
Natural Language Engineering
http://journals.cambridge.org/NLE

Additional services for Natural Language Engineering:

Email alerts: Click here
Subscriptions: Click here
Commercial reprints: Click here
Terms of use : Click here

A PDTB-styled end-to-end discourse parser

ZIHENG LIN, HWEE TOU NG and MIN-YEN KAN

Natural Language Engineering / Volume 20 / Issue 02 / April 2014, pp 151 - 184
DOI: 10.1017/S1351324912000307, Published online: 06 November 2012

Link to this article: http://journals.cambridge.org/abstract_S1351324912000307

How to cite this article:
ZIHENG LIN, HWEE TOU NG and MIN-YEN KAN (2014). A PDTB-styled end-to-end discourse
parser . Natural Language Engineering, 20, pp 151-184 doi:10.1017/S1351324912000307

Request Permissions : Click here

Downloaded from http://journals.cambridge.org/NLE, IP address: 202.166.82.178 on 12 Feb 2014

Natural Language Engineering 20 (2): 151–184. c© Cambridge University Press 2012

doi:10.1017/S1351324912000307
151

A PDTB-styled end-to-end discourse parser

Z I H E N G L I N1,2, H W E E T O U N G1 and

M I N - Y E N K A N1

1Department of Computer Science, National University of Singapore

13 Computing Drive, Singapore 117417

e-mail : {linzihen, nght, kanmy}@comp.nus.edu.sg
2SAP Research, SAP Asia Pte Ltd, 30 Pasir Panjang Road, Singapore 117440

(Received 22 September 2011; revised 4 October 2012; accepted 9 October 2012;

first published online 6 November 2012)

Abstract

Since the release of the large discourse-level annotation of the Penn Discourse Treebank

(PDTB), research work has been carried out on certain subtasks of this annotation, such as

disambiguating discourse connectives and classifying Explicit or Implicit relations. We see a

need to construct a full parser on top of these subtasks and propose a way to evaluate the

parser. In this work, we have designed and developed an end-to-end discourse parser-to-parse

free texts in the PDTB style in a fully data-driven approach. The parser consists of multiple

components joined in a sequential pipeline architecture, which includes a connective classifier,

argument labeler, explicit classifier, non-explicit classifier, and attribution span labeler. Our

trained parser first identifies all discourse and non-discourse relations, locates and labels their

arguments, and then classifies the sense of the relation between each pair of arguments. For

the identified relations, the parser also determines the attribution spans, if any, associated

with them. We introduce novel approaches to locate and label arguments, and to identify

attribution spans. We also significantly improve on the current state-of-the-art connective

classifier. We propose and present a comprehensive evaluation from both component-wise

and error-cascading perspectives, in which we illustrate how each component performs in

isolation, as well as how the pipeline performs with errors propagated forward. The parser

gives an overall system F1 score of 46.80 percent for partial matching utilizing gold standard

parses, and 38.18 percent with full automation.

1 Introduction

A piece of text is often not to be understood individually, but understood by linking

it with other text units from its context. These units can be surrounding clauses,

sentences, or even paragraphs. A text span may connect to another span, because

there is a causal relation between them. Two text spans may also be connected

when they contrast each other. Such semantic relations are termed as rhetorical or

discourse relations. A text becomes semantically well structured and understandable

when its individual text units relate to each other to form connections that can be

recognized as higher level prose argumentation and presentation structures.

However, even when a text is well structured, it is not a trivial task to automatically

derive the discourse relations that hold the text together. In natural language

152 Z. Lin et al.

processing (NLP), discourse parsing is the process of understanding the internal

structure of a text and identifying the discourse relations in between its text units.

Over the last three decades, researchers have proposed a number of discourse

frameworks from different perspectives for the purpose of discourse analysis and

parsing (Grosz and Sidner 1986; Mann and Thompson 1988; Polanyi 1988; Hobbs

1990; Lascarides and Asher 1993; Knott and Sanders 1998; Webber 2004; Wolf

and Gibson 2005). However, designing and constructing such a discourse parser has

been a difficult task, partially attributable to the lack of large-scale annotated data

sets.

The Penn Discourse Treebank (PDTB) (Prasad et al. 2008) is a recently released,

discourse-level annotation aligned with the Penn Treebank (PTB; Marcus, Mar-

cinkiewicz, and Santorini 1993), which aims to fill this need. Providing a common

platform for discourse researchers, it is the first annotation framework that follows

the lexically grounded, predicate-argument approach, as proposed in Webber’s

framework (2004). The PDTB provides annotations for relations that are explicitly

signaled by discourse connectives1 as well as implied relations, the argument spans

of each relation, the sense of each relation, and when present, their attribution

spans. The following annotation shows a Condition relation between the italicized

and bolded spans that is explicitly signaled by the connective ‘if ’; the text span in

the box is an attribution span.

The Treasury said the U.S. will default on Nov. 9 if Congress doesn’t act by then.

The predicate of this relation is the explicit discourse connective ‘if ’, and the two

arguments to the predicate are the spans in italics and in bold. An attribution is a

relation between an agent and the abstract object denoted by the discourse relation

or an argument of a discourse relation. In this example, ‘The Treasury said’ is the

agent of the attribution that covers the entire relation.

Implicit relations capture discourse relations that are not explicitly signaled by

discourse connectives. The following example is an Implicit contrast relation. Here

annotators inferred a connective ‘however’ which can be inserted in between these

two sentences to reflect the relation.

She was untrained and, in one botched job killed a client.

Her remorse was shallow and brief.

There are a number of challenges associated with discourse parsing in the PDTB.

These include identifying discourse connectives from non-discourse ones, labeling

the argument spans of the relations, classifying the relation senses of both Explicit

and Implicit relations, and labeling the attribution spans. All of these steps need

to be tackled to build a fully automatic, end-to-end discourse parser in the PDTB

style. Since its release, much research has been carried out on the subtasks of the

PDTB, such as identifying discourse connectives and classifying Explicit or Implicit

relations. In this work, we

1 In this paper, discourse connectives refer to a subset of connectives that signals discourse
relations.

A PDTB-styled end-to-end discourse parser 153

• design a parsing algorithm that performs discourse parsing in the PDTB

representation; and

• implement an end-to-end system that is based on this algorithm in a fully

data-driven approach.

This system includes novel components to locate and label arguments as well

as improve components from previous work. We also propose and present a

comprehensive evaluation on the parser from both component-wise and error-

cascading perspectives. To the best of our knowledge, this is the first parser that

performs end-to-end discourse parsing in the PDTB style. The demo and source

codes of the parser have been released online2 (Lin, Ng and Kan 2010).

2 Related work

Many discourse frameworks have been proposed in the literature of discourse

modeling. Among them, there are the cohesive devices described by Halliday

and Hasan (1976), Hobbs’ inventory of coherence relations based on abductive

reasoning (Hobbs 1985), the Rhetorical Structure Theory (RST) proposed by

Grosz and Sidner (1986) and Mann and Thompson’s (1988) models, which aim to

associate speakers’ intentions with their focus of attention in discourse, the Linguistic

Discourse Model (LDM) proposed by Polanyi and Scha (1984) and Scha and

Polanyi (1988), the Lexicalized Tree Adjoining Grammar for Discourse (D-LTAG)

by Webber and Joshi (1998), Forbes et al. (2003), and Webber (2004), the Segmented

Discourse Representation Theory (SDRT) by Asher and Lascarides (2003), which

provides a logically precise dynamic semantic interpretation, and the discourse model

that associates discourse relations in a graph structure (Wolf and Gibson 2005). In

the following, we will review a number of automatic systems that are based on these

discourse frameworks. Readers are referred to Webber, Egg and Kordoni (2011) for a

more complete review on discourse frameworks, algorithms for discourse structures,

and discourse applications in language technology.

Mann and Thompson (1988) proposed RST which takes a nucleus-satellite view

on rhetorical relations, in which the satellite text span plays a subordinate role to

the main nucleus. RST defines a set of rhetorical relations as well as discourse

schemas for the structural constituency arrangements of text. As the RST schemas

are recursive, they enable the embedding of relations, leading to a tree structure of

the text. RST falls into the category that associates discourse relations with text

structures.

Marcu (1997) formalized an algorithm to automatically parse an unrestricted text

into its discourse tree using the RST framework. He made use of cue phrases to

split a sentence into elementary discourse units (edus), designed algorithms that are

able to recognize discourse relations with or without the signals of cue phrases,

and proposed four algorithms for determining the valid discourse tree giving the

relations of adjacent edus.

2 http://wing.comp.nus.edu.sg/~linzihen/parser/

154 Z. Lin et al.

Continuing in this vein, Soricut and Marcu (2003) introduced probabilistic models

to segment a sentence into edus, and to derive their corresponding sentence-level

discourse structure, using lexical and syntactic features. They experimented with

their models using the RST Discourse Treebank (RST-DT) corpus (Carlson, Marcu

and Okurowski 2001), which is annotated in the RST framework and covers a small

subset of the Wall Street Journal (WSJ), comprising 385 texts.

Huong, Abeysinghe and Huyck (2004) divided the discourse parsing process

into two steps: First, they used syntactic information and cue phrases to segment

sentences into edus and to generate discourse structures at sentence-level, and then

generated text-level structure from the sentence-level ones in a constrained, bottom-

up manner. They experimented with the RST-DT corpus and showed promising

system performance on four different component tasks of (1) sentence-level edu

segmentation, (2) sentence- and text-level relation connection of text spans, (3)

relation orientation (i.e., nucleus vs. satellite), and (4) relation sense classification. In

our system experiments, we also perform component-wise evaluations in a similar

fashion.

Recently, duVerle and Prendinger (2009) made use of a support vector machine

(SVM) approach, using a rich set of shallow lexical, syntactic, and structural features,

to train two separate classifiers on identifying the rhetorical structures and labeling

the rhetorical roles drawn from the RST-DT.

Wolf and Gibson (2005) proposed to use more complex discourse structures of

chain graphs to represent discourse relations. They released an annotation of 135

articles in a corpus called Discourse Graphbank, which includes annotations for

both Explicit and Implicit relations.

Wellner et al. (2006) used multiple knowledge sources to produce syntactic

and lexico-semantic features, which were then used to automatically identify and

classify Explicit and Implicit discourse relations in the Discourse Graphbank. Their

experiments show that discourse connectives and the distance between two text

spans have the most impact, and that event-based features also contribute to the

performance. As they did not separate the experimental results for Explicit and

Implicit relations, it is not possible to draw a conclusion on the performance on

classifying Implicit relations.

Baldridge and Lascarides (2005) proposed to represent the discourse structures

of SDRT (Asher and Lascarides 2003) in headed trees and model them with

probabilistic head-driven parsing techniques. They showed that dialogue-based

features can improve the models in both segmentation and relation recognition.

Subba and Di Eugenio (2009) presented a first-order learning approach to

determine rhetorical relations between discourse segments and a modified shift-

reduce parsing algorithm to build discourse parse trees. They showed improvements

by exploiting compositional semantics and segment discourse structure data.

Webber (2004) developed the Discourse Lexicalized Tree Adjoining Grammar

(D-LTAG), which associates discourse relations with lexical elements. In D-LTAG,

discourse relations are triggered by lexical elements (i.e., explicit or implicit discourse

connectives), focusing on low-level discourse structures and semantics of monologues.

A PDTB-styled end-to-end discourse parser 155

The PDTB is the first annotation that follows the lexically grounded, predicate-

argument approach in the D-LTAG framework. The scope of the annotation is much

larger in comparison with the RST-DT and the Discourse Graphbank, as it covers

all Wall Street Journal sections in the PTB. With the advent of the PDTB, some

recent works have attempted to recognize discourse connectives, relation senses, and

argument spans in this newer corpus. In a preliminary study, Miltsakaki et al. (2005)

used syntactic features and a Maximum Entropy model to classify the relation senses

of three explicit connectives – ‘since’, ‘while’, and ‘when’. Using syntactic features

extracted from the parse trees, Pitler and Nenkova (2009) introduced a model that

is able to disambiguate the discourse usage of connectives and recognize Explicit

relations. They extracted syntactic features from the constituent parses with regard

to the connectives, and showed that it significantly outperforms the baselines on a

ten-fold cross validation.

Dinesh et al. (2005) observed the connection between the syntactic structures

and the annotation of argument spans for intra-sentential subordinating explicit

connectives, and proposed an automatic algorithm that applies parse tree subtraction

to locate such argument spans. Wellner and Pustejovsky (2007) and Wellner (2009)

proposed machine learning approaches to identify the head words of the two

arguments for discourse connectives in the PDTB. They utilized constituent features,

dependency features, lexico-syntactic features, as well as the connective and its

contextual features. Elwell and Baldridge (2008) followed this work with the use

of general and connective-specific rankers and their combinations. Although their

method is capable of locating the positions of the arguments, it is not able to label

the span of these arguments. Prasad, Joshi and Webber (2010) proposed a set of

heuristics to locate the position of the Arg1 sentences for Explicit relations in cases

that the two arguments are not in the same sentence. Ghosh et al. (2011) designed

the argument segmentation task for Explicit relations as a token-level sequence

labeling task using conditional random fields (CRFs). They assumed gold standard

discourse connectives and used a set of syntactic features in two classifiers designed

for the two arguments.

Machine learning approaches have been applied on the PDTB to identify Implicit

relations (i.e., discourse relations that are not signaled explicitly by discourse

connectives such as ‘because’) in Pitler, Louis and Nenkova (2009) and our previous

work (Lin, Kan and Ng 2009). Pitler et al. (2009) performed classification of

Implicit discourse relations using several linguistically informed features, such as

word polarity, verb classes, and word pairs, showing an increase in performance

over a random classification baseline. Our classifier considers the context of the two

arguments, word pair information, as well as the arguments’ internal constituent

and dependency parses, and the results yield a significant improvement over the

majority baseline. Wang, Su and Tan (2010) subsequently employed the tree kernel

and added temporal ordering information to automatically recognize and classify

Explicit and Implicit discourse relations. Zhou et al. (2010) used a language model

to automatically generate Implicit connectives and presented two methods to use

these connectives for recognition of Implicit relations.

156 Z. Lin et al.

1Financial planners often urge investors to diversify and to hold a smattering of
international securities. 2And many emerging markets have outpaced more mature
markets, suchas the US and Japan. 3Country funds offer an easy way to get a taste
of foreign stocks without the hard research of seeking out individual companies.

4But it doesn’t take much to get burned. 5Political and currency gyrations can
whipsaw the funds. 6Another concern: The funds’ share prices tend to swing more
than the broader market. 7When the stock market dropped nearly 7% Oct. 13,
for instance, the Mexico Fund plunged about 18% and the Spain Fund fell 16%.
8And most country funds were clobbered more than most stocks after the 1987
crash.

Fig. 1. An excerpt from the article WSJ 0034. Each sentence is preceded with its superscripted

sentence number. All discourse and non-discourse connectives are italicized, with discourse

connectives further underlined. All relations annotated in this excerpt are also shown in

Examples 1–9 in Figure 2.

All of these research efforts on the PDTB can be viewed as isolated components

of a full parser. Our work differs from these prior efforts in that we design a parsing

algorithm that connects all of these subtasks into a single pipeline, and we implement

this pipeline into an end-to-end parser in the PDTB style. Our parser attempts to

recognize explicit discourse connectives, identify relation senses and argument spans

for both Explicit and Non-Explicit relations, and recognize attribution spans for these

relations. Component-wise, we introduce two novel approaches to accurately locate

and label arguments, and to label attribution spans. We also significantly improve

on the current state-of-the-art connective classifier with newly introduced features.

3 The Penn Discourse Treebank (PDTB)

The PDTB covers the set of Wall Street Journal articles in the PTB – approximately

one million words – which is much larger than previous annotations such as the

RST-DT. The PDTB adopts a binary predicate-argument view on discourse relations,

where a connective acts as a predicate that takes two text spans as its arguments.

The span to which the connective is syntactically attached is called Arg2, while the

other is called Arg1. The PDTB provides annotation for each discourse connective

and its two arguments. Example 1 in Figure 2 shows one Explicit relation extracted

from the excerpt in Figure 1, where the connective is underlined, Arg1 is italicized,

and Arg2 is bolded. Figure 1 is an excerpt containing two consecutive paragraphs

extracted from WSJ-0034, which will be used as a running example throughout this

paper.

The PDTB also examined sentence pairs within paragraphs for discourse relations

other than Explicit relations. Example 4 shows such an Implicit relation where the

annotator inferred an implicit connective ‘for example’ that most intuitively connects

Arg1 and Arg2. Some relations in the PDTB are alternatively lexicalized by non-

connective expressions, i.e., expressions that are not in the pre-defined, closed set of

discourse connectives. Example 5 is such an AltLex relation with the non-connective

expression ‘Another concern’.

A PDTB-styled end-to-end discourse parser 157

(1) Financial planners often urge investors to diversify and to hold a smattering of
international securities. And many emerging markets have outpaced more
mature markets, such as the US and Japan.

(Expansion.Conjunction – wsj 0034)

(2) And many emerging markets have outpaced more mature markets, such as the
U.S. and Japan. Country funds offer an easy way to get a taste of foreign
stocks without the hard research of seeking out individual companies.

(EntRel – wsj 0034)

(3) Country funds offer an easy way to get a taste of foreign stocks without the hard
research of seeking out individual companies. But it doesn’t take much to get
burned.

(Comparison.Contrast – wsj 0034)

(4) But it doesn’t take much to get burned. Implicit = FOR EXAMPLE Political and
currency gyrations can whipsaw the funds.

(Expansion.Restatement.Specification – wsj 0034)

(5) Political and currency gyrations can whipsaw the funds. AltLex [Another
concern]: The funds’ share prices tend to swing more than the broader
market.

(Expansion.Conjunction – wsj 0034)

(6) When the stock market dropped nearly 7% Oct. 13, for instance, the Mexico
Fund plunged about 18% and the Spain Fund fell 16%.

(Temporal.Synchrony – wsj 0034)

(7) Another concern: The funds’ share prices tend to swing more than the broader
market. When the stock market dropped nearly 7% Oct. 13, for instance, the
Mexico Fund plunged about 18% and the Spain Fund fell 16%.

(Expansion.Instantiation – wsj 0034)

(8) When the stock market dropped nearly 7% Oct. 13, for instance, the Mexico
Fund plunged about 18% and the Spain Fund fell 16%.

(Expansion.Conjunction – wsj 0034)

(9) When the stock market dropped nearly 7% Oct. 13, for instance, the Mexico
Fund plunged about 18% and the Spain Fund fell 16%. And most country
funds were clobbered more than most stocks after the 1987 crash.

(Expansion.Conjunction – wsj 0034)

Fig. 2. The nine discourse and non-discourse relations annotated on the excerpt in Figure 1.

We underline connectives, and italicize Arg1s, and bold Arg2s. The last line of each example

shows the relation sense and the file in the PDTB where the example is taken from. The

relation sense is shown in the format of Level-1-class.Level-2-type.Level-3-subtype.

If no Implicit or AltLex relation exists between a sentence pair, annotators then

checked whether an entity transition (EntRel) holds. EntRel captures cases where

the same entity is realized in both sentences. If no EntRel is found, annotators

labeled it as no relation (NoRel). Examples 2 and 10 show an EntRel and a NoRel

relation, respectively. Explicit, Implicit, and AltLex relations are discourse relations,

whereas EntRel and NoRel are non-discourse relations.3

3 Entity transition is also important in capturing textual coherence. Another line of research
in centering theory (Grosz, Weinstein and Joshi 1995; Barzilay and Lapata 2008) explores
local coherence by modeling entity transition.

158 Z. Lin et al.

Table 1. Level 1 classes and level 2 types of the discourse relations in the PDTB.
Level 3 subtypes are not shown

Temporal Contingency Comparison Expansion

Synchrony Cause Contrast Conjunction

Asynchronous Pragmatic Cause Pragmatic Contrast Instantiation

Condition Concession Restatement

Pragmatic Condition Pragmatic Concession Alternative

Exception

List

(10) A record date hasn’t been set. Bell, based in Los Angeles, makes and

distributes electronic, computer and building products.

(NoRel – WSJ-0202)

For each discourse relation, the PDTB also provides annotation for attribution

(i.e., the agent that expresses the argument) for Arg1, Arg2, and the relation as

a whole. For example, the text span in the box in Example 11 – ‘declared San

Francisco batting coach Dusty Baker after game two’ – is the attribution span for

the relation.

(11) “I believe in the law of averages”, declared San Francisco batting coach

Dusty Baker after game two. Implicit = accordingly “I’d rather see a

so-so hitter who’s hot come up for the other side than a good hitter who’s

cold.”

(Contingency.Cause.Result – WSJ-2202)

Aside from annotating all discourse and non-discourse relations, the annotators

of the PDTB provided a three-level hierarchy of relation senses. The first level

consists of four major relation classes: Temporal, Contingency, Comparison, and

Expansion. ‘Temporal’ is used when the events or situations in Arg1 and Arg2 are

related temporally. The ‘Contingency’ relation is used to mark when one argument

causally influences the other. A ‘Comparison’ relation results when the events in

Arg1 and Arg2 are compared to highlight differences. ‘Expansion’ relations result

when the semantics/discourse of one argument is continued or expanded in the

other argument.

For each class, a second level of sixteen types is defined to provide finer semantic

distinctions. They are listed in Table 1. For example, there are six types defined

under the Expansion class: Conjunction, Instantiation, Restatement, Alternative,

Exception, and List. A relation is labeled as ‘Restatement’ when one argument

reiterates the semantics of the other argument. In contrast, ‘Conjunction’ is used

when Arg2 provides additional information that is related to that in Arg1.

A third level of subtypes is defined to specify the semantic contribution of each

argument. Nine out of the sixteen types are refined into subtypes. For example, the

sense labeled for Example 4 is Expansion. Restatement.Specification, meaning that

A PDTB-styled end-to-end discourse parser 159

Input: a text T

Output: a discourse structure of T

1: // Step 1: label Explicit relations
2: Identify all connective occurrences in T

3: for each connective occurrence C do
4: Label C as disc-conn or non-disc-conn
5: if C is disc-conn then
6: Label Arg1 span and Arg2 span of C

7: Label (C, Arg1, Arg2) as one of the Explicit relations
8: end if
9: end for

10:

11: // Step 2: label Non-Explicit: Implicit, AltLex, EntRel, and NoRel relations
12: for each paragraph P in T do
13: for each adjacent sentence pair (Si, Sj) in P do
14: if (Si, Sj) is not labeled as an Explicit relation in Step 1 then
15: Label (Si, Sj) as EntRel, NoRel, or one of the Implicit/AltLex relations
16: end if
17: end for
18: end for
19:

20: // Step 3: label attribution spans
21: Split T into clauses
22: for each clause U do
23: if U is in some Explicit/Implicit/AltLex relation from Step 1 or 2 then
24: Label U as attr-span or non-attr-span
25: end if
26: end for

Fig. 3. Pseudocode for the discourse parsing algorithm.

there is a Restatement relation between Arg1 and Arg2, and Arg2 (instead of Arg1)

is the argument that provides specific details. In this work, we follow our previous

work (Lin et al. 2009) and focus on the Level 2 types, as we feel that the Level 1

classes are too general and coarse-grained for downstream applications, while the

Level 3 subtypes are too fine-grained and are only provided for some types.

4 System overview

We designed our parsing algorithm as a sequential pipeline to mimic the annotation

procedure performed by the PDTB annotators. Figure 3 shows the pseudocode. The

input to the parser is a free text T , whereas the output is the discourse structure

of T in the PDTB style. The algorithm consists of three steps, which sequentially

label Explicit relations, Non-Explicit relations, and attribution spans. Non-Explicit

relations include all relations that are not Explicit, i.e., Implicit, AltLex, EntRel, and

NoRel.

We first give a quick overview of the parser’s three steps. The first step is to identify

discourse connectives, label their Arg1 and Arg2 spans, and recognize their Explicit

160 Z. Lin et al.

relation senses. The parser starts by identifying all connective occurrences in T (line 2

in Figure 3), and labeling them as to whether they function as discourse connectives

or not (lines 3–4). When a connective occurrence C is determined to be a discourse

connective, its Arg1 and Arg2 spans are then identified, and the parser classifies the

tuple (C , Arg1, Arg2) into one of the Explicit relation senses (lines 5–7). The second

step then examines all adjacent sentence pairs within each paragraph. For each pair

(Si, Sj) that is not identified in any Explicit relation from Step 1, the parser then

classifies the pair into EntRel, NoRel, or one of the Implicit/AltLex relation senses

(lines 12–15). Following the PDTB annotation convention, our parser also ignores

inter-paragraph relations, i.e., it ignores the adjacent sentence pair in between two

paragraphs. In the third step, the parser first splits the text into clauses (line 21), and

for each clause U that appears in any discourse relations (i.e., Explicit, Implicit, and

AltLex relations; we term EntRel and NoRel as non-discourse relations), it checks

whether U is an attribution span (lines 22–24). In this step, the parser also follows

the PDTB representation to only identify attribution spans appearing in discourse

relations. It will not examine spans that are outside the text of the detected discourse

relations.

In our work, we adopt a sequential pipeline to parse a text, instead of following a

top-down or bottom-up approach that is common in determining the RST discourse

trees (Marcu 1997). The reason for this design is twofold. First, the algorithm mimics

the annotation procedure performed by the PDTB annotators, in which they labeled

argument spans, identified relation senses, and annotated attribution spans in a

step-by-step manner. Second, as the PDTB makes no commitments as to what kinds

of high-level structures may be built up from the low-level units, we do not presume

a tree-like structure or adopt a corresponding tree parsing algorithm. Note that this

design allows a relation to be embedded within the argument of another relation, as

well as an argument to be shared between two adjacent relations (i.e., the Arg1 of

the current relation is the Arg2 of the previous relation). For instance, Example 6 is

embedded in the Arg2 of Example 7, and sentence 4 is shared between Examples 3

and 4 as a common argument. Lee et al. (2006) provides detailed discussion on such

types of relation dependencies.

The pipeline of the parser is shown in Figure 4, which consists of the connective

classifier, argument labeler, explicit classifier, non-explicit classifier, and attribution

span labeler. The first three components correspond to step 1 in Figure 3, while the

last two correspond to steps 2 and 3, respectively. There are two sub-components in

the argument labeler: an argument position classifier and an argument extractor. A

detailed description of these components follows in the next section.

To illustrate the complete flow of the parsing algorithm, we look at how an ideal

parser parses the excerpt of two paragraphs in Figure 1. In the first step, after

comparing the text against the list of one hundred discourse connectives defined in

the PDTB, ten connective occurrences are identified, which are italicized in Figure 1.

The connective classifier then checks these occurrences and labels six of them as

discourse connectives, as indicated by those underlined in Figure 1. The argument

labeler follows by labeling the Arg1 and Arg2 spans for each discourse connective.

In Example 6, the Arg1 and Arg2 spans for the connective ‘when’ labeled by the

A PDTB-styled end-to-end discourse parser 161

Connective
classifier

Argument labeler

Argument
position
classifier

Argument
extractor

Explicit
classifier

Non-Explicit
classifier

Attribution
span labeler

Step 2Step 3

Step 1

Fig. 4. System pipeline for the discourse parser.

argument labeler are ‘for ... 16%’ and ‘the ... 13’. The tuple (when, ‘for ... 16%’, ‘the

... 13’) is next propagated to the explicit classifier, which classifies the relation sense

as Synchrony. In the second step, the parser examines all adjacent sentence pairs

within paragraphs 1 and 2 separately, i.e., the inter-paragraph sentence pair (S3, S4)

is exempt from checking. Since there are Explicit relations already assigned to the

pairs (S1, S2) in paragraph 1 and (S6, S7) and (S7, S8) in paragraph 2 (see Examples 1,

7, and 9), they are also exempt from further classification. The non-explicit classifier

then classifies the remaining pairs (S2, S3), (S4, S5), and (S5, S6) as EntRel, Implicit,

and AltLex relations, respectively, as shown in Examples 2, 4, and 5. In the last

step, the attribution span labeler will examine all discourse relations to label their

attribution spans. As there are no such spans in Figure 1, the reader is referred to

Example 11 for a sentence with an attribution span that would be labeled.

We now refine this overview by detailing the individual components’ structure and

processing workflow.

5 Components

Our system takes a fully data-driven, supervised learning approach. As such, the

annotated data are processed into binary feature vectors that are suitable input to

a maximum entropy learning model. In the following descriptions, we describe the

component designs as well as the derived feature classes.

5.1 Connective classifier

There are one hundred types of discourse connectives defined in the PDTB. Given

a connective occurrence such as ‘when’, the parser needs to decide whether it is

functioning as a discourse connective. To illustrate, compare the use of the connective

‘and’ in Example 1 (i.e. sentence 2) and in sentence 5 of Figure 1. In Example 1,

‘And’ is functioning as a discourse connective to join two discourse events in Arg1

and Arg2, thus the annotators labeled the sense as Expansion.Conjunction. On the

other hand, the ‘and’ in sentence 5 is used to link ‘Political’ and ‘currency’ in a noun

phrase, which is not an example of discourse use. In the entire PDTB corpus, words

162 Z. Lin et al.

and phrases annotated as discourse connectives (one hundred types) constitute only

29.65 percent of all their occurrences, with the remaining 70 percent not functioning

as discourse connectives. Thus, it is crucial to disambiguate the connectives before

sending them down the pipeline to label their argument spans and relation senses.

Pitler and Nenkova (2009) showed that syntactic features extracted from con-

stituent parse trees are very useful in disambiguating discourse connectives. Beside

the connective itself as a feature, they applied other syntactic features: The highest

node in the tree that covers only the connective words (which they termed self-

category), the parent, left and right siblings of the self-category, and two binary

features that check whether the right sibling contains a VP and/or a trace. The best

feature set they demonstrated also included pairwise interaction features between

the connective and each syntactic feature, and interaction features between pairs of

syntactic features.

In addition to the above, we observed that a connective’s context and part-of-

speech (POS) give a very strong indication of its discourse usage. For example, the

connective ‘after’ usually functions as a discourse connective when it is followed

by a present participle, as in ‘after rising 3.9%’. The syntactic parse path from the

connective to the root of the tree models how it is syntactically connected to the

sentence as a whole, reflecting its functionality within the sentence. Based on these

observations, we propose a set of lexico-syntactic and path feature classes for a

connective C with its previous word prev and next word next:

− C POS

− prev + C

− prev POS

− prev POS + C POS

− C + next

− next POS

− C POS + next POS

− path of C ’s parent → root

− compressed path of C ’s parent → root

Each of the above lines represents a feature class. The first seven feature classes

model the connective’s context and POS, while the last two are the path from C to

the root and the compressed path where adjacent identical tags are combined (e.g.,

-VP-VP- is combined into -VP-). Our path feature class is novel in the way that it

models the syntactic relation between the connective under consideration and the

syntactic root. Appendix A.1 lists the features to disambiguate the connective ‘after’

in Example 20, whose constituent parse tree is shown in Figure 10. Appendix A uses

Explicit relation in Example 20 to illustrate the features extracted for the classifiers

in step 1.

5.2 Argument labeler

The parser now labels the Arg1 and Arg2 spans of every connective labeled in the

previous step as a discourse connective, in two steps: (1) identifying the locations of

A PDTB-styled end-to-end discourse parser 163

Input: a discourse connective C and the text T

Output: Arg1 and Arg2 spans of C

1: // Argument position classifier
2: Classify the relative position of Arg1 as SS or PS
3:

4: // Argument extractor
5: if the relative position of Arg1 is SS then
6: Identify the Arg1 and Arg2 subtree nodes within the sentence parse tree
7: Apply tree subtraction to extract the Arg1 and Arg2 spans
8: else // the relative position of Arg1 is PS
9: Label the sentence containing C as Arg2

10: Identify and label the Arg1 sentence from all previous sentences of Arg2
11: end if

Fig. 5. Pseudocode for the argument labeler, which corresponds to line 6 in Figure 3.

Arg1 and Arg2, and (2) labeling the spans. We note that Arg2 is the argument with

which the connective is syntactically associated, and thus its position is fixed once

we locate the connective. The remaining problem of the first step is in identifying the

location of Arg1. We implement this as a classification task to recognize the relative

position of Arg1, with respect to the connective (line 2 in Figure 5). According to the

different relative positions of Arg1, the argument extractor then attempts to extract

the Arg1 and Arg2 spans in the second step (lines 5–11 in Figure 5). Figure 5 gives

the pseudocode for the argument labeler, which corresponds to line 6 in Figure 3

and is further discussed in the following.

5.2.1 Argument position classifier

Prasad et al. (2008) described the breakdown of positions of Arg1 in their study of the

PDTB annotations. They showed that Arg1 can be located within the same sentence

as the connective (SS), in some previous sentence of the connective (PS), or in some

sentence following the sentence containing the connective (FS). When Arg1 is located

in some previous sentence, it can either be in the immediately previous sentence of

the connective (IPS), or in some non-adjacent previous sentence of the connective

(NAPS). Example 8 is a relation where the arguments and connective appear in the

same sentence, while Example 1 shows a case in which Arg2 immediately follows

Arg1. The distribution from Prasad et al. (2008) shows that 60.9 percent of Explicit

relations are SS, 39.1 percent are PS, and less than 0.1 percent are FS (only eight

instances).

Motivated by this observation, we design an argument position classifier to identify

the relative position of Arg1 as SS or PS. We ignore FS since there are too few

training instances. We notice that the connective string itself is a very good feature.

For example, when the connective token is ‘And’ (i.e., ‘and’ with its first letter

capitalized, as in Example 1), it is a continuation from the previous sentence and

thus Arg1 is likely in PS; whereas when the connective token is in lowercase

‘and’, Arg1 is likely the clause at the left-hand side of ‘and’ and thus it is in SS

164 Z. Lin et al.

(Example 8). Furthermore, some connectives always take a particular position. For

example, ‘when’ always indicates an SS case, whereas ‘additionally’ always indicates

PS.

Aside from the connective string, we also use contextual feature classes in the

classifier for connective C with its first and second previous words prev1 and prev2.

The list below gives the feature classes used in our supervised classifier.

− C string

− position of C in the sentence: start, middle, or end

− C POS

− prev1
− prev1 POS

− prev1 + C

− prev1 POS + C POS

− prev2

− prev2 POS

− prev2 + C

− prev2 POS + C POS

After the relative position of Arg1 is identified, the result is propagated to the

argument extractor, which employs different strategies to extract the Arg1 and Arg2

spans, depending on whether the result is SS or PS.

5.2.2 Argument extractor

When the relative position of Arg1 is classified as PS from the previous stage,

Arg1 is located in one of the previous sentences of the connective, while Arg2 is

in the same sentence as the connective. A majority classifier labels the immediately

previous sentence as Arg1, which already gives an F1 of 76.90 percent under the

gold standard setting on the entire PDTB. In this paper, we focus on extracting the

argument spans for the SS case and do not focus on identifying the Arg1 sentences

for the PS case. As such, we employ the majority classifier as our classifier for the

PS case. Next, we describe our approach to extract the arguments for the SS case in

detail.

When Arg1 is classified as in SS, this means that Arg1, Arg2, and the connective

itself are in SS. This can be further divided into four situations depending on the

overlap and position of two arguments in the sentence:

(1) Arg1 precedes Arg2,

(2) Arg2 precedes Arg1,

(3) Arg2 is embedded within Arg1, or

(4) Arg1 is embedded within Arg2.

These four situations are illustrated by Examples 8, 6, 12, and 13, respectively. One

possible approach is to split the sentence into clauses before deciding which clause

is Arg1 or Arg2. The problem with this approach is that it is not able to recognize

the last two cases, where one argument divides the other into two parts. Another

A PDTB-styled end-to-end discourse parser 165

Root

Arg1 node

Arg2 node

3 42

Root

Arg1 node

Arg2 node

CC

Root

Arg1 node Arg2 node

CC

51

(a) (b) (c)

Fig. 6. Syntactic relations of Arg1 and Arg2 subtree nodes in the parse tree. (a) Arg2 contains

span 3 that divides Arg1 into two spans 2 and 4. (b)–(c) Two syntactic relations of Arg1 and

Arg2 for coordinating connectives.

challenge is to exclude the text spans that are not in the relation, such as the span

‘It’s the ... American’ in Example 12.

(12) It’s the petulant complaint of an impudent American whom Sony hosted for a

year while he was on a Luce Fellowship in Tokyo – to the regret of both

parties.

(Temporal.Synchrony – WSJ-0037)

(13) The prime minister, whose hair is thinning and gray and whose face has a

perpetual pallor, nonetheless continues to display an energy, a precision of

thought and a willingness to say publicly what most other Asian leaders dare

say only privately.

(Comparison.Concession.Contra-expectation – WSJ-0296)

Dinesh et al. (2005) showed that Arg1 and Arg2 in the same sentence for

subordinating connectives are always syntactically related as shown in Figure 6(a),

where Arg1 and Arg2 nodes are the lowest nodes that cover the respective spans.

They demonstrated that a rule-based algorithm is capable of extracting Arg1 and

Arg2 in such cases for subordinating connectives. By using tree subtraction, the third

case mentioned above can be easily recognized and the text spans that are not in

the relation can be excluded. In Figure 6(a), Span 3 is labeled as Arg2 that divides

Arg1 into two noncontinuous Spans 2 and 4. The out-of-relation spans (Spans 1

and 5) are also excluded by subtracting the subtree root at the Arg1 node from the

entire tree starting from the root.

However, dealing with only the subordinating connectives is not sufficient. Sub-

ordinating connectives only take up 40.93 percent for SS cases; the percentages

of coordinating connectives and discourse adverbials in the whole PDTB for SS

cases are 37.50 percent and 21.57 percent, respectively. We observe that coordinating

166 Z. Lin et al.

S

VP NP

VP ,

,

CC VP

.

. The figures in both reports

were adjusted to remove the effects of usual seasonal patterns

but

weren't adjusted for inflation

Arg2 node

Arg1 node

Fig. 7. The parse tree for Example 14 to illustrate Figure 6(c).

VP

ADVP

RB

still

VPMD

must

S

NP

SBAR

IN

that

Arg1 node

Arg2 node

Fig. 8. Part of the parse tree for Example 15 with Arg1 and Arg2 nodes labeled.

connectives (‘and’, ‘or’, ‘but’, etc.) usually constrain Arg1 and Arg2 to be syntactically

related in one of the two ways as shown in Figures 6(b)–(c), where CC is the

connective POS. Example 14 and Figure 7 give an example to illustrate Figure 6(c).

Discourse adverbials do not demonstrate such syntactic constraints as strongly as

subordinating and coordinating connectives do, but their Arg1 and Arg2 are also

syntactically bound by the positions of and path between the two argument nodes.

For example, Figure 8 shows the syntactic relation of the Arg1 and Arg2 nodes for

the discourse adverbial ‘still’ in Example 15. Furthermore, the rule-based algorithm

in Dinesh et al. (2005) does not recognize the fourth case where the Arg1 span

is embedded within the Arg2 span. The ratio of the third case to the fourth case

occurrences in the entire PDTB corpus is approximately 1:1. Thus, we believe that

the fourth case also needs to be taken care of.

(14) The figures in both reports were adjusted to remove the effects of usual

seasonal patterns, but weren’t adjusted for inflation.

(Comparison.Contrast – WSJ-0036)

(15) The ultimate result came in Hymowitz v. Lilly, where the highest New York

court expanded the market-share approach for the first time to say that

drug makers that could prove Mindy Hymowitz’s mother didn’t use their pill

must still pay their share of any damages.

A PDTB-styled end-to-end discourse parser 167

(Comparison.Concession.Contra-expectation – WSJ-0130)

Given these observations, we design an automatic argument node identifier to

first identify the Arg1 and Arg2 subtree nodes within the sentence parse tree for all

subordinating connectives, coordinating connectives, and discourse adverbials; and

then apply tree subtraction to extract the Arg1 and Arg2 spans. The argument node

identifier labels each internal node (except the POS node) of the tree with three

probabilities: functioning as Arg1-node, Arg2-node, and None. The internal node

with the highest Arg1-node probability is chosen as the Arg1 node, and likewise for

the Arg2 node. If the Arg1 node is the ancestor of the Arg2 node, the subtree under

the Arg2 node is then subtracted from the Arg1 subtree to obtain the Arg1 span,

and conversely when the Arg2 node is the ancestor of the Arg1 node. Motivated by

the observed syntactic properties, we use the following feature classes for node N

under consideration with regard to connective C:

− C string

− C ’s syntactic category: subordinating, coordinating, or discourse adverbial

− number of left siblings of C

− number of right siblings of C

− the path P of C ’s parent → N

− the path P and whether the number of C ’s left sibling is greater than one

− the relative position of N to C: left, middle, or right

The syntactic category (subordinating, coordinating, or discourse adverbial) of the

connective is a useful clue of the locations of the Arg1 and Arg2 nodes. We obtain the

corresponding categories for the connectives from the list provided in Knott (1996).

Appendix C shows the list of discourse connectives and their syntactic categories

from Knott’s thesis. The path from C ’s parent node to node N under consideration

is also an informative feature, as it reflects how N is related to C syntactically.

The following are two paths for the actual Arg2 node and the MD node in

Figure 8:

RB ↑ ADVP ↑ VP

RB ↑ ADVP ↑ VP ↓ MD

The relative position of N to C is medial when N is on the path of C to root; it can

also be left or right depending on whether it is located on the left- or right-hand

side of this path. This feature also models to some extent the syntactic relation of C

and N. To label each internal node with three probabilities, we adopt a maximum

entropy classifier, as it is capable of estimating class probabilities.

To illustrate how the argument position classifier and argument extractor work

together to label arguments, let us look at Example 12. After examining the features

for the connective ‘while’, the argument position classifier will decide that Arg1

and Arg2 are in SS, and pass it to argument extractor. Since the class is SS, the

argument extractor invokes the argument node identifier to locate the internal node

that covers the Arg1 span (i.e., ‘whom Sony ... both parties’) and that covers Arg2

168 Z. Lin et al.

and the connective (i.e., ‘while he ... in Tokyo’). Finally, tree subtraction is applied

to clean up and remove the Arg2 span from the Arg1 span.

5.3 Explicit classifier

After identifying a discourse connective and its two arguments, the next step is to

decide what Explicit relation it conveys. It is important to disambiguate the relation

sense of the connective, as the same connective may carry different semantics

under different contexts. For example, the connective ‘and’ has different senses of

Expansion.Conjunction and Expansion.List in Example 8 and 16, respectively.

(16) Microsoft added 2 1/8 to 81 3/4 and Oracle Systems rose 1 1/2 to 23 1/4.

(Expansion.List – WSJ-0327)

Prasad et al. (2008) reported a human agreement of 94 percent on Level 1 classes

and 84 percent on Level 2 types for Explicit relations over the whole PDTB corpus.

The connective itself is a very good feature, as only a few connectives are ambiguous

as pointed out in Pitler et al. (2008), and the distribution of the majority of the

ambiguous connectives is highly skewed toward certain senses. We train an explicit

classifier using three types of feature classes of the connective C and its previous

word prev:

− C string

− C ’s POS

− C + prev

We follow our previous work (Lin et al. 2009) to train and test on the sixteen Level

2 types.

5.4 Non-Explicit classifier

The PDTB also provides annotation for Implicit and AltLex relations, EntRel, and

otherwise no relation (NoRel), which are lumped together as Non-Explicit relations.

The Non-Explicit relations are annotated for all adjacent sentence pairs within

paragraphs. If there is already an Explicit relation from the previous step between

two adjacent sentences, they are exempt from further examination.

Similar to the explicit classifier, we adopt the Level 2 types for Implicit and

AltLex relations. As there are too few training instances for Condition, Pragmatic

Condition, Pragmatic Contrast, Pragmatic Concession, and Exception relations (in

total only nine training instances), these five types are removed, resulting in eleven

Level 2 types. Thus, our Non-Explicit classifier assigns candidate sentence pairs to

one of the thirteen types (eleven Level 2 types plus EntRel and NoRel). We apply

the three feature classes from our previous work (Lin et al. 2009):

− constituent parse features

− dependency parse features

− word-pair features

A PDTB-styled end-to-end discourse parser 169

We had

no operating problems at all

PRP

NP

VBD

DT NN NNS IN DT

NP ADVP

NP

VP

S

We

had

no operating

problems

at

all

nsuj dobj

advmodnndet

dep

(a) (b)

Fig. 9. (a) A constituent subtree, and (b) a dependency subtree for Arg1 of an Implicit

relation from WSJ-2224.

Constituent parse and dependency parse features include production rules and

dependency rules from the parse trees of the arguments. From our observation of

the PDTB relations, the syntactic structure within one argument may constrain the

relation sense and the syntactic structure of the other argument. For Arg1 and

Arg2 of each relation, we extract the corresponding constituent and dependency

parses. As an argument can be a single sentence or a clause, this results in a whole

constituent/dependency tree or parts of a tree. From these parses, we extract all

possible production rules and dependency rules, and represent each rule as three

binary features to check whether it appears in Arg1, Arg2, or both arguments.

For instance, the production rules for the subtree in Figure 9(a) are S → NP VP,

NP → PRP, PRP → ‘We’, etc.; the dependency rules for the dependency subtree in

Figure 9(b) are ‘had’← nsubj dobj, ‘problems’← det nn advmod, ‘at’← dep. Word-

pair features are word pairs in which one word is extracted from Arg1 and another

from Arg2, i.e., all (wi, wj) where wi is a word from Arg1 and wj is a word from Arg2.

AltLex relations are very similar to their counterpart Explicit relations, except

that they are alternatively lexicalized by some non-connective expressions, instead of

being expressed by one of the one hundred PDTB pre-defined discourse connectives.

Such non-connective expressions are usually attached at the beginning of Arg2 (e.g.,

such as ‘Another concern’ in Arg2 of Example 5). To distinguish AltLex relations,

we use three feature classes that represent the first three stemmed terms of Arg2.

For the example above, the features that are turned on will be term1=another,

term2=concern, and term3=the.

5.5 Attribution span labeler

For each discourse relation (i.e., Explicit, Implicit, or AltLex relation), the PDTB

annotators labeled the attribution spans and annotated four dimensions for Arg1,

Arg2, and the relation: their sources, types, scopal polarities, and determinacy. For

the current parser, we label the attribution spans without labeling the four attribution

dimensions and the direction (Arg1, Arg2, or the relation) it is associated with. The

reason is that our focus of study is the attribution location and span, and recognizing

170 Z. Lin et al.

these four dimensions and attribution direction will lead to building another set of

classifiers which are outside of our study. Note that we label attribution spans that

appear within discourse relations.

The attribution span labeler consists of two steps: splitting the text into clauses,

and deciding which clauses are attribution spans. In the first step, we employ

a lightweight clause splitter that we have developed which uses a syntactically

motivated approach similar to that of Skadhauge and Hardt (2005). This clause

splitter makes use of punctuation symbols and syntactic structures of SBAR

complements.

The attribution span labeler then classifies each clause into attr-span or non-attr-

span. Words (especially verbs) in the clause are a very good clue to decide whether

it is an attribution. Examples are the verbs ‘declared’ and ‘say’ in Examples 11 and

15. Another useful clue is by looking at the end of the previous clause and the start

of the next one. In Example 11, which is partially replicated below, the previous

clause ends with a comma and a closing quotation mark, and the next clause starts

with an opening quotation mark, which suggests that the previous and next clauses

are in the same speech act and the current clause is probably the attribution of the

speech.

. . . averages’, declared San Francisco batting coach Dusty Baker after game two.

‘I’d . . .

Based on these observations, we propose the following feature classes which are

extracted from the current, previous, and next clauses (curr, prev, and next):

− lowercased and lemmatized verbs in curr

− the first and last terms of curr

− the last term of prev

− the first term of next

− the last term of prev + the first term of curr

− the last term of curr + the first term of next

− the position of curr in the sentence: start, middle, end, or whole sentence

− production rules extracted from curr

Appendix B shows features extracted for the above example. Some clauses that

belong to single attribution spans may be incorrectly split into more than one clause

by the clause splitter. For example, “said C. Bruce Johnstone, who runs Fidelity

Investments’ $5 billion Equity-Income Fund.” is annotated as a single attribution

span in the PDTB. It is (mistakenly) split into two clauses “said C. Bruce Johnstone,”

and “who runs Fidelity Investments’ $5 billion Equity-Income Fund.” by the clause

splitter, and then both classified as attr-span. To correct such mistakes, adjacent

attribution clauses within a sentence are combined to form a single attribution span

after classification.

6 Evaluation

In all of our experiments, we follow the recommendation from PDTB-Group (2007)

to use Sections 02–21 in the PDTB for training, Section 22 for development, and

A PDTB-styled end-to-end discourse parser 171

Section 23 for testing. All classifiers are trained with the OpenNLP maximum

entropy package4 without smoothing and with one hundred iterations.

For each component, the experiments are carried out when there is no error

propagated from the previous components (i.e., using gold standard annotation for

the previous components), and also when there is error propagation. As the PDTB

was aligned with the PTB, we can either directly use the gold standard parse trees

and sentence boundaries from the PTB files, or we can apply an automatic parser

and sentence splitter. The experiments are carried out under three settings for each

component:

(1) GS + no EP: using gold standard (GS) parses and sentence boundaries without

error propagation (EP).

(2) GS + EP: using GS with EP.

(3) Auto + EP: using both automatic parsing and sentence splitting (Auto) with

EP.

Thus, GS + no EP corresponds to a clean, per-component evaluation, whereas the

Auto + EP setting assesses end-to-end fully automated performance (as would be

expected on new and unseen text input). We use the NIST text segmenter5 to insert

sentence boundaries and the Charniak parser6 to parse sentences in Auto setting.

As there are no gold standard dependency parses for the PTB files, we employ the

Stanford dependency parser7 in both GS and Auto settings.

The main focus of this work is designing an end-to-end discourse parser joined

by all components and not on improving a specific component. As such, we only

re-implement Pitler and Nenkova’s (2009) system to compare with our connective

classifier. For other components, we do not re-implement other systems mentioned

in the related work section.

6.1 Results for connective classifier

On the connective classifier task, Pitler and Nenkova (2009) (hereafter, P&N)

reported an accuracy of 96.26 percent and F1 of 94.19 percent with a ten-fold

cross validation (CV) on Sections 02–22. To compare with P&N, we also run a

ten-fold CV on Sections 02–22 using their features and obtain replicated accuracy

of 96.09 percent and replicated F1 of 93.57 percent. Adding in our lexico-syntactic

and path features, the performance is increased to 97.25 percent accuracy and 95.36

percent F1, yielding improvements of 0.99 percent and 1.17 percent over the reported

results and 1.16 percent and 1.79 percent over the replicated results. A paired t-test

shows that the improvements over our replication of P&N’s results are significant

with p < 0.001.8

4 http://maxent.sourceforge.net/
5 http://duc.nist.gov/duc2004/software/duc2003.breakSent.tar.gz
6 ftp://ftp.cs.brown.edu/pub/nlparser/
7 http://nlp.stanford.edu/software/lex-parser.shtml
8 It is not possible to conduct paired t-test on the reported results for P&N as we do not

have their predictions.

172 Z. Lin et al.

Table 2. Results for the connective classifier. No EP as this is the first component in
the pipeline

P&N +new

Acc. F1 Acc. F1

GS 95.30 92.75 97.34 95.76

Auto 94.21 91.00 96.02 93.62

Table 3. Results for the argument position classifier

Per-class F1

Prec. Recall F1 SS PS

GS + no EP 97.94 97.94 97.94 98.26 97.49

GS + EP 94.66 94.04 94.35 92.90 96.42

Auto + EP 92.75 91.44 92.09 89.55 95.74

In Table 2, we report results from the connective classifiers trained on Sections 02–

21 and tested on Section 23. As there is no error propagated into the connective

classifier since it is the first component, we report results for just the GS and Auto

settings. The second and third columns show the accuracy and F1 using the features

of P&N, whereas the last two columns show the results when we add in the lexico-

syntactic and path features (+new). Introducing new features significantly (all with

p < 0.001) increases the accuracy and F1 by 2.04 percent and 3.01 percent under

the GS setting, and 1.81 percent and 2.62 percent under the Auto setting. This

confirms the usefulness of integrating the contextual and syntactic information. As

the connective classifier is the first component in the pipeline, good performance is

crucial to mitigate the effect of cascaded errors downstream.

When we look into the incorrectly labeled connectives, we find that the connective

with the highest number of incorrect labels is ‘and’ (eight false negatives and four

false positives for the GS setting). This is not surprising, as ‘and’ is always regarded

as an ambiguous connective. A solution to this problem is to separately train one

model for each highly ambiguous connective and another generic model to identify

the remaining connectives.

6.2 Results for argument labeler

We next perform evaluation on the argument position classifier, and report micro

precision, recall, and F1, as well as the per-class F1, in Table 3. The GS + no EP

setting gives a high F1 of 97.94 percent, which drops to 3.59 percent and another

2.26 percent when error propagation and full automation are added in. The per-class

A PDTB-styled end-to-end discourse parser 173

Table 4. Results for identifying the Arg1 and Arg2 subtree nodes for the SS case
under the GS + no EP setting for the three categories

Arg1 F1 Arg2 F1 Arg1 & Arg2 F1

Subordinating 88.46 97.93 86.98

Coordinating 90.34 90.34 82.39

Discourse adverbial 46.88 62.50 37.50

All 86.63 93.41 82.60

F1 shows that the performance degradation is mostly due to the SS class (Arg1 and

Arg2 in SS): the drops for SS are 5.36 percent and 3.35 percent, compared with 1.07

percent and 0.68 percent for PS. When we look into the contingency table for the

GS + EP setting, we note that out of the thirty-six false positives propagated from

the connective classifier, thirty of them are classified as SS; for the Auto + EP setting,

there are forty-six out of fifty-two classified as SS. This shows that the difference

in the performance drops for SS and PS is largely due to error propagation from

the connective classifier, and not to the classes themselves. Although not strictly

comparable, these results are consistent with the results in Prasad et al. (2010),

which reported an accuracy of 93 percent on classifying discourse adverbials into

intra- and inter-sentential. Three feature classes were used in Prasad et al. (2010):

connective head, connective position, and syntactic path from the connective to the

root of the sentence.

We next evaluate the performance of the argument extractor. Table 4 illustrates the

results of identifying the Arg1 and Arg2 subtree nodes for the SS case for the three

connective categories. The last column shows the Arg1 & Arg2 F1 which requires

both Arg1 and Arg2 nodes to be identified correctly. We only show the results

for the GS + no EP setting. As expected, Arg1 and Arg2 nodes for subordinating

connectives are the easiest ones to identify and give a high Arg2 F1 of 97.93 percent

and a Arg1 & Arg2 Level F1 of 86.98 percent. We note that the Arg1 F1 and Arg2

F1 for coordinating connectives are the same, which is unexpected, as we expect

Arg2 nodes to be easier to classify since Arg2 and the connective are syntactically

associated. Error analysis shows that the Arg2 spans for coordinating connectives

tend to include extra text that causes the Arg2 nodes to move lower down in the

parse tree. For example, “... and Mr. Simpson said he resigned in 1988” contains

the extra span “Mr. Simpson said” which causes the Arg2 node (which covers “he

resigned in 1988”) moving two levels down the tree. The system erroneously labels

“Mr. Simpson ... 1988” as Arg2.

Also as we discussed, discourse adverbials are difficult to identify as their Arg1

and Arg2 nodes are not strongly bound in the parse trees. However, as they do not

take up a large percentage in the test data (only 5.38 percent of the test data is for

identifying the Arg1 and Arg2 nodes for discourse adverbials under the GS + no EP

setting), they do not lead to a large degradation as shown in the last row of the

overall performance of the three categories.

174 Z. Lin et al.

Table 5. Overall results for argument extractor

Arg1 F1 Arg2 F1 Arg1 & Arg2 F1

Partial GS + no EP 86.67 99.13 86.24

GS + EP 83.62 94.98 83.52

Auto + EP 81.72 92.64 80.96

Exact GS + no EP 59.15 82.23 53.85

GS + EP 57.64 79.80 52.29

Auto + EP 47.68 70.27 40.37

Table 6. Results for explicit classifier

Precision Recall F1

GS + no EP 86.77 86.77 86.77

GS + EP 83.19 82.65 82.92

Auto + EP 81.19 80.04 80.61

Miltsakaki, Prasad, Joshi and Webber (2004) reported human agreements on

both exact and partial matches to be 90.2 percent and 94.5 percent, respectively. We

follow this work and report both exact and partial matches. When checking an exact

match, we require two spans to match identically, excluding any leading and ending

punctuation symbols. A partial match is credited if there is any overlap between the

verbs and nouns of the two spans. The results for the overall performance for both

SS and PS cases are shown in Table 5. The GS + no EP setting gives a satisfactory

F1 of 86.24 percent for partial matching on Arg1 & Arg2 F1. On the other hand, the

results for exact matching are much lower than the human agreement. In Miltsakaki

et al.’s (2004) work, most disagreements for exact match were reported to come from

partial overlaps which do not show significant semantic difference. Similarly, in our

analysis, we observed that most misses are due to small portions of text being deleted

from or added to the spans by the annotators to follow the minimality principle. The

minimality principle states that the annotation should include in the argument the

minimal span of text that is sufficient for the interpretation of the relation. This

requires deep semantic analysis and poses difficulties for machines to follow.

6.3 Results for explicit classifier

Following the pipeline, we then evaluate the explicit classifier, with its performance

shown in Table 6. Recall that human agreement on Level 2 types is 84.00 percent

and a baseline classifier that uses only connectives as features already yields an

F1 of 86.00 percent under the GS + no EP setting on Section 23. Adding our

new features improves F1 to 86.77 percent (but which is not a statistically significant

A PDTB-styled end-to-end discourse parser 175

Table 7. Results for non-explicit classifier

Precision Recall F1 Baseline F1

GS + no EP 39.63 39.63 39.63 21.34

GS + EP 26.21 27.63 26.90 20.30

Auto + EP 24.54 26.45 25.46 19.31

Table 8. Results for the attribution span labeler

Precision Recall F1

Partial GS + no EP 79.40 79.96 79.68

GS + EP 65.93 79.96 72.27

Auto + EP 64.40 51.68 57.34

Exact GS + no EP 65.72 66.19 65.95

GS + EP 54.57 66.19 59.82

Auto + EP 47.83 38.39 42.59

improvement). With full automation and error propagation, we obtain an F1 of 80.61

percent. Pitler and Nenkova (2009) show that using the same syntactic features as

their connective classifier is able to improve the explicit classifier on a ten-fold cross

validation on Sections 02–22. We have trained the classifier on Sections 02–21 using

their features and tested on Section 23, but it actually performs worse than the

baseline. Therefore, we do not include their features in the explicit classifier.

6.4 Results for non-explicit classifier

For the non-explicit classifier, a majority class baseline that labels all instances

as EntRel yields an F1 in the low 20s, as shown in the last column of Table 7.

The percentage of EntRel is slightly higher than the most frequent Implicit Cause

relations (21.34 percent vs. 21.24 percent in Implicit relations). A single component

evaluation (GS + no EP) shows a micro F1 of 39.63 percent. Although the F1

scores for the GS + EP and Auto + EP settings are unsatisfactory, they still

significantly (p < 0.01) outperform the majority class baseline by about 6 percent.

This performance is in line with the difficulties of classifying Implicit relations

discussed in detail in our previous work (Lin et al. 2009).

6.5 Results for attribution span labeler

The final component, the attribution span labeler, is evaluated under both partial

and exact match, similar to the argument extractor. From Table 8, we see that

the GS + no EP setting achieves F1 scores of 79.68 percent and 65.95 percent for

partial and exact matches, respectively. When error propagation is introduced, the

176 Z. Lin et al.

Table 9. Overall performance for both Explicit and Non-Explicit relations. GS + no
EP setting is not included, as this is not a component-wise evaluation

F1

Partial GS + EP 46.80

Auto + EP 38.18

Exact GS + EP 33.00

Auto + EP 20.64

degradation of F1 is largely due to the drop in precision. This is not surprising as

at this point the test data contains a number of false positives propagated from

the previous components. This has an effect on the precision calculation but not

recall (the recall scores do not change). When full automation is further added, the

degradation is largely due to the drop in recall. This is because the automatic parser

introduces noise that causes errors in the clause splitting step.

6.6 Overall performance

In order to evaluate the whole pipeline, we look at the Explicit and Non-Explicit

relations that are correctly identified. We define a relation as correct if its relation

sense is classified correctly, and both its Arg1 and Arg2 are partially or exactly

matched. The overall performance is shown in Table 9. Under partial matching, the

GS + EP setting gives an overall system F1 of 46.80 percent, while under exact

matching, it achieves an F1 of 33.00 percent. Auto + EP gives 38.18 percent F1

for partial match and 20.64 percent F1 for exact match. A large portion of the

misses comes from the Non-Explicit relations, as these are more difficult to classify

in comparison with the Explicit relations. The GS + EP F1 is close to the system

F1 of 44.3 percent of an RST parser reported in duVerle and Prendinger (2009).

7 Discussion and future work

The overall performance of the whole pipeline shows that the non-explicit classifier

generates a large portion of errors, which suggests that there is still much room

for improvement in that component. In our previous work (Lin et al. 2009) on

classifying Implicit relations, we have shown that the difficulties of this task are

mostly attributed to the following four types of challenges: (1) the ambiguity among

the relation senses, (2) the need for using inference and a knowledge base, (3) the

analysis of the contextual information in understanding the arguments, and (4)

access to world knowledge. We plan to tackle some of these challenges in the non-

explicit classifier in our future work. For example, we may extract information from

external resources such as WordNet (Miller 1995) and Wikipedia to incorporate

world knowledge into the component.

In our explicit classifier, although the tuple (C , Arg1, Arg2) is passed into

the classifier, the current approach does not make use of information from Arg1

A PDTB-styled end-to-end discourse parser 177

and Arg2. One future direction is to extract informative features from these two

arguments for explicit classifier. The current approach also does not deal with

identifying Arg1 from all previous sentences for the PS case. Although about 77

percent of Arg1s can be located in the immediately previous sentence of Arg2s in

this case, it is important to take the rest into consideration to make this component

complete. Furthermore, this task will not be easy, as there is no restriction on

distance between Arg1 and Arg2. Example 17 shows a situation where Arg1 is

located four sentences away from Arg2. Our next step is to design a PS identifier

and integrate it into the current pipeline. One possibility is to follow Prasad et al.

(2010) to use a set of filters and heuristics to locate the positions of Arg1 spans.

(17) GOODY PRODUCTS Inc. cut its quarterly dividend to five cents a share from

11.5 cents a share. The reduced dividend is payable Jan. 2 to stock of record

Dec. 15. The Kearny, N.J.-based maker of hair accessories and other

cosmetic products said it cut the dividend due to its third-quarter loss of

$992,000, or 15 cents a share. In the year-ago quarter, the company reported

net income of $1.9 million, or 29 cents a share. The company also adopted an

anti-takeover plan.

(Expansion.Conjunction – WSJ-0068)

The PDTB provides annotations for the direction of attributions to indicate

whether an attribution is pointing to Arg1, Arg2, or the relation as a whole.

In Example 18, the attribution “traders said” points to Arg1, while the second

attribution “Disney ... said” points to the whole relation.

(18) But then it shot upward 7 1/2 as Goldman, Sachs & Co. stepped in and bought,

traders said . However, Disney specialist Robert Fagenson said : “I would

be surprised if Goldman represented 4% of the opening volume.”

(Comparison – WSJ-2232)

Such information can also be incorporated into the parser, as this provides finer

grained information on the opinions and the opinion holders, which is useful for

downstream subjectivity analysis. The current attribution span labeler only considers

clauses within the relation, which may result in missing clauses that are attribution

spans of the relation but reside outside the relation. For instance, in Example 19,

the attribution span “said David ... Sunday’s go” for the relation “I’m for ... lost

yesterday” resides outside the relation itself, thus it will not be examined by our

system. One possible approach to solve this problem is to use a window of sentences

to check previous and following sentences for attributions that are pointing to this

relation.

(19) “I’m for the Giants today, but only because they lost yesterday.

I love ’em both. The only thing I’m rooting for is for the Series to go seven

games,”

said David Williams, a Sacramento septuagenarian, at the Coliseum before

Sunday’s go .

(Contingency.Cause.Reason – WSJ-2202)

178 Z. Lin et al.

Wellner (2009) pointed out that verbs from the attribution spans are useful features

in identifying the argument head words. In his work, Wellner checked whether the

argument verb (as only argument verbs, not argument spans, are identified) is a

potentially attribution-denoting verb. This suggests that we can feed the results

from the attribution span labeler back into the argument labeler. In fact, we can

feed all of the results from the end of the pipeline back into the start, to construct

a joint learning model (imagine an arrow being drawn from the attribution span

labeler back to the connective classifier in Figure 4).

We believe that our discourse parser is very useful in downstream applications,

such as text summarization and question answering (QA). For example, a text

summarization system may utilize the contrast and restatement relations to recognize

updates and redundancy, whereas causal relations can be used in a QA system to

answer why-questions. The attribution spans from the parser are also very useful for

applications on opinion mining and subjectivity analysis to locate opinion holders.

Discourse structure can also be used in analysis and understanding of the

coherence of text. Given two texts and their respective discourse structures, one

can analyze and compare these two structures. Discourse patterns extracted from

the structures may suggest which text is more coherent than the other. In Lin, Ng

and Kan (2011), we propose a coherence model which applies the output from

the discourse parser that we have developed in this work, and demonstrate that

this model is capable of distinguishing a coherent text from an incoherent one. We

further demonstrate in Lin et al. (2012) that this model can be used to rank a list

of machine-generated summaries with regard to their readability. This illustrates the

applicability of our discourse parser in other NLP applications.

8 Conclusion

In this work, we have designed a parsing algorithm that performs discourse parsing

in the PDTB representation, and implemented it into an end-to-end system in a fully,

data-driven approach. This is the first end-to-end discourse parser that can parse

any unrestricted English text into its discourse structure in the PDTB style. We have

proposed automatic approaches to locate the relative positions of arguments and

label the argument spans when they appear in the same sentence. The performance

of the connective classifier is also significantly improved from the previous work.

We have implemented a component to label attribution spans for relations. We

evaluated the system both component-wise as well as in an end-to-end fashion with

cascaded errors. We reported overall system F1 scores of 46.80 percent for partial

matching utilizing gold standard parses, and 38.18 percent with full automation.

Many downstream NLP applications, such as coherence assessment, summarization,

and QA, need to analyze relations beyond sentence-level. We believe that these

applications will be able to make use of output from our discourse parser to

improve their performance.

References

Asher, N., and Lascarides, A. 2003. Logics of Conversation. Cambridge, UK: Cambridge

University Press.

A PDTB-styled end-to-end discourse parser 179

Baldridge, J., and Lascarides, A. 2005. Probabilistic head-driven parsing for discourse

structure. In Proceedings of the Ninth Conference on Computational Natural Language

Learning (CONLL 2005), Ann Arbor, Michigan, USA, pp. 96–103.

Barzilay, R., and Lapata, M. 2008, March. Modeling local coherence: an entity-based

approach. Computational Linguistics 34: 1–34.

Carlson, L., Marcu, D., and Okurowski, M. E. 2001. Building a discourse-tagged corpus in the

framework of Rhetorical Structure Theory. In Proceedings of the Second SIGdial Workshop

on Discourse and Dialogue, Aalborg, Denmark, pp. 1–10.

Dinesh, N., Lee, A., Miltsakaki, E., Prasad, R., Joshi, A., and Webber, B. 2005. Attribution and

the (non)-alignment of syntactic and discourse arguments of connectives. In Proceedings of

the ACL Workshop on Frontiers in Corpus Annotation II: Pie in the Sky, Ann Arbor, MI,

USA, pp. 29–36.

duVerle, D., and Prendinger, H. 2009. A novel discourse parser based on support vector

machine classification. In Proceedings of the Joint Conference of the 47th Annual Meeting

of the ACL and the 4th International Joint Conference on Natural Language Processing of

the AFNLP (ACL-IJCNLP 2009), Singapore, pp. 665–673.

Elwell, R., and Baldridge, J. 2008. Discourse connective argument identification with

connective specific rankers. In Proceedings of the IEEE International Conference on Semantic

Computing (ICSC 2008), Santa Clara, CA, USA, pp. 198–205.

Forbes, K., Miltsakaki, E., Prasad, R., Sarkar, A., Joshi, A., and Webber, B. 2003. D-LTAG

system: discourse parsing with a lexicalized tree-adjoining grammar. Journal of Logic,

Language and Information 12(3): 261–79.

Ghosh, S., Johansson, R., Riccardi, G., and Tonelli, S. 2011. Shallow discourse parsing

with conditional random fields. In Proceedings of the 5th International Joint Conference

on Natural Language Processing (IJCNLP 2011), Chiang Mai, Thailand, pp. 1071–9

(November).

Grosz, Barbara J., and Sidner, Candace L. 1986, July. Attention, intentions, and the structure

of discourse. Computational Linguistics 12(3): 175–204.

Grosz, Barbara J., Weinstein, S., and Joshi, Aravind K. 1995, June. Centering: a framework

for modeling the local coherence of discourse. Computational Linguistics 21(2): 203–25.

Halliday, Michael A. K., and Hasan, R. 1976. Cohesion in English. London: Longman.

Hobbs, Jerry R. 1985. On the coherence and structure of discourse. Technical Report CSLI-

85-37, Center for the Study of Language and Information, Stanford University, Stanford,

CA, USA.

Hobbs, Jerry R. 1990. Literature and cognition. In CSLI Lecture Notes Number 21. Stanford,

CA, USA: CSLI.

Huong, Le T., Abeysinghe, G., and Huyck, C. 2004. Generating discourse structures for written

texts. In Proceedings of the 20th International Conference on Computational Linguistics

(COLING 2004), Geneva, Switzerland.

Knott, A. 1996. A Data-Driven Methodology for Motivating a Set of Coherence Relations. PhD

thesis, Department of Artificial Intelligence, University of Edinburgh, Edinburgh, UK.

Knott, A., and Sanders, T. 1998. The classification of coherence relations and their

linguistic markers: an exploration of two languages. Journal of Pragmatics 30(2): 135–

75.

Lascarides, A., and Asher, N. 1993. Temporal interpretation, discourse relations and

commonsense entailment. Linguistics and Philosophy 16(5): 437–93.

Lee, A., Prasad, R., Joshi, A., Dinesh, N., and Webber, B. 2006. Complexity of dependencies

in discourse: are dependencies in discourse more complex than in syntax? In Proceedings

of the 5th International Workshop on Treebanks and Linguistic Theories, Prague, Czech

Republic.

Lin, Z., Kan, M.-Y., and Ng, H. T. 2009. Recognizing implicit discourse relations in the

Penn Discourse Treebank. In Proceedings of the 2009 Conference on Empirical Methods in

Natural Language Processing (EMNLP 2009), Singapore, pp. 343–351.

180 Z. Lin et al.

Lin, Z., Liu, C., Ng, H. T., and Kan, M.-Y. 2012. Combining coherence models and machine

translation evaluation metrics for summarization evaluation. In Proceedings of the 50th

Annual Meeting of the Association for Computational Linguistics (ACL 2012), Jeju, Korea,

July, pp. 1006–1014.

Lin, Z., Ng, H. T., and Kan, M.-Y. 2010. A PDTB-styled end-to-end discourse parser. Technical

Report TRB8/10, School of Computing, National University of Singapore (August).

Lin, Z., Ng, H. T., and Kan, M.-Y. 2011. Automatically evaluating text coherence using

discourse relations. In Proceedings of the 49th Annual Meeting of the Association for

Computational Linguistics: Human Language Technologies (ACL-HLT 2011), Portland,

OR, USA, June, pp. 997–1006.

Mann, William C., and Thompson, Sandra A. 1988. Rhetorical Structure Theory: toward a

functional theory of text organization. Text 8(3): 243–81.

Marcu, D. 1997. The Rhetorical Parsing, Summarization, and Generation of Natural Language

Texts. PhD thesis, University of Toronto, Ontario, Canada.

Marcus, Mitchell P., Marcinkiewicz, M. A., and Santorini, B. 1993. Building a large annotated

corpus of English: the Penn Treebank. Computational Linguistics 19(2): 313–30.

Miller, George A. 1995. Wordnet: a lexical database for English. Communications of the ACM

38(11): 39–41.

Miltsakaki, E., Dinesh, N., Prasad, R., Joshi, A., and Webber, B. 2005. Experiments on

sense annotations and sense disambiguation of discourse connectives. In Proceedings of

the Fourth Workshop on Treebanks and Linguistic Theories (TLT2005), Barcelona, Spain

(December).

Miltsakaki, E., Prasad, R., Joshi, A., and Webber, B. 2004. The Penn Discourse Treebank.

In Proceedings of the 4th International Conference on Language Resources and Evaluation

(LREC 2004), Lisbon, Portugal.

PDTB-Group 2007. The Penn Discourse Treebank 2.0 Annotation Manual. Pennsylvania, PA,

USA: PDTB Research Group.

Pitler, E., Louis, A., and Nenkova, A. 2009. Automatic sense prediction for implicit discourse

relations in text. In Proceedings of the Joint Conference of the 47th Annual Meeting of

the ACL and the 4th International Joint Conference on Natural Language Processing of the

AFNLP (ACL-IJCNLP 2009), Singapore, pp. 683–691.

Pitler, E., and Nenkova, A. 2009. Using syntax to disambiguate explicit discourse connectives

in text. In Proceedings of the ACL-IJCNLP 2009 Conference Short Papers, Singapore,

pp. 13–16.

Pitler, E., Raghupathy, M., Mehta, H., Nenkova, A., Lee, A., and Joshi, A. 2008. Easily

identifiable discourse relations. In Proceedings of the 22nd International Conference on

Computational Linguistics (COLING 2008), Manchester, UK (Short papers).

Polanyi, L. 1988. A formal model of the structure of discourse. Journal of Pragmatics 12(5–6):

601–38.

Polanyi, L., and Scha, R. 1984. A syntactic approach to discourse semantics. In Proceedings of

the 10th International Conference on Computational Linguistics (COLING 1984), pp. 413–9.

Stroudsburg, PA, USA.

Prasad, R., Dinesh, N., Lee, A., Miltsakaki, E., Robaldo, L., Joshi, A., and Webber, B. 2008.

The Penn Discourse Treebank 2.0. In Proceedings of the 6th International Conference on

Language Resources and Evaluation (LREC 2008), Marrakech, Morocco.

Prasad, R., Joshi, A., and Webber, B. 2010. Exploiting scope for shallow discourse parsing. In

Proceedings of the Seventh International Conference on Language Resources and Evaluation

(LREC-2010), Valletta, Malta, pp. 2076–83 (May).

Scha, R., and Polanyi, L. 1988. An augmented context-free grammar for discourse. In

Proceedings of the 12th Conference on Computational Linguistics, pp. 573–7. Stroudsburg

PA USA: Association for Computational Linguistics.

Skadhauge, P. R., and Hardt, D. 2005. Syntactic identification of attribution in the RST

Treebank. In Proceedings of the Recent Advances in Natural Language Processing (RANLP

2005), Borovets, Bulgaria, pp. 57–61.

A PDTB-styled end-to-end discourse parser 181

Soricut, R., and Marcu, D. 2003. Sentence-level discourse parsing using syntactic and lexical

information. In Proceedings of the Human Language Technology Conference of the North

American Chapter of the Association for Computational Linguistics (HLT-NAACL 2003),

Edmonton, Canada, pp. 149–156.

Subba, R., and Di Eugenio, B. 2009. An effective discourse parser that uses rich linguistic

information. In Proceedings of Human Language Technologies: The 2009 Annual Conference

of the North American Chapter of the Association for Computational Linguistics (NAACL-

HLT 2009), Boulder, Colorado (June). Stroudsburg, PA, USA, pp. 566–574.

Wang, W. T., Su, J., and Tan, C. L. 2010. Kernel-based discourse relation recognition with

temporal ordering information. In Proceedings of the 48th Annual Meeting of the Association

for Computational Linguistics (ACL 2010), Uppsala, Sweden (July), pp. 710–719.

Webber, B. 2004. D-LTAG: extending lexicalized TAG to discourse. Cognitive Science 28(5):

751–79.

Webber, B., Egg, M., and Kordoni, V. 2011. Discourse structure and language technology.

Natural Language Engineering 18(4): 437–490.

Webber, B., and Joshi, A. 1998. Anchoring a lexicalized tree-adjoining grammar for discourse.

In COLING-ACL Workshop on Discourse Relations and Discourse Markers, Montreal,

Quebec, Canada, pp. 86–92.

Wellner, B. 2009. Sequence Models and Ranking Methods for Discourse Parsing. Ph.D. thesis,

Brandeis University, Waltham, MA, USA.

Wellner, B., and Pustejovsky, J. 2007. Automatically identifying the arguments of discourse

connectives. In Proceedings of the 2007 Joint Conference on Empirical Methods in Natural

Language Processing and Computational Natural Language Learning (EMNLP-CoNLL

2007), Prague, Czech Republic, pp. 92–101.

Wellner, B., Pustejovsky, J., Havasi, C., Rumshisky, A., and Sauri, R. 2006. Classification

of discourse coherence relations: an exploratory study using multiple knowledge sources.

In Proceedings of the 7th SIGdial Workshop on Discourse and Dialogue, Sydney, Australia,

pp. 117–125.

Wolf, F., and Gibson, E. 2005. Representing discourse coherence: a corpus-based analysis. In

Proceedings of the 20th International Conference on Computational Linguistics (COLING

2004), Morristown, NJ, USA, pp. 249–288.

Zhou, Z.-M., Xu, Y., Niu, Z.-Y., Lan, M., Su, J., and Tan, C. L. 2010. Predicting

discourse connectives for implicit discourse relation recognition. In Proceedings of the 23rd

International Conference on Computational Linguistics (COLING 2010), Beijing, China,

pp. 1507–14.

Appendix A Features for the classifiers in step 1

Here are the features extracted from Explicit relation in Example 20 for the classifiers

in step 1 of the parser. The constituent parse of Example 20 is shown in Figure 10.

(20) Orders for durable goods were up 0.2% to $127.03 billion after rising 3.9% the

month before.

(Temporal.Asynchronous – WSJ-0036)

A.1 Features for the connective classifier

− C POS = IN

− prev + C = billion after

− prev POS = CD

− prev POS + C POS = CD IN

− C + next = after rising

182 Z. Lin et al.

Orders for

durable goods

were

up

0.2 % to

$ 127.03 billion

U

after

*-1 rising

3.9 %

the month before

.

NNS IN

JJ NNS

VBS

RB

CD NN TO

$ CD CD

-NONE-

IN

-NONE- VBG

CD NN

DT NN RB

.

NP

NP

PP

NP

NP

QP

NP

PP

ADVP

ADVPNP

NPNP

VP

S

NP

PP

VP

S

Fig. 10. The constituent parse tree for Example 20.

− next POS = VBG

− C POS + next POS = IN VBG

− path of C ’s parent → root = IN ↑ PP ↑ VP ↑ S

− compressed path of C ’s parent → root = IN ↑ PP ↑ VP ↑ S

A.2 Features for the argument position classifier

− C string = after

− position of C in the sentence = middle

− C POS = IN

− prev1 = billion

− prev1 POS = CD

− prev1 + C = billion after

− prev1 POS + C POS = CD IN

− prev2 = 127.03

− prev2 POS = CD

− prev2 + C = 127.03 after

− prev2 POS + C POS = CD IN

A.3 Features for the argument node identifier

In the parse tree (Figure 10) for Example 20, we need to identify the Arg1 and Arg2

nodes from the eighteen internal nodes (except POS nodes). Here we list the features

used to label the S node that covers the Arg2 span.

− C string = after

− C ’s syntactic category = subordinating

− numbers of left siblings of C = 0

A PDTB-styled end-to-end discourse parser 183

SINV

“

“

S

NP

PRP

I

VP

VBP

believe

PP

IN

in

NP

NP PP

DT NN IN NP

the law of NNS

averages

,

,

”

”

VP

VBD S

declared -NONE-

T–1

NP

NNP

San

NNP NN NN NNP NNP

Francisco batting coach Dusty Baker

PP

IN NP

after NN CD

game two

.

.

Fig. 11. The constituent parse tree for Example 21.

− numbers of right siblings of C = 1

− the path P of C ’s parent → N = IN ↑ PP ↓ S

− the path P and whether the number of C ’s left sibling is greater than one

= IN ↑ PP ↓ S and no

− the relative position of N to C = right

A.4 Features for the explicit classifier

− C string = after

− C ’s POS = IN

− C + prev = billion after

Appendix B Features for the attribution span labeler in step 3

The following shows features extracted from Example 21 for the attribution span

labeler. The constituent parse of Example 21 is shown in Figure 11.

(21) ... averages,” declared San Francisco batting coach Dusty Baker after game

two. “I’d ...

− lowercased verb in curr = declared

− lemmatized verb in curr = declare

− the first term of curr = declared

− the last term of curr = .

− the last term of prev = ’

− the first term of next = ‘

− the last term of prev + the first term of curr = ’ declared

− the last term of curr + the first term of next = . ‘

184 Z. Lin et al.

Table 10. Syntactic categories from Knott (1996) for hundred discourse connectives
in PDTB

Syntactic category Discourse connectives

Discourse adverbial accordingly, additionally, afterwards, also, alternatively, as a result,

as an alternative, as well, besides, by comparison, by contrast,

by then, consequently, conversely, earlier, either..or, except, finally,

for example, for instance, further, furthermore, hence, in addition,

in contrast, in fact, in other words, in particular, in short, in sum,

in the end, in turn, indeed, instead, later, likewise, meantime,

meanwhile, moreover, nevertheless, next, nonetheless,

on the contrary, on the other hand, otherwise, overall, previously,

rather, regardless, separately, similarly, simultaneously, specifically,

still, thereafter, thereby, therefore, thus, ultimately, whereas

Coordinator and, but, else, if ... then, neither ... nor, nor,

on the one hand ... on the other hand, or, plus, then, yet

Subordinator after, although, as, as if, as long as, as soon as, as though, because,

before, before and after, for, however, if, if and when, insofar as,

lest, much as, now that, once, since, so, so that, though, till, unless,

until, when, when and if, while

− the position of curr in the sentence = middle

− VP → VBD S

− VBD → declared

− NP → NNP NNP NN NN NNP NNP

− NNP → San

− NNP → Francisco

− NN → batting

− NN → coach

− NNP → Dusty

− NNP → Baker

− PP → IN NP

− IN → after

− NP → NN CD

− NN → game

− CD → two

Appendix C List of discourse connectives and their syntactic categories

Table 10 shows the list of all discourse connectives in the PDTB and their

corresponding syntactic categories from Knott (1996).

