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ABSTRACT
Incorporating item content information into click-through rate
(CTR) prediction models remains a challenge, especially with the
time and space constraints of industrial scenarios. The content-
encoding paradigm, which integrates user and item encoders di-
rectly into CTR models, prioritizes space over time. In contrast, the
embedding-based paradigm transforms item and user semantics
into latent embeddings, subsequently caching them to optimize pro-
cessing time at the expense of space. In this paper, we introduce a
new semantic-token paradigm and propose a discrete semantic tok-
enization approach, namely UIST, for user and item representation.
UIST facilitates swift training and inference while maintaining a
conservative memory footprint. Specifically, UIST quantizes dense
embedding vectors into discrete tokens with shorter lengths and
employs a hierarchical mixture inference module to weigh the con-
tribution of each user–item token pair. Our experimental results on
news recommendation showcase the effectiveness and efficiency
(about 200-fold space compression) of UIST for CTR prediction.

CCS CONCEPTS
• Information systems → Recommender systems; Data min-
ing.
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1 INTRODUCTION
Click-through rate (CTR) prediction models [21] aim to predict the
probability of users interacting with items. The real-time demands
of online services [8, 9] pose a significant challenge in seamlessly
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merging such deep CTR models with valuable semantic knowledge,
encompassing item content and user history.

Traditional deep CTR models commonly depend on ID-based
approaches, incorporating features like item and user IDs, along
with other categorical and statistical data [4, 13]. Recognizing the
effectiveness of user history [2, 14] in various recommendation
scenarios, certain methods [20] explore the incorporation of a shal-
low user encoder into CTR models, a strategy widely adopted in
practice. It offers two key advantages over user ID representation
in the context of large-scale industrial recommendation settings: 1)
improved accuracy facilitated by the sequential features encoded
by the user encoder, and 2) reduced memory usage by eliminating
the need for a large user ID embedding table.

Meanwhile, the value of item contents, such as texts and images,
has been recognized for providing more detailed and nuanced item
representations compared to basic item IDs [8, 18]. However, in-
corporating such item content information into CTR prediction
models remains a challenge, especially within the time and space
constraints of industrial scenarios. The prevalent use of pretrained
models across various domains prompts the integrating of such
models as end-to-end item encoders into CTR models, which we
term as the content-encoding paradigm. Unfortunately, the user
encoder requires the behavior sequence as input, necessitating the
encoding of each item before fusing the behavior sequence to derive
a user representation. This sequential dependency results in unac-
ceptable training and inference inefficiency, impeding its adoption
in industrial settings.

To address the efficiency challenge, the embedding-based par-
adigm opts to trade space for time. Some methods [8, 16] utilize
pretrained content encoders to convert item semantics into em-
bedding vectors and cache them for subsequent CTR models. Fur-
thermore, some methods [8, 15] explore the pretraining of user
encoders, transforming user sequences into cached user embed-
dings. This approach effectively decouples item and user encoders
via offline computing, leading to a substantial acceleration in both
training and inference time. However, the use of pretrained models
introduces a significant memory bottleneck; simply loading these
extracted embeddings for training requires considerable memory.

Recent work involves extracting item content features and con-
densing them into semantic IDs [6, 11], which efficiently capture
the semantic representation of an item while maintaining its hierar-
chical structure. Building on this concept, we introduce a semantic-
tokenparadigm and presentUIST, aUser–Item SemanticTokeniz-
ation approach that converts user sequences and item content
into discrete user and item tokens, respectively. In contrast to the
embedding-based paradigm, our approach greatly reduces space
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Figure 1: Our UIST framework for CTR prediction: featuring semantics-based item (d), and user (h) tokenizers, and a hierarchical
mixture inference module.

Table 1: Encoding paradigms for CTR prediction comparison. User and item representations correspond to the approaches in
Fig. 1. 𝑉 = 30, 522, 𝑁 = 100𝑀 , and 𝑀 = 100𝑀 represent the vocabulary size of natural language, items, and users, respectively.
𝐾 = 4 denotes the number of tokens used to represent an item or user; 𝑑 = 256 and 𝐷 = 768 denote the embedding dimensionality
of the model and pretrained encoders. We use IST to represent single-layered semantic tokenization.

Paradigm Item Repr. User Repr. Efficiency Examples Item Memory User Memory Instantiation

Content-encoding (b) (f) × - V*d 0 29.81M

ID-based (a) (f) ✓ DIN [20] N*d 0 95.36G

(a) (e) ✓✓ DCN [13] N*d M*d 190.72G

Embedding-based (c) (f) ✓ NP [8] N*D 0 286.10G

(c) (g) ✓✓ PREC [8] N*D M*D 572.20G

Semantic-token (d) (f) ✓ IST (Ours) N*K+K*d 0 1.49G

(d) (h) ✓✓ UIST (Ours) N*K+K*d M*K+K*d 2.98G

consumption while maintaining time efficiency, offering a substan-
tial advantage for large-scale industrial recommender systems.

In Table 1, we present a detailed efficiency andmemory consump-
tion comparison of such paradigms used for CTR prediction. Specif-
ically, in the “Instantiation” column, we report the memory usage
with vocabulary, user and item numbers set to reasonable settings
for industrial applications. Compared to the embedding-based par-
adigm, our UIST achieves a remarkable ∼200-fold (572.20G/2.98G)
space compression, utilizing only four tokens.

Moreover, we devise a hierarchical mixture inference module to
enhance the integration of hierarchical item and user tokens. This
module dynamically adjusts the significance of various levels of
granularity for user–item interactions.

2 USER–ITEM SEMANTIC TOKENIZATION
To balance time (model training and inference) and space (memory
usage) efficiency, we introduce a user–item semantic tokenization
framework, UIST, following the semantic-token paradigm. UIST
comprises of three modules, illustrated in Figure 1: two semantic
tokenizers and one hierarchical mixture inference module. The
semantic tokenizers initially transform dense and high-dimensional
item and user embeddings into discrete tokens. Subsequently, the
hyper controller, a hierarchical mixture inference (HMI) module,

evaluates each user–item token pair using the base CTR modules
and autonomously learns weights for each pair with supervision of
the click labels.

2.1 Discrete Semantic Tokenization
Initially proposed for generative retrieval [6, 11], semantic tokeniza-
tion has primarily been applied to summarize features on the item
side. In this context, we introduce a unified pipeline that extends
tokenization to both item and user sides, and we uniformly refer to
both item content and user behavior as “sequence”. It is important
to note that tokenization of items precedes that of users, and during
user tokenization, each item in user sequence is initialized with its
corresponding representation extracted from the item tokenizer.

Stage 1: Semantic Representation. Traditional approaches
often leverage pretrained language models like SentenceBERT to
extract text-based content features on the item side by concatenat-
ing item attributes into a single sequence. However, this method
is not directly applicable to the user side. Instead, we employ an
autoencoder network for sequence representation learning.

Specifically, given a sequence s with length 𝐿, we initially trans-
form it into an embedding sequence E0 through an embedding
layer. Subsequently, a transformer [12] encoder with 𝐻 layers
learns the contextual knowledge of the sequence, expressed as:
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Eℎ = ENCℎ (Eℎ−1), where ℎ = 1, 2, . . . , 𝐻 . Next, an additive atten-
tion module [1] merges the sequences into a unified representa-
tion, defined by: z = ATTN(E𝐻 ). Following this, a transformer
decoder reconstructs the original sequence. Comprising multiple
decoder layers with causal attention, it integrates information
from the sequence representation for autoregressive generation:
Dℎ = DECℎ (Dℎ−1, z), where ℎ = 1, 2, . . . , 𝐻, and the reconstruction
loss is given by:

𝐿sr = − 1
𝐿

𝐿∑︁
𝑖=1

log
(
G
(
D𝐻𝑖

)
s[𝑖 ]

)
, (1)

in which G represents the multi-layer perceptron classifier, and s[𝑖]
is the ground truth label for the output embedding D𝐻

𝑖
.

Stage 2: Discrete Tokenization. The above enables random
access to sequence embedding z for arbitrary user histories and
item contents. Subsequently, we employ the residual quantization
technique, RQ-VAE [19], to discretize the dense sequence represen-
tation into concise tokens. RQ-VAE is designed under an encoder-
quantizer-decoder framework. From a macro perspective, the en-
coder maps the sequence embedding z to a latent vector by v. The
residual quantizer learns codes for the latent vector and sums up
the code vectors (v̄) to approximate the latent vector v. Finally, the
decoder reconstruct the embedding z̄ from v̄.

Specifically, the residual quantizer operates iteratively as follows:
i. For each layer 𝑘 (where 𝑘 ranges from 1 to 𝐾 ), it maps the current
vector v𝑘 to an index 𝑖𝑘 by finding the nearest vector in the 𝑘-th
layer’s codebook, minimizing a distance function 𝑔 (like Euclidean
or Manhattan distance) between v𝑘 and each code vector C𝑘

𝑗
in

the codebook. ii. The next vector v𝑘+1 is computed by subtract-
ing the chosen code vector C𝑘

𝑖𝑘
from v𝑘 , thereby focusing on the

residual (the part of the vector not yet quantized) for the next layer.
iii. The process begins with v1 = v, and iteratively refines the
representation through the layers.

Formally, the above operations can be denoted as:

𝑓 𝑘 : v𝑘 → 𝑖𝑘 , for 𝑘 ∈ 1, 2, . . . , 𝐾, (2)

where 𝑖𝑘 = argmin
𝑗=1,...,𝐶

𝑔

(
v𝑘 ,C𝑘𝑗

)
, (3)

v𝑘+1 = v𝑘 − C𝑘
𝑖𝑘
, and v1 = v, (4)

where 𝐶 is the codebook size for each layer.
Therefore, (𝑖1, . . . , 𝑖𝐾 ) is the tokenization result and the original

vector v can be approximated by:

v ≈ v̄ =

𝐾∑︁
𝑘

C𝑘
𝑖𝑘
. (5)

The overall loss function 𝐿et is calculated as:

𝐿et = | |z − z̄| |2 +
𝐾∑︁
𝑘

(
|𝑠𝑔[v𝑘 ] − C𝑘

𝑖𝑘
|22 + 𝛽 |v

𝑘 − 𝑠𝑔[C𝑘
𝑖𝑘
] |22

)
, (6)

where 𝑠𝑔 represents the stop gradient mechanism, and where the
first term is the embedding reconstruction loss and the second term
is the quantization loss. 𝛽 is the commitment cost that controls the
influence of the vector movement.

2.2 Hierarchical Mixture Inference (HMI)
Following the semantic tokenization process, we obtain item and
user tokens for each item t and user u, represented as (t1, . . . , t𝐾 )
and (u1, . . . , u𝐾 ), respectively. For simplicity, we use the same num-
ber of layers𝐾 during tokenization. Due to the nature of the residual
quantization, these tokens are organized hierarchically, with the
lower indices carrying primary component information. To effec-
tively utilize user–item pairs at different levels, our hierarchical
mixture inference module analyzes the contribution of each pair in
the click-through rate prediction task.

Specifically, we transform one-hot tokens into dense embeddings
through the user and item token embedding layers, denoted as
Eu ∈ R𝐾×𝑑 and Et ∈ R𝐾×𝑑 . We then construct coarse-to-fine item
and user embeddings based on the hierarchical tokens, defined as:

ē𝑖x =

𝑖∑︁
𝑗

e𝑘x, 𝑖 = 1, 2, . . . , 𝐾, and x ∈ {u, t}, (7)

where e𝑖x is the 𝑖-th vector in E𝑖x. For each user–item pair (ē𝑖u, ē
𝑗
t ),

we use a deep CTR model M, such as DCN [13], to predict click
scores. Finally, a linear layer is employed to automatically weigh
these scores. This yields the final click probability, formulated as:

𝑝 = Linear
(
M

(
ē𝑖u, ē

𝑗
t

))
. (8)

As is standard, we use binary cross-entropy loss to train the
recommendation task, calculated by:

𝐿rec = −𝑙 × log (𝑝) + (1 − 𝑙) log (1 − 𝑝) , (9)

where 𝑙 ∈ {0, 1} is the ground truth click label.

Furthermore, we also develop an item-only semantic tokeniza-
tion (IST), tailored for the item side. By virtue of the shorter item
tokens compared to the original item content, IST enhances both
time and space efficiency in comparison to the content-encoding
paradigm. Nonetheless, when contrasted with UIST, IST is a slower
alternative due to its retention of the user encoder.

3 EXPERIMENTS
We conduct offline experiments on a real-world news recommen-
dation dataset, MIND [17], containing over 65K items and 94K
users. We evaluate the effectiveness of our proposed UIST against
three modern deep CTR models: DCN [13], DeepFM [4], and Fi-
nalMLP [10]. We follow common practice [8] to evaluate the rec-
ommendation effectiveness with AUC [3] and nDCG [5]. We also
measure the inference time (latency) of each baseline for a single
sample. During training, we employ the Adam optimizer [7] with a
learning rate of 1e-3 for all paradigms. We set the number of trans-
former layers to 6 for 1) the item encoder (Fig. 1b), 2) user encoder
(Fig. 1f), and 3) encoder–decoder used in semantic tokenization.
For fair comparison, z in Section 2.1 serves as the pretrained em-
beddings for the embedding-based paradigms. During semantic
tokenization, we set the residual depth to 4 and the codebook size
to 64. We will release the code and data for reproducible research1.

Table 2 compares the various paradigms across three deep CTR
models, averaged over five independent runs. We make three key

1https://github.com/Jyonn/SemanticTokenizer

https://github.com/Jyonn/SemanticTokenizer
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Table 2: Performance comparison among different paradigms. We use red and green background to represent inefficient and
efficient memory usage or inference latency, respectively.

Memory DCN DeepFM FinalMLP

Paradigm Repr. Item User AUC NDCG@5 Latency AUC NDCG@5 Latency AUC NDCG@5 Latency

Content-based (b)/(f) 30K × 256 0 - - 66ms - - 65ms - - 68ms

ID-based (a)/(f) 65K × 256 0 0.5762 0.2808 12ms 0.5665 0.2720 12ms 0.5777 0.2834 12ms
(a)/(e) 65K × 256 94K × 256 0.5886 0.2862 3ms 0.5749 0.2781 3ms 0.5840 0.2833 3ms

Embedding-based (c)/(f) 65K × 768 0 0.6301 0.3220 13ms 0.6195 0.3148 13ms 0.6259 0.3193 13ms
(c)/(g) 65K × 768 94K × 768 0.6324 0.3247 3ms 0.6219 0.3161 3ms 0.6237 0.3174 3ms

Semantic-based (d)/(f) IST 65K × 4 0 0.6297 0.3224 33ms 0.6183 0.3132 34ms 0.6241 0.3180 34ms
(d)/(h) UIST 65K × 4 94K × 4 0.6122 0.3085 3ms 0.6077 0.3028 3ms 0.6093 0.3050 3ms

Table 3: Various aggregation mechanisms for user–item to-
kens. “Add” indicates the addition of item and user token
embeddings to create a unified item and user representation.
“Layer” signifies that only tokens from the same layer are
input into the base CTR models. HMI represents our hierar-
chical mixture inference module.

DCN DeepFM

AUC NDCG@5 AUC NDCG@5

Add 0.5795 0.2836 0.5723 0.2774
Layer 0.6044 0.2963 0.5980 0.2929
HMI 0.6122 0.3085 0.6077 0.3028

observations. i. The content-based paradigm yields latencies exceed-
ing 60ms, intolerable for industrial scenarios. ii. The single-layered
ID-based and embedding-based approaches – i.e., (a)/(f) and (c)/(f)
pairings – exhibit similar latency, as both include a user encoder to
model user behavior; however, the performance of the embedding-
based approaches are superior due to the use of the content-based
item representation. On the other hand, the single-layered semantic-
based IST approach is slightly slower because the item tokenization
leads to a longer user sequence. iii. Our proposed IST and UIST
achieve substantial memory compression (approximately 200 times)
compared to other paradigms, while maintaining up to 99% accu-
racy (for IST) and 98% accuracy (for UIST) when compared to the
state-of-the-art embedding-based paradigm. These findings, ob-
served from diverse base models, validate the effectiveness and
efficiency of our semantic-based approach.

Table 3 examines various aggregation mechanisms for dual to-
kens, revealing that the simple addition and layer-wise approaches
are inferior to our proposed HMI module.

4 CONCLUSION
We introduce a user–item semantic tokenization method, provid-
ing a streamlined approach to integrating item content into deep
CTR models. Through our experimentation, we demonstrate the
significant potential of semantic tokenization, initially proposed
for generative retrieval, in boosting recommendation efficiency,
particularly in industrial scenarios. Upon reflection, this method
also offers new perspectives for applications such as dataset com-
pression. We encourage researchers to further explore its potential.
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