be useful in the real world, we need

to combine solutions from different SDP tasks. An

ideal package for practitioners would provision cover-

age for a large number of SDP tasks. From the survey,

we find that GROBID and SciWING [116, 153] lead

on this front, while others like Neural-ParsCit[148]

and Science Parse deal with specific tasks like ci-

tation string parsing and logical structure recovery.

Future tools and frameworks should be engineered

to faciltate the easy addition of SDP tasks to provide

better coverage.

5 https://www.spacy.io

2. Neural support: There still is a significant gap in

making recent neural methodologies easy to apply

for downstream domains such as SDP. We call for the

community to continue to add to or support frame-

works to help researchers and practitioners obtain

the fruits of these benefits. Some teams have chosen

to reinvent their frameworks anew. Neural-ParsCit

[148], Science Parse and SciWING [153] provide na-

tive access to neural network pre-trained models

for end-users. Others, such as GROBID have taken

the path of retrofitting neural-network methods into

their frameworks. GROBID [116] also provides end-

users with neural network based methods.

3. PDF processing: Most of the scientific documents

are available in the Portable Document Format (PDF).

Tools that provide end-to-end PDF processing pipelines

improves ease of use. Otherwise, preprocessing to

obtain the needed input representation from the

PDF is first required. Given the integral nature of

processing PDFs for SDP tasks — for example, to
identify discourse structure — tools like CERMINE

[174], GROBID [116], ParsCit [37] and SciWING

[153] include mechanisms to directly ingest PDFs.

However, most of these tools treat PDFs as text-only

documents, and do not consider the computer vision

and multi-modal methods that have shown improved
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performance in other application domains. This cur-

rent weakness is a key area we feel for improvement

that the community should prioritize.

4. Experimentation: Many neural network models

are a precise combination of different modules and

embeddings; even applications to related SDP tasks

and domains often exhibit lower performance due to

the need for extensive tuning. Both SDP researchers

and practitioners would benefit from allowing experi-

mentation of the model, to tune the embeddings, and

to train and fine-tune the models on their own ap-
plication domain’s data. Except for SciWING [153],

most tools in our list and frameworks do not allow

for such experimentation.

5. End-user application: Most SDP practitioners are

interested in obtaining results for downstream use,

treating the software as off-the-shelf solutions with

easy to use, and may not be concerned in tuning the

models. Providing end-user applications are essen-

tial to achieve this. Most of the tools like Science

Parse and Neural-ParsCit [148] are the result of

research efforts, so do not focus on providing end-

user applications. Even trivial interfaces provided

by ParsCit [37], SciSpacy [140] and SciWING [153]

are useful. Further, tools like scite.ai6 and Semantic

Scholar that integrate the end results of research into

a user-friendly website is already proving beneficial

for scholar–practitioners.

6.2 Datasets

We also summarize the recent efforts to provide large-

scale datasets addressing challenges in SDP. Again, while
there are limitless possible SDP tasks, it is instructive

to limit our discussion to tasks (and their associated

resources) centrally related to our three challenges. For

these reasons, in this survey, we examine SDP datasets

targeting the two tasks of summarization and cita-

tion intent classification.

6.2.1 Summarization

Progress in practical summarization has taken large

strides in the past few years, spurred by the aforemen-

tioned techniques to train large-scale models and the

availability of data [44, 156]. Neural network approaches

have particularly targeted abstractive forms of summa-

rization, but require large amounts of data. For news arti-

cle summarization, corpora such as CNN/Daily Mail [76]

and NewsRoom [65] are examples. However, providing

large-scale human annotated summaries datasets for

6 www.scite.ai

scientific documents is expensive. They are long docu-

ments and require human subjects to have a complete

understanding of the document before creating a good

summary. In recent years, the SDP community has in-

vested efforts to create larger datasets [20, 21], for which

we provide an overview here:

1. SciTLDR [16]: introduces a TLDR (“Too long;

didn’t read”) dataset for 1–2 sentence summaries

of scientific publications, suitable for presenting as

search snippets. They obtain TLDRs from peer re-

views culled from OpenReview7 — a platform for

authors and independent reviewers. Such extreme

forms of summarization for scientific publications

are reminiscent of their news article counterparts in

XSUM [138].

2. SciSummNet [202]: creates a human-annotated sci-

entific summarization dataset by asking the anno-

tators to read the abstract of a paper and all the

citing sentences and form a summary. This dataset

contains 1,000 paper–summary pairs.

3. BIGPATENT [159]: Like scientific documents, patents

are long-form, conventionally structured documents.

BIGPATENT uses the abstract of a patent as its

summary. It includes more than a million document–

summary pairs.

4. TALKSUMM [106]: considers the video recordings

of paper presentations in NLP and machine learning

based conferences. They align the sentences in the

video transcripts with sentences from the paper us-

ing Hidden Markov Models and use these sentences

as extractive summaries. Models trained on the auto-

matically extracted dataset are as performant as on

human annotated data. The dataset contains 1,700
paper–summary pairs.

5. CSPubSum [35]: use the highlight statements pro-

vided by authors of ScienceDirect8 publications as hu-

man annotated extractive summaries. Further, they

also extend the gold summary sentences, by consid-
ering the top sentences that have a high ROUGE-

L [114] scores. The dataset consists of summaries for

more than 10,000 papers.

6. MS2 [45]: Medical studies are also a form of scientific

documents that have started to garner attention. The

Multi-Document Summarization of Medical Studies

(MS2) dataset features medical articles and sum-

maries to investigate the summarization and sense-

making of possibly contradictory biomedical articles.

It also provides annotation of key clinical medical

metadata in the form of patient, intervention, com-

parison and outcome (PICO [82]) keyphrases. Such

7 https://openreview.net/
8 www.sciencedirect.com

https://openreview.net/
www.sciencedirect.com
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Dataset Name Long/Short Size (# summaries) Single/Multiple Abstractive/Extractive Dataset
Availability

SciTLDR [16] Short 1700 Single Abstractive X

SciSummNet [202] Long 1K Single Abstractive X

BIGPATENT [159] Long 1M Single Abstractive X

TALKSUMM [106] Long 1.7K Single Extractive X

CSPubSum [35] Long 10K Single Extractive X

MS2 [45] Long 470K Multi Abstractive X

arXiv [33] Long 215K Single Abstractive X

PubMed [33] Long 133K Single Abstractive X

LaySumm [20] Long 572 Single Abstractive X

LongSumm [20] Long 2.2K Single both X

Table 4 Large-scale SDP summarization datasets. We compare them based on: a) Long/Short: we consider any summary
greater than a mean length of 50 words a long summary, b) Size: The number of document summary pairs, c) Single/Multiple,
d) Abstractive/Extractive: Whether the summaries are extractive or abstractive. Dataset Availability refers to availablity
of the paper’s dataset; where available, URLs are listed in the respective reference in the bibliography.

datasets represent the recent wave towards multi-

task and joint learning, where two SDP tasks can

profitably benefit each other.

7. ArXiv and Pubmed datasets [33]: introduces the

ArXiv and the PubMed datasets for summarization.

They consider the abstracts as the summaries and

the entire scientific article as the source. Since the

abstracts are written by humans, the summaries are

considered abstractive. The ArXiv dataset contains

more than 200,000 articles while the PubMed dataset

– contains more than 133,000 articles, making these

datasets some of the largest available.

8. LongSumm [20]: Most of the summarization datasets
include summaries that are a few hundred words. A

longer summary that enables one to explore the re-

search article — such as research weblogs — are

lacking. LongSumm aims to tackle this challenge by

contributing 1,705 extractive summaries from the

previous [106] dataset, also accompanied by abstrac-

tive summaries originating from research blogs that

contain on average of 30 or more sentences. It formed

one of the SDP shared tasks in 2021, chalking up 18

submissions to its three tasks.

9. LaySumm [20]: To make science more accessible to

non-technical readers, LaySumm aims to produce

summaries that explain the overarching goal and

impact of a scientific document. This dataset con-

tains around 570 human written lay summaries of

scientific documents and the corresponding abstract

and full text are made available.

Table 4 compares the summarization datasets among

a few salient dimensions. 1) Long/Short : The SDP

community aims to provide long summaries compared

to other domains such as news articles. This is because

scientific articles need to include multiple facets to fa-

cilitate reasonable comprehension. For example, the

summary should help readers understand the context,

the problems and gaps in the literature, and the scope

of the current article in solving it. 2) Size: News arti-

cle summaries contain millions of document–summary

pairs, compared to a few thousand supervised pairs for

scientific articles. Large transformer model that are in

vogue for summarization [107, 152, 210] require large-
scale data for training. Although recent efforts have

been directed in curating large-scale datasets for sum-

marization [16], continued efforts will benefit scientific

document summarization. 3) Single/Multiple: Most

works consider single documents for summarization, and

do not consider the citations or the citing article for

summarization. With the increasingly large network of

scientific articles and accompanying citations, captur-

ing salient information from multiple related documents

provides an alternative form of summarization that is

unique to scientific documents. Such summaries will

place the scientific document in an appropriate context

with respect to other works. 4) Extractive/Abstrac-
tive : While the recent application of neural models have

improved abstractive summarization, key issues for sci-

entific article summarization remain unaddressed. For

example, there is no guarantee of the factuality of the

generated summaries. We note that recent methods take
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Dataset Name Label Space Size Labeled
Citation Context

Dataset
Availability

Abu-Jbara et al. [3] Criticizing, Comparison, Using, Sub-
stantiating, Bias, Other

3.5K X

Cohan et al. [32] Background, Method, Comparison 11K X

Jurgens et al. [87] Background, Motivation, Using, Ex-
tending, Compare and Contrast, Fu-
ture

1.9K X

Lauscher et al. [103] Background, Motivation, Using, Ex-
tending, Similarities, Difference, Fu-
ture

12.6K X X

Nambanoor Kunnath et al. [136] Background, Motivation, Using, Ex-
tending, Compare and Contrast, Fu-
ture

4K X

Su et al. [164] Weakness, Comparison and Contrast,
Positive, Negative

1.4K X

Valenzuela et al. [176] Related Work, Comparison, Using,
Extending

465

Table 5 Datasets for Citation Intent Classification. We compare them based on a) Label Space: The set of labels used to
classify the citation, b) Size: The number of citations annotated with the citation intent, c) Labeled Citation Context:
Indicates whether the dataset also provides annotation for the context of the citation. Dataset Availability: Where the
dataset is publically available, its hyperlink is listed in its bibliographic reference.

steps to address this [29, 137] and going forward, a sum-
mary’s fidelity will remain an important criterion in

evaluating summaries.

6.2.2 Citation Intent Classification

Analyzing the citations made for a scientific publication

can help researchers understand how the scientific com-

munity perceives a scientific article. Online scientific

platforms such as Semantic Scholar and scite.ai6 have

deployed such analyses to aid researchers. Table 5 details

the efforts to curate datasets for such citation analy-

sis. We compare them with respect to their a) Label

Space: Intents annotated by the dataset, b) Size, and

c) Labeled Citation Context: whether the citation
context is also annotated.

1. Label Space: Datasets use disparate labels, and

some feature a hierarchical taxonomy. Building upon

previous works, some datasets break a label into a

more fine-grained label. For example, Lauscher et al.

[103] breaks down compare and contrast further into

Similarities and Differences. Cohan et al. [32] com-

pose many categories defined by Jurgens et al. [87]

into the Background section. The common reasons

cited by authors are ease of use or observations with-

out any evidence. The recent C3 shared tasks also

labeled citation influence (importance), appealing

to solutions featuring joint predictions of both tasks
Nambanoor Kunnath et al. [136].

Unfortunately, many of these works do not build

upon others, fragmenting the datasets and making

fair comparison difficult. We suggest that the com-

munity rally around a common, simple label space,
but which can be extended for discipline-specific

needs.

2. Size: The largest of datasets has close to 13,000

labeled citation contexts. Compared to well-known

text classification datasets, this scale is at least a

magnitude smaller, insufficient for building high-

performing neural models. This highlights the chal-

lenge to employ neural models for this task. Tech-

niques that require special treatment to handle lack

of data, are yet to be applied for citation intent

classification. Provided that annotating large-scale

datasets has been difficult up to now, we see an out-

look where such problems are addressed not with

additiona data, but with data-efficient techniques.

3. Labeled Citation Context: While it has been re-

peatedly shown that citation context improves cita-

tion intent classification, currently only two datasets

also annotate the citation context [3, 103]. Abu-Jbara

and Radev [4] propose to identify citation context

automatically, which is not tackled by current neu-

ral network methods. Apart from curation efforts to

label citation context, automatically identifying the
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context should be part of the pipeline for citation

intent classification.

7 Conclusion

We have given an overview of the challenges offered

by scientific document processing (SDP). In addition

to these key challenges, we conclude by discussing the

limitations of our survey and our view of future trends

and outlook for scholarly document processing.

Survey scope limitations: Our view of SDP, as

envisioned in this article, is still limited towards work

related more closely to the natural language processing

(NLP) community: with intrinsic document and cita-
tion processing. This is consistent with the vision of a

large subset within the digital library community; e.g.,

[124, 134]. Our intent was to provide a comprehensive

viewpoint on this scope; accordingly, our discussion of
the tasks, terminology, and datasets is limited to the

scenarios mentioned here.

However, SDP can be construed more broadly to ac-

count for relevance to any textual processing involved in

scholarly documents, including its multimodality — vi-

sual and aural [144]), its auxiliary artifacts (that is, data

and software [18, 77] or controlled metadata [125, 141])

— and its archiving and preservation [54]. A key limita-

tion of our work is that we have purposefully omitted

discussion of issues related to these other areas, and

leave the generalization to future scholars. Importantly,

we believe that the three challenges we have identified

are still entirely relevant to all such research and appli-

cation areas.

Future Outlook: Are there other key issues and

contexts that the SDP community needs to consider in

the upcoming years of development, within the scope of

the three challenges described here? Emphatically, yes!

To conclude, we offer our point of view on five critical

issues that the community should address.

1. Lack of Deep Learning Tools for SDP: The

proliferation of modern learning methods within the

NLP community has had a deep and lasting impact.

However, the use of such advances within the SDP

community has been difficult [64]. To facilitate shar-

ing the advances of deep learning on SDP tasks,

there is a clear need for easy-to-use tools. In § 6.1

we saw that neural network methods are integrated

in a few frameworks. But they are siloed, address

only a limited number of tasks, and have a steep

learning curve. To enable researchers to adopt mod-

ern methods in SDP, there is a dire need for tools

that provide pretrained models and allow easy exper-

imentation with minimal changes, parallel to general

NLP open-source projects.

2. Minimal Supervised Data: Abundant data is one

of the reasons for the success of large-scale neural

networks. Annotating data to obtain large-scale su-

pervised data is an expensive venture that requires

domain expertise, money, and effort. Therefore, re-

searchers continue to work in makingneural networks

effective in low-data scenarios. Pre-training and fine-

tuning domain-specific transformer models is cur-
rently the most effective and popular way to make

modern neural methods work in new domains [70].

With pre-training becoming ubitiquous in NLP appli-

cations, more studies such as Gupta et al. [69] that ex-

amine its effects of SDP tasks are needed. Data aug-

mentation is another popular technique to increase

the size of the data set [6, 62, 128, 155]. Alternate

learning mechanisms such as active learning [92, 186]

that reduces annotation costs and multitask learning

that results in more generalized models can also alle-

viate data scarcity problems [38, 63, 163, 183, 217].

On the other hand, large language models can be

used as a tool to alleviate the burden of annotat-

ing by producing annotations in a semi-automatic

manner [48]. Working with minimal supervised data

is an important endeavor for machine learning in

general. Solutions developed to this problem should

be adopted by SDP, and generally help the scientific

community.

3. Knowledge Driven Methods: Although advances

in deep learning generative methods produce fluent

language, it suffers from hallucinations and other
text degeneration problems [179]. Also, it does not

ensure that the generated text is factual and that

the important terms from the source document are

not missed — critical for scientific documents. Sum-

marization has especially seen an influx of work
that ensures that the generated summaries are fac-

tual (in the non-SDP context) and ensures that im-

portant facts are not omitted from the summaries

[121]. Another important area where factuality is

important is question answering [158] and fake sci-

ence detection [104]. Knowledge bases, which are

mostly manually-curated concise representations of

real-world knowledge, can help ensure that neural

networks outputs are factually correct. Many mod-

ern neural network methods inject side information

from knowledge bases into their architectures [115];

for example, for summarization systems [66, 212]

and for question answering [158]. Integrating knowl-

edge graphs into neural network representations is

an interesting recent endeavor, which will continue
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to gain importance in the future and is especially

important for scientific document processing.

4. Understanding Long and Multiple Documents:

Scientific documents are long and complex docu-

ments that pose major challenges to the current neu-

ral network architecture. Recent efforts have taken

different approaches to improve the number of tokens

analyzed and produced by models [14, 207]. Addi-

tionally, to assist in understanding a scientific field

and automating literature reviews, the SDP commu-

nity needs to research work that goes beyond single
documents. Neural network representations can con-

sider other related documents. In this vein, Cohan

et al. [34] introduce the SPECTER model, which

uses contrastive learning to learn similar represen-

tations for closely related documents. This concept

presents multiple challenges to the current neural

network paradigm, such as increasing computational

time and cost. These tasks serve as an appropriate

testbed to understand the advances on these fronts,

as with even longer documents, such as work on

theses and dissertations [53].

5. For Humans, By Humans: SDP aims to make

science faster and better. The importance of SDP

has increased with the collaborative work on COVID-

19 [93, 131]. The community can use these urgent

necessities to motivate work to further streamline

common research goals so that researchers can spend

more quality research time working on difficult cog-

nitive tasks. One way to achieve this is to help re-

searchers perform literature review [182], write sci-

entific papers efficiently [181], recommend papers

[52], produce automated summaries [16], understand
the context of a problem, and write critiques of a

paper. Progress in SDP is of little use if such human-

assistive technologies are not adopted outside re-

search. Digital libraries need to deploy such works

to enable researchers to be more efficient.
Automation allows efficiency, but the SDP commu-

nity also needs to engineer suitable work and evalu-

ation processes for check and balances of the quality

of automation. Advanced automation poses difficulty

for evaluation as tasks become harder to judge, es-

pecially with respect to recall (missing key work or

insights). Authors of productionized SDP tools have

an advantage for understanding and creating insights

that further their own research, possibly creating

imbalances that unfairly discriminate against junior

and non-native researchers. This is a recognized prob-

lem in general language technology deployments and

is being actively addressed in the NLP community

through a series of workshops [10, 39, 177]. We need

to address these fundamental of diversity and inclu-

sion issues before they become endemic problems in

scientific research.

Acknowledgements

The authors would like to thank the editorial team of

the International Journal on Digital Libraries for their

tireless work in helping shepherd and carefully proofread

the manuscript. We thank them for their patience with

our revision process and deeply thank them in their

critical involvement in shaping this article.

The team authors would also like to thank the many

group members of our research team whose readings and

insights also helped to shape the manuscript’s direction.

This work was partially funded by the Singapore Min-

istry of Education’s grant entitled “Scholarly Document

Information Extraction” (MOE T1 251RES20237).



22 Abhinav Ramesh Kashyap* et al.

References

1. Abadi, M., Agarwal, A., Barham, P., Brevdo, E.,

Chen, Z., Citro, C., Corrado, G. S., Davis, A., Dean,

J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A.,

Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser,

L., Kudlur, M., Levenberg, J., Mané, D., Monga, R.,
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