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Abstract—The bipartite graph is a ubiquitous data structure that can model the relationship between two entity types: for instance,
users and items, queries and webpages. In this paper, we study the problem of ranking vertices of a bipartite graph, based on the
graph’s link structure as well as prior information about vertices (which we term a query vector ). We present a new solution, BiRank,
which iteratively assigns scores to vertices and finally converges to a unique stationary ranking. In contrast to the traditional random
walk-based methods, BiRank iterates towards optimizing a regularization function, which smooths the graph under the guidance of the
query vector. Importantly, we establish how BiRank relates to the Bayesian methodology, enabling the future extension in a probabilistic
way. To show the rationale and extendability of the ranking methodology, we further extend it to rank for the more generic n-partite
graphs. BiRank’s generic modeling of both the graph structure and vertex features enables it to model various ranking hypotheses
flexibly. To illustrate its functionality, we apply the BiRank and TriRank (ranking for tripartite graphs) algorithms to two real-world
applications: a general ranking scenario that predicts the future popularity of items, and a personalized ranking scenario that
recommends items of interest to users. Extensive experiments on both synthetic and real-world datasets demonstrate BiRank’s
soundness (fast convergence), efficiency (linear in the number of graph edges) and effectiveness (achieving state-of-the-art in the two
real-world tasks).

Index Terms—Bipartite graph ranking, graph regularization, n-partite graphs, popularity prediction, personalized recommendation.
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1 INTRODUCTION

G Raphs provide a universal language to represent rela-
tionships between entities. In real-world applications,

not only should the relationships between entities of the
same type be considered, but the relationships between
different types of entities should also be modeled. Such
relationships naturally form a bipartite graph, containing
rich information to be mined from. For example, in YouTube,
the videos and users form a bipartite relationship where
edges indicate a viewing action; in Web search, the relation-
ships between queries and search engine result pages are
user actions (“clicks”), which provide important relevance
judgments from the user’s perspective.

A fundamental task in the mining of bipartite graphs
is to rank vertices against a specific criterion. Depending
on the setting, assigning each vertex a ranking score can
be used for many tasks, including the estimation of vertex
importance (popularity prediction) and the inference of
similar vertices to a target vertex (similarity search), and
edge suggestion for connecting a target vertex (link predic-
tion and recommendation). Existing work on graph ranking
have largely focused on unipartite graphs, including PageR-
ank [2], HITS [3]1, and many of their variants [4], [5], [6],
[7]. Although several works [8], [9], [10] have considered
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1. Note that although HITS does handle bipartite graphs, the al-

gorithm was designed for ranking on unipartite graphs by treating
vertices with two roles – hub and authority.

ranking on bipartite graphs, they have either focused on a
specific application or adapted existing algorithms to handle
the bipartite case. In our opinion, the work up to the current
time, lacks a thorough theoretical analysis.

In this paper, we focus on the problem of ranking ver-
tices of bipartite graphs. We formulate the ranking problem
in a generic manner – accounting for both the graph’s
structural information and the proper incorporation of any
prior information for vertices, where such vertex priors
can be used to encode any features of vertices. The main
contributions of this paper are summarized as follows:

• We develop a new algorithm – BiRank – for addressing
the ranking problem on bipartite graphs, and show its
convergence to a unique stationary point;

• We analyze BiRank through the formalism of graph
regularization, and present a complementary Bayesian
view. These two views enable future extensions to be
grounded and compelling from a theoretically principled
way (either algebraically or probabilistically).

• We deploy BiRank to the general ranking scenario of
item popularity prediction, illustrating how to param-
eterize it to encode several ranking hypotheses;

• We extend the methodology to rank on the more generic
n-partite graphs, and employ it for a personalized rank-
ing scenario by mining tripartite graphs.

• We conduct extensive experiments to justify our meth-
ods for the two real-world ranking scenarios of popular-
ity prediction and personalized recommendation.

The paper is organized as follows. After reviewing re-
lated works in Section 2, we formalize the problem in Sec-
tion 3. Then we describe the BiRank algorithm in Section 4,
and interpret it from two views in Section 5. In Section 6, we
discuss how to apply BiRank to popularity prediction and
personalized recommendation. We conduct experiments in
Section 7, before concluding the paper in Section 8.
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2 RELATED WORK

BiRank, which ranks vertices of a bipartite graph, can be
categorized as a link-based object ranking method under
the paradigm of link mining [11]. In this section, we focus
on related work that contribute in the ranking method, and
omit discussion of other relevant issues such as efficiency
and evolving graphs. We then review work that can benefit
from such bipartite graph ranking, forming the potential
downstream applications of BiRank.

2.1 Graph Ranking Methods
In the context of web graph ranking, PageRank [2] and
HITS [3] are the most prominent methods. PageRank es-
timates the importance score of vertices as the stationary
distribution of a random walk process – starting from a
vertex, the surfer randomly jumps to a neighbor vertex
according to the edge weight. HITS assumes each vertex
has two roles: hub and authority, transforming the graph to
a bipartite graph. A vertex has a high authority score if it is
linked by many vertices with hub score, and a vertex has a
high hub score if it links to many authoritative vertices.

Many variants start from the basic themes of PageRank
and HITS. Ng et al. [12] studied the stability of the two
algorithms, finding HITS more sensitive to small perturba-
tions in the graph structure under certain situations. They
proposed two variants — Randomized HITS and Subspace
HITS — that yield more stable rankings. Similarly, Lem-
pel et al. [5] found that applying HITS on graphs with
TKCs (tightly knit communities, i.e., small but highly intercon-
nected set of vertices) fails to identify meaningful authority
vertices. They devised SALSA as a stochastic variant of
HITS, for alleviating the TKC effect. Haveliwala [4] pro-
posed topic-sensitive PageRank (also known as personalized
PageRank) by replacing the uniform teleportation vector
with a non-uniform vector that encodes each vertex’s topic
score (cf. query vector in our BiRank context). Later on,
Ding et al. [13] unified HITS and PageRank under a nor-
malized ranking framework. Inspired by the discrete-time
Markov process explanation of PageRank, Liu et al. [6] also
proposed BrowseRank based on continuous time Markov
process, exploiting user behavior data for page importance
ranking. To incorporate side information on vertices and
edges into ranking, Gao et al. [7] extended PageRank in
a semi-supervised way by learning the transition matrix
based on the features on vertices and edges.

Along a separate line of work – ranking on graphs based
on regularization theory [14], [15], [16] – has gained popu-
larity within the machine learning community. These works
mainly consider the problem of labeling vertices of a graph
from partially known labels, also termed semi-supervised
learning or manifold learning on graphs. Smola et al. [15]
summarized early works on graph kernels (e.g., Diffusion
kernels), and formulated a family of regularization opera-
tors on graphs to encompass such kernels. Inspired by it,
Zhou et al. [14] developed a regularization framework con-
sisting of two constraints: smoothness and fitting, proposing
an iterative algorithm [17] for optimizing the regularization
function. Later on, they et al. supplemented the regulariza-
tion framework by developing a discrete analytic theory of
graphs [18] and extending it to cover directed graphs [19].

Agarwal [16] further extended the regularization framework
by replacing the fitting term (i.e., sum of squared errors)
to the hinge ranking loss, proposing an algorithm with
similarities to solving support vector machine to optimize the
regularization function.

The above discussed works have all focused on ranking
for homogeneous graphs, where vertices are of the same
type. Our proposed BiRank targets the task of ranking for
bipartite graphs, where vertices are of two different types.
Separately handling the two vertex types is very important
for ranking in bipartite graphs for many applications, a
claim we validate through our experiments later. Inspired
by the graph regularization framework [18], we develop the
BiRank algorithm, which can be seen an extension of the
manifold ranking algorithm [17] on bipartite graphs.

2.2 Ranking on Bipartite Graphs
There are other algorithms developed for bipartite graph
ranking that target specific applications. As a natural way
to represent relationship between two types of entities,
bipartite graphs have been widely used across domains.
As a consequence, ranking on bipartite graph data have
been explored to address many applications. For example,
in Web search, Deng et al. [8] modeled queries and URLs
for query suggestion, Cao et al. [20] considered the co-
occurrence between entities and queries for entity ranking,
Li et al. [10] modeled users and their search sessions for de-
tecting click spam, and Rui et al. [21] mined visual features
and the surrounding texts for Web image annotation. In
practical recommender systems, bipartite graphs methods
have been used for Twitter user recommendation [22] and
YouTube video recommendation [23]. In the domain of
natural language processing, Parveen et al. [24] generated
multi-document summarization based on the relationship
of sentences and lexical entities.

In terms of the ranking technique, these works share the
same cornerstone — they all rank by iteratively propagating
scores on the graph; either through a PageRank-like random
walk or a HITS-like iterative process – which is adjusted for
use on bipartite graphs. The prominent advantage of such
propagation-based methods is that the global structure of
the graph can be implicitly considered, which is an effective
way to deal with the data sparsity and make use of the
graph structure. Similar to their ranking algorithms, our
proposed BiRank is also a propagation-based method; how-
ever, the main difference lies in the normalization strategy
used in the iterative process. The symmetric normalization
used in BiRank normalizes an edge weight by both of its
vertex ends, which accords a smoothing on the graph that
can be explained by the regularization theory [18]. As a
result, extensions to the algorithm, such as incorporating
more features about vertices and edges, can be achieved in
a theoretically principled way. More importantly, we believe
such a bridge with the graph regularization theory and
Bayesian framework allows BiRank a broader algorithmic
extensions that are difficult to achieve by PageRank, HITS
and their variants. For example, we can adjust the score
propagation process to use a different ranking-based objec-
tive (Section 5.1.2), and learn the combination parameters
in an automatic way (Section 5.2). We will study these
algorithmic extensions of BiRank in the future.
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3 PROBLEM FORMULATION

We first present the bipartite graph model and then give the
notation convention used. We then formalize the ranking
problem that we address in this paper.
Notations. Let G = (U ∪ P,E) be a bipartite graph, where
U and P represent the vertex sets of the two entity types
respectively, and E represents the edge set (n.b., bipartite
graphs have edges only between vertices of the two different
types). Figure 1 shows an example of the bipartite structure.

Fig. 1: Bipartite User–Item Structure.

We use ui to denote the i-th vertex in U , and pj to denote
the j-th vertex in P , where 1 ≤ i ≤ |U | and 1 ≤ j ≤ |P |;
set cardinality |U | denotes number of elements in U . Edges
carry non-negative weights wij , modeling the relationship
strength between the connected vertices ui and pj (if ui
and pj are not connected, their edge weight wij is zero).
As such, we can represent all edge weights of the graph
as a |U | × |P | matrix W = [wij ]. For each vertex ui, we
denote its weighted degree (i.e., sum of connected edges’
weights) as di, and use a diagonal matrix Du to denote the
weighted degrees of all vertices in U such that (Du)ii = di;
and similarly, for dj and Dp. Note that in this paper, we deal
with undirected bipartite graphs, i.e., we do not model any
directionality in the edges.
Problem Definition. In a nutshell, the general graph rank-
ing problem is to assign each vertex a score s.t. a given
expectation is satisfied. For example, PageRank [2] infers
an importance score for each vertex to capture the intuition
that an important vertex should be linked by many other
important vertices. As in many applications, a ranking
simply based on the graph structure is insufficient; often,
there also exists some prior information (or features) on
the vertices. For example, in webpage ranking, we already
know some webpages are important (e.g., official sites), and
wish to incorporate this knowledge into the ranking process;
in the application of recommendation, we need to consider a
user’s historical actions as the prior knowledge of the user’s
preference. We term such prior knowledge as a query vector,
which encodes the prior belief of the score of vertices with
respect to the ranking criterion. In this paper, we study the
bipartite graph ranking problem where a query vector is
given, formally defined as:
Input: A bipartite graph G = (U ∪ P,E) with its weight

matrix W . A query vector u0,p0 encodes the prior belief
concerning the vertices in U and P , respectively, with
respect to the ranking criterion.

Output: A function f : P ∪U → R, which maps each vertex
in G to a real number.

The function value f(ui) and f(pj) form the ranking score
of vertex ui and pj , respectively. To keep the notation
simple, we also use ui and pj to denote the ranking score,
and represent the final ranking score of all vertices as two
ranking vectors u = [ui] and p = [pj ].

4 ITERATIVE BIRANK

With the preliminaries settled, we now detail the iterative
paradigm of the BiRank algorithm. We first describe how we
design the ranking algorithm, analyzing its time complexity.
Then we study its convergence properties in theory. Finally
we discuss the connection of BiRank with other similarly-
styled iterative bipartite graph ranking algorithms.

4.1 BiRank’s Design
To rank vertices based on the graph structure, seminal
algorithms like PageRank and HITS have been proposed.
Motivated from their design, our intuition for bipartite
graph ranking is that the scores of vertices should follow a
smoothness convention, namely that: a vertex (from one side)
should be ranked high if it is connected to higher-ranked vertices
(from the other side). This rule defines a mutually-reinforcing
relationship, which is naturally implemented as an iterative
process that refines each vertex’s score as the sum of the
contribution from its connected vertices:

pj =

|U |∑
i=1

wijui; ui =

|P |∑
j=1

wijpj .

As it is an additive update rule, normalization is necessary
to ensure the convergence and stability. Two strategies have
been widely adopted in previous work: 1) a PageRank-style
that normalizes W (and WT ) to a stochastic matrix, leading
to a probabilistic random walk explanation; and 2) a HITS-
style method that normalizes the ranking scores of vertices
after each iteration. In our BiRank method, we adopt the
symmetric normalization scheme, which is inspired from
Zhou et al.’s work [14] addressing semi-supervised learning
on graphs. The idea is to smooth an edge weight by the
degree of its two connected vertices simultaneously:

pj =

|U |∑
i=1

wij√
di
√
dj
ui; ui =

|P |∑
j=1

wij√
di
√
dj
pj , (1)

where di and dj are the weighted degrees of vertices ui and
pj , respectively. The use of symmetric normalization is a
key characteristic of BiRank, allowing edges connected to a
high-degree vertex to be suppressed through normalization,
lessening the contribution of high-degree vertices. This has
the beneficial effect of toning down the dependence of top
rankings on high-degree vertices, a known defect of the
random walk-based diffusion methods [23]. This gives rise
to better quality results.

To account for the query vector p0 and u0 that encode
the prior belief on the importance of the vertices, one can
either opt for 1) incorporating the graph ranking results
for combination in post-processing (a.k.a late fusion), or 2)
factoring the query vector directly into the ranking process.
The first way of post-processing yields a ranking that is a
compromise between two rankings; for scenarios that the
query vector defines a full ranking of vertices, this ensem-
ble approach might be suitable. However, when the query
vector only provides partial information – i.e., only a small
proportion of vertices have a prior score while most other
vertices have no prior information – this method fails to
identify an optimal ranking. For example, in the application
of personalized recommendation (see Section 6.2), the aim
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Algorithm 1: The Iterative BiRank Algorithm

Input: Weight matrix W , query vector p0,u0, and
hyper-parameters α, β;

Output: Ranking vectors p,u;
1 Symmetrically normalize W : S = D

− 1
2

u WD
− 1

2
p ;

2 Randomly initialize p and u;
3 while Stopping criteria is not met do
4 p← αST u+(1− α)p0;
5 u← βS p+(1− β)u0;
6 end
7 return p and u

is to rank unconsumed items for a user; the query vector
encodes the user’s known preference, which is a sparse
vector with the consumed items as non-zeros. In this case,
simply combining the ranking from graph structure and
query vector via post processing does not work, since the
ranking of unconsumed items will solely depend on the graph
structure. As such, in BiRank we opt for the second way that
factors the query vector directly into the ranking process,
which has the advantage of using the query vector to guide
the ranking process:

pj = α

|U |∑
i=1

wij√
di
√
dj
ui + (1− α)p0j ;

ui = β

|P |∑
j=1

wij√
di
√
dj
pj + (1− β)u0i ,

(2)

where α and β are hyper-parameters to weight the impor-
tance of the graph structure and the prior query vector, to
be set between [0, 1]. To keep notation simple, we can also
express the iteration in its equivalent matrix form:

p = αSTu + (1− α)p0;

u = βSp + (1− β)u0,
(3)

where S = D
− 1

2
u WD

− 1
2

p , the symmetric normalization of
weight matrixW . We call this set of update rules the BiRank
iteration, which forms the core of the iterative BiRank
algorithm. In a nutshell, BiRank first randomly initializes
the ranking vector, and then iteratively executes the BiRank
iteration until convergence (summarized in Algorithm 1).

For convergence, one can either monitor the change of
ranking vectors p,u across iterations, or rely on a held-out
validation data to prevent overfitting. Moreover, the nu-
merical convergence of BiRank is theoretically guaranteed,
discussed later in Section 4.2.

4.1.1 Time Complexity Analysis
It is easy to show that a direct implementation of BiRank
iteration in Eq. (3) has a time complexity of O(|P | · |U |),
mainly due to the multiplication of ST u and S p. However,
note that in real-world applications, the matrix S is typically
very sparse; for example in recommender systems, the user–
item matrix to model is always over 99% sparse (e.g., Netflix
challenge dataset). In this case, a representation of sparse
matrix only needs to account for non-zero entries (which
correspond to the edges of the bipartite graph), instead of

all |P | · |U | entries. As such, the real-time cost needed for
BiRank is O(c|E|), where c denotes the number of iterations
executed to converge, and |E| denotes number of edges in
the graph. Thus, BiRank is linear with respect to number
of edges, ensuring good scalability to large-scale graphs.
Moreover, our empirical experience show that BiRank has
a very fast convergence rate — 10 iterations are usually
enough for convergence. One reason is that it can be seen as
optimizing a convex function effectively using alternating
optimization, discussed later in Section 5.

4.2 Convergence Analysis of BiRank
We show that BiRank can converge to a stationary and
unique solution regardless of the initialization, followed by
a theoretical analysis of the convergence speed.

4.2.1 Proof of Convergence
It is clear that the behavior of BiRank depends on the
hyper-parameters α and β, which are in the range [0, 1].
To make a through analysis, we need to carefully consider
the boundary conditions. Considering the two boundaries 0
and 1, we divide the proof into the following three cases:

Proof. 1. α = 0 or β = 0. When α = 0, the vector p = p0

is unchanged across iterations. Thus u, which depends on
p and u0, will also be unchanged after the first iteration.
Similarly for the case of β = 0.

2. α = 1 and β = 1. In this case, the query vectors do not
have any impact on the ranking, and the ranking is solely
determined by the graph structure. The iterative update rule
then reduces to Eq. (1), whose matrix form is p = ST u,u =
S p . By further reducing this, we obtain:

p(k) = (STS)p(k−1) = ... = (STS)kp(0),

u(k) = (SST )u(k−1) = ... = (SST )ku(0),
(4)

where k denotes the number of iterations, and p(0), u(0) de-
note the initial ranking scores for vertices. Note that matrix
STS and SST are both symmetric matrices. According to a
lemma in standard linear algebra [25]:
Lemma 1. If M is a symmetric matrix, and v is a vector not
orthogonal to the principle eigenvector of M , then the limit of
Mkv (after scaling to a unit vector) converges to the principle
eigenvector of M with k increasing without bound.

By the lemma, we can see that with reasonable
initialization, the iterative process will converge to a
stationary solution p∗ and u∗, which are the principle
eigenvector of matrix STS and SST , respectively.

3. Normal cases. We now consider the normal ranking
scenarios that α and β are in the range of (0,1), or one
of α, β is 1, meaning that both the graph structure and
query vectors can affect the ranking process. Without loss
of generality, we prove the convergence of p.

First, we eliminate u in p’s update rule:

p = αβ(STS)p+α(1− β)ST u0 +(1− α)p0 . (5)

Let matrix M be αβ(STS) and vector z0 be α(1 −
β)ST u0 +(1 − α)p0, which are both invariant across iter-
ations. Then, we have:
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p(k) =Mp(k−1) + z0 = ... =Mkp(0) +
k−1∑
t=0

M tz0, (6)

where k denotes the number of iterations, and p(0) denotes
the initial ranking vector of p. Assuming M ’s eigenvalues
are in the range of (-1, 1), we can obtain:

lim
k→∞

Mkp(0) = 0, and lim
k→∞

k−1∑
t=0

M t = (I −M)−1.

where I denotes the identity matrix. In this case, we can
derive the stationary solution of p as:

p∗ = (I −M)−1z0. (7)

However, the above stationary solution is derived based on
the assumption that M ’s eigenvalues are in the range (-1,1).
Next, we prove the correctness of this assumption.

Theorem 1. M ’s eigenvalues are in the range [−αβ, αβ].

Proof. Recall that M is defined as:

M = αβ(STS) = αβ(D
− 1

2
u WD

− 1
2

p )T (D
− 1

2
u WD

− 1
2

p )

= αβ(D
− 1

2
p WTD−1u WD

− 1
2

p ).

To see M ’s eigenvalues are bounded by αβ, we first con-
struct a variant Mv that has the same eigenvalues2 as M :

Mv = D
1
2
pMD

− 1
2

p = αβ(WTD−1u WD−1p ).

Note that matrix WTD−1u WD−1p is a stochastic matrix in
which the entries of each column sum to 1. By standard lin-
ear algebra [25], for a stochastic matrix, its largest absolute
value of the eigenvalues is always 1. Thus, the eigenvalues
of Mv are in the range [−αβ, αβ], and same must hold for
M as they have exactly the same eigenvalues. The proof of
M ′s eigenvalues is finished.

As M ’s eigenvalues are theoretically guaranteed in the
range [−αβ, αβ] and in the normal cases α, β are in the
range (0, 1), the assumption that M ’s eigenvalues are in
the range (−1, 1) holds. Therefore, we conclude that Eq. (7)
indeed forms the stationary solution of p. To round out the
proof, we give the stationary solution of BiRank as follows:

p∗ = (I − αβSTS)−1[α(1− β)ST u0 +(1− α)p0],

u∗ = (I − αβSST )−1[β(1− α)S p0 +(1− β)u0].
(8)

The convergence proof of BiRank is finished.

This convergence proof gives an elegant closed-form
solution – for any non-trivial initializations, the iterative
algorithm of BiRank will converge to Eq. (8). As such, an
alternative method to our iterative BiRank is to direct calcu-
late the closed-form stationary solution. Even so, we suggest
the practitioners following the iterative procedure for two
reasons. First, in real-world practice, when there is a large
number of vertices to rank, the matrix inversion operation
is very expensive, making the calculation of the closed-
form solution inefficient. More specifically, matrix inversion

2. The equality of the eigenvalues is easily shown by using determi-
nants, denoted as | · |. Let the eigenvalues of Mv be λv , then we have

|Mv − λvI| = |D
1
2
p (M − λvI)D

− 1
2

p | = |D
1
2
p | · |M − λvI| · |D

− 1
2

p | =
|M − λvI| = 0, meaning that λv are also M ’s eigenvalues.

is usually assumed to take O(N3) time [26]; thus the time
complexity of directly calculating the stationary solution is
O(|P |3 + |U |3), which even can be much higher than the
upper bound of the iterative solution O(c|P ||U |). Second,
the iterative process emphasizes the underlying motivation
that reinforcing a vertex’s importance from its neighbors
and the query vector. As such, one does not have to run
the iterations until convergence; instead, one can compute
the scores by starting from any initialization and performing
a fixed number of iterations.

4.2.2 Speed of Convergence
Since the behavior of BiRank depends on the graph struc-
ture, query vector and hyper-parameters α, β, we analyze
how do these factors impact BiRank’s convergence speed.

In each BiRank iteration, the score of a vertex comes from
both its neighbors and the query vector. Since the query
vector is static that remains unchanged across iterations, it
cannot contribute to any form of divergence in the rankings;
thus the main uncertainty for convergence stems from the
part of the score diffusion from neighbors. As such, the
number of iterations required to converge will increase as
α and β increase (the empirical evidence in Figure 6 also
verifies this property). Clearly, the slowest convergence is
when α and β are set to 1, where the effect of query vector
is eliminated. When both α and β are set to 1, the update of
p at the iteration k can be written as: p(k) = (STS)p(k−1),
which essentially can be seen as the power method for the
symmetric eigenvalue problem (Chapter 8.2 of [25]). It is
known that the convergence of power method is determined
by the second dominant eigenvalue of the transition matrix.
In spite of the slight difference that the power iteration
requires an additional L2 normalization on the ranking vec-
tor (while our BiRank does not), we point out that BiRank
shares the same property of convergence speed.

Theorem 2. The convergence rate of BiRank depends on the
second largest eigenvalue of the matrix STS in magnitude.

Proof. As STS is a symmetric matrix, it is guaranteed to
have n eigenvalues which are real numbers (n = |P |). Let its
eigenvalues be λ1, λ2, ..., λn, where |λ1| ≥ |λ2| ≥ ... ≥ |λn|,
and vectors x1, x2, ..., xn be the corresponding eigenvec-
tors. Then, the starting vector p(0) can be expressed as:
p(0) =

∑n
i=1 cixi, where {ci} are constant coefficients. Then

the update of p(k) can be written as:

p(k) = c1(S
TS)kx1 + c2(S

TS)kx2 + ...+ cn(S
TS)kxn

= c1λ
k
1(x1 +

n∑
i=2

ci(λi/λ1)
kxi).

(9)

Here we use the fact that (STS)xi = λixi. Hence, we see that
the non-essential quantities decay at a rate of approximately
|λ2/λ1|. As we have shown in Theorem 1, STS has the same
eigenvalues with a variant stochastic matrix, thus we have
|λ1| = 1. The proof is finished.

To summarize, the convergence rate of BiRank depends
on the normalized adjacency matrix S and parameters α, β.
Analytically, larger α and β will lead to slower convergence;
theoretically, smaller magnitude of the second dominant
eigenvalue of STS will result in faster convergence. In many
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applications, for high dimensional but sparse relational data
(e.g., user behaviors, documents), S is usually of low rank.
As a result, |λ2| is a small number, leading to a fast conver-
gence of our BiRank algorithm.

4.3 Connection with Other Algorithms

There are some bipartite graph ranking algorithms [8],
[21], [20] that share a similar spirit with BiRank, though
originally developed for specific applications with varying
ranking targets. Specifically, in terms of the iterative ranking
process, they have the same update rule form as Eq. (3);
the main difference is in how to generate the transition
matrices (S and ST for updating u and p, respectively). It is
instructive to clarify the difference with these algorithms.

TABLE 1: Transition matrices (i.e., S and ST in Eq. (3)) of
different bipartite graph ranking algorithms. Note that ST

here denotes a matrix, rather than just the transpose of S.
Method Definition of Transition Matrices
HITS (Kleinberg [3]) S =W ;ST =WT

Co-HITS (Deng et al.[8]) S =WD−1
p ;ST =WTD−1

u

BGER (Cao et al.[20]) S = D−1
u W ;ST = D−1

p WT

BGRM (Rui et al.[21]) S = D−1
u WD−1

p ;ST = D−1
p WTD−1

u

BiRank (our proposal) S = D
− 1

2
u WD

− 1
2

p ;ST = D
− 1

2
p WTD

− 1
2

u

Table 1 summarizes the ways of constructing transition
matrices using our symbol notation. From a high-level view,
these algorithms differ in how they utilize the vertex degree
to normalize each edge weight (except that HITS does not
account for the query vector). HITS, the earliest proposed
algorithm, uses the original weight matrixW as-is; although
the convergence can be guaranteed in theory, HITS is sensi-
tive to outliers in graph [12] and suffers from the tightly knit
communities phenomenon [5]. Co-HITS [8] normalizes each
column of W (and WT ) stochastically, having an explana-
tion of simulating random walks on the graph. However,
random walk methods can be biased towards the high-
degree vertices [23]. While BGER [20] avoids this defect
by normalizing each row of W (and WT ) stochastically,
yielding an effect of suppressing the scores of high-degree
vertices. However, the one-side normalization of BGER does
not account the degrees of p vertices when updating u,
allowing high-degree p vertices to exert a stronger impact
in the diffusion process; and vice versa. Similar with our
proposed BiRank, BGRM also applies a symmetric normal-
ization on W , while the level of normalization differs (the
sum of normalization exponents is −2 and −1 for BGRM
and BiRank, respectively). Although it is difficult to tell
which way between them is more advantageous, we point
out that BiRank employs the matrix STS in a similar fashion
to a stochastic matrix (the same eigenvalues, see Theorem 1)
and corresponds to a regularization framework, both of
which are nice properties that BGRM lacks.

5 FOUNDATIONS OF BIRANK

In contrast to the traditional graph ranking algorithms
(e.g., PageRank and HITS), BiRank iterations are implicitly
optimizing an objective function. This is analogous to the
manifold ranking algorithm on graphs [14]. In what follows,
we investigate the regularization framework for BiRank and

present a Bayesian explanation of the ranking algorithm.
These two views shed important insight into the basis of
BiRank, allowing future extensions in a theoretically princi-
pled way. To show its extendability, we finally generalize the
methodology to rank for the more general n-partite graphs.

5.1 Regularization Framework
Inspired from the discrete graph theory [18], we construct
the regularization function as follows:

R(u, p) =
|P |∑
j=1

|U |∑
i=1

wij(
pj√
dj
− ui√

di
)2

+ γ

|P |∑
j=1

(pj − p0j )2 + η

|U |∑
i=1

(ui − u0i )2,

(10)

where γ and η are the regularization parameters to combine
different components (they are constants corresponding to
α and β in BiRank). Next, we first show that optimizing
Eq. (10) leads to the iterative BiRank algorithm, and then
interpret the meaning of the regularization function.

5.1.1 Relationship with BiRank
Eq. (10) defines an objective function with the ranking scores
as model parameters. To optimize the objective function, a
common strategy is performing the coordinate descent [27].
Let us first calculate its first-order derivatives with respect
to each model parameter:

∂R

∂pj
= (2 + 2γ)pj − 2γp0j − 2

|U|∑
i=1

wijui√
di
√
dj

∂R

∂ui
= (2 + 2η)ui − 2ηu0

i − 2

|P |∑
j=1

wijpj√
di
√
dj
.

(11)

Setting the derivatives to 0, we can obtain:

pj =
1

1 + γ

|U|∑
i=1

wij√
di
√
dj
ui +

γ

1 + γ
p0j ,

ui =
1

1 + η

|P |∑
j=1

wij√
di
√
dj
pj +

η

1 + η
u0
i ,

(12)

which exactly recovers the BiRank iteration Eq. (2) by plug-
ging γ = 1−α

α , η = 1−β
β into the equation. As such, we

see that BiRank is actually iterating towards optimizing the
regularization function Eq. (10).

As we have shown BiRank converges to a stationary
solution in Section 4.2.1. Now a question arises: does the
solution found by BiRank lead to the regularization func-
tion’s global optimum? In fact it does, as the regularization
function is strictly convex in both pj and ui.

Theorem 3. The regularization function R(u, p) defined by
Eq.(10) is strictly convex and only one global minimum exists.

Proof. According to convex optimization theory, a continu-
ous, twice differentiable function is strictly convex if and
only if its Hessian matrix is positive definite. As R(u,p) is a
continuous function, we now prove it is twice differentiable
and that its Hessian matrix is positive definite.

The second order derivative of R(u,p) is:

∂2R

∂pj∂pj
= 2 + 2γ;

∂2R

∂ui∂ui
= 2 + 2η;

∂2R

∂pj∂ui
= 2

−wij√
di
√
dj
.
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We can see R(u,p) is twice differentiable.
Let matrix A be the (|U | + |P |) × (|U | + |P |) weighted

adjacency matrix of the bipartite graph. Then the Hessian of
R(u,p) can be written as: 2(I − D− 1

2AD−
1
2 ) + 2B, where

D is a diagonal matrix where each entry Dkk denotes the
weighted degree of k-th vertex (can be of either side); B is a
diagonal matrix that each entry Bkk is γ or η, dependant on
the choice of origin (side) for the k-th vertex.

Note that the matrix (I −D− 1
2AD−

1
2 ) is the normalized

Laplacian matrix of the graph. By spectral graph theory, the
normalized Laplacian matrix of a graph is positive semi-
definite. Meanwhile, B is also positive definite because
its eigenvalues are all positive (eigenvalues of a diagonal
matrix are its diagonal values). Finally, according to the
standard linear algebra, the addition of a positive semi-
definite matrix and positive definite matrix is also positive
definite. Thus, we reach the conclusion that the Hessian
matrix must be positive definite. The proof is finished.

5.1.2 Interpretation of Regularization
It is instructive to interpret the meaning of the regularization
function and see how it is constructed. First, it can be seen as
enforcing two constraints in assigning the ranking scores on
the vertices: A smoothness constraint that implies structural
consistency — that nearby vertices should not vary much in
their ranking scores; and a fitting constraint which encodes
the query vector — that the ranking should not overly
deviate from prior belief.
Smoothness. The first term of Eq. 10 implements the
smoothness constraint, which constrains a vertex’s normal-
ized score to be similar to the normalized scores of its
connected neighbors. Minimizing it leads to the simplified
BiRank algorithm devised in Eq. (1). Moreover, it can be
seen as the squared sum (L2 distance) of edge derivatives on
the graph, as introduced in graph regularization theory [18]:

∂f

∂e

∣∣∣∣
eij

=

√
wij
di
ui −

√
wij
dj
pj ,

which measures the variation (or energy drop) of the rank-
ing function on edge eij . I.e., if two vertices are strongly
connected but exhibit a large difference in their scores, then
the magnitude of the variation will be large. Variants of our
vanilla BiRank can be derived by employing other methods
to combine the edge derivatives, e.g., the L1 distance, which
can yield and model different effects for smoothness.
Fitting. The second and third term of the regularization
function gives the fitting constraint for the query vectors
p0 and u0, respectively:

Rf (p) =
|P |∑
j=1

(pj − p0j )2, Rf (u) =
|U |∑
i=1

(ui − u0i )2, (13)

This fitting term is easy to understand: it regularizes the
value of each vertex’s score to be similar with its prior score,
i.e., its value in the query vector.

In our formulation of BiRank, we have chosen a
MSE (mean squared error) loss function form; other
ranking-oriented loss functions, such as the BPR-OPT [28],
may be more suited if one seeks to maintain the vertices’
relative ordering in the query vector during the ranking
process. We leave this possibility for future work.

Fig. 2: Graphical model representation of BiRank.

5.2 Bayesian Explanation
On the basis of the above regularization framework, we now
present a Bayesian explanation for BiRank.

Figure 2 shows the graphical model representation of
the ranking method. We model the query vectors p0 and u0

as observations, which are generated by the latent factors p
and u (distributions), serving as the importance scores of the
vertices; the weight matrix W forms the prior for generating
the latent factors. The goal is to infer the latent factors p and
u that generate the observations p0 and u0.

The MAP (maximum a posteriori) estimation is given by:

argmax
u,p

p(u,p |u0,p0,W ).

By Bayes’ rule and the conditional independence indicated
in the graphical model, we have:

p(u,p |u0,p0,W ) =
p(u0,p0 |u,p) · p(u,p |W )

p(u0,p0)

∝ p(u0,p0 |u,p) · p(u,p |W )

∝ p(u0 |u) · p(p0 |p) · p(u,p |W ).

Note that p and u are not conditionally independent with
each other given the prior W , as a vertex’s score is also
influenced by its neighbors’ scores. Taking the logarithm,
MAP estimation is then equivalent to:

argmax
u,p

{
ln p(u,p |W ) + ln p(u0 |u) + ln p(p0 |p)

}
.

We then devise the conditional probabilities as follows:

p(u,p |W ) =
1

Zup
e−Rs(u,p),

p(p0 |p) = 1

Zp
e−γRf (p), p(u0 |u) = 1

Zu
e−ηRf (u),

where Zup, Zp and Zu are normalization constants, and
where Rs(u,p) is the smoothness term, and Rf (p) and
Rf (u) are the fitting terms defined in Eq. (13). From this
formalization, we can see that minimizing the regularization
function is equivalent to maximizing the posteriori probabil-
ity of generating the query vector.

This shows the equivalence between BiRank’s ranking
process and a Bayesian network. We map the ranking
problem to probabilistic graphical modeling, allowing the
extension of BiRank in a probabilistic way, which is more
flexible and adaptable for different applications. For exam-
ple, if there is additional prior knowledge or context for
the vertices, we can model them as priors of p,u and use
the desired distributions; moreover, aside from MAP, other
inference techniques can also be applied to infer the ranking
scores, such as variational inference and MCMC sampling.
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5.3 Generalization to n-partite Graph Ranking

Our proposed BiRank methodology is general and versatile.
Here, we generalize it to rank vertices of the more general
n-partite graphs. A n-partite graph is a graph whose vertices
can be partitioned into n different independent sets. We
represent it as G({Pt}; {Etl}), where P represents vertices,
E represents edges, t and l represent the indices of the inde-
pendent vertex sets, satisfying 1 ≤ t, l ≤ n. Let the weight
matrix of edges Etl be Wtl, which is a |Pt| × |Pl| matrix. If
the graph is undirected, we have Wlt = WT

tl . The symmet-
rically normalized matrix is defined as Stl =

√
DtWtl

√
Dl,

where Dt and Dl represent the diagonal degree matrix of
vertices Pt and Pl, respectively. Let the ranking vector and
query vector of vertices in Pt be pt and p0

t , respectively.
Then, the objective function for vertex ranking is defined by
smoothing the connected vertices (of pairwise vertex types)
and fitting the query vectors (of each vertex type):

R =
∑
t

ηt||pt−pt0||
2+
∑
l 6=t

γtl
∑
i,j

(Wtl)ij(
(pt)i√
Dt
ii

− (pl)j√
Dl
jj

)2,

where γtl and ηt are hyper-parameters that control the
importance of the corresponding component. Similar to
BiRank, this regularization function is strictly convex for
all model parameters. Thereby, the global minimum can
be achieved by alternating optimization, which leads to the
iterative update solution as:

p1 =
∑
l 6=1

α1lS1lpl + (1−
∑
l 6=1

α1l)p0
1,

......

pt =
∑
l6=t

αtlStlpl + (1−
∑
l 6=t

αtl)p0
t ,

(14)

where the hyper-parameters αtl are associated with γtl
and ηt, indicating the weight of graph substructure Etl in
contributing to the final ranking. Iteratively executing the
above update rule until convergence, we obtain the ranking.
We call this algorithm n-partiteRank, as a generalization of
BiRank for n-partite graphs; it is easy to see when n = 2,
the algorithm exactly recovers the BiRank. Also, the time
complexity of the algorithm is linear to number of edges
in the n-partite graph, which is very efficient for large-
scale heterogeneous graphs in real-world applications. In
Section 6.2, we demonstrate how to utilize this generic
algorithm to model user reviews (n = 3, i.e., TriRank) for
the application of personalized recommendation [29].

6 APPLICATIONS

In this section, we demonstrate how to apply the BiRank
method to two real-world applications; namely, 1) predict-
ing the future popularity of items, and 2) recommending
items of interest to users. We choose to model user comment
data for addressing the relevant task, since it is a form of
explicit feedback that is easily accessible to both content
providers and external observers3.

3. In contrast, implicit feedback — such as users’ clicks on webpages
and views on items — is only obtainable for the internal content
providers. For external observers, such as the third-party services,
implicit feedback is usually difficult to access.

6.1 Popularity Prediction
Predicting the popularity of web content has a wide range
of applications, such as online marketing [30] and rec-
ommender system [26]. In what follows, we first briefly
introduce the task, and then show how to customize BiRank
to address the problem.

6.1.1 Task Introduction
A direct and objective metric to measure an item’s popular-
ity is the view count, which evaluates users’ attention on the
item. Thereby, previous works have primarily focused on
modeling the view histories of items [31], [30] and casted the
prediction as a regression task. However, for some external
services (who are not the content providers themselves),
items’ view histories are not easily accessible. Specifically,
most websites do not explicitly provide the view history for
an item. Even in the cases where a website like YouTube and
Flickr provides the current number of views, one will have
to repeatedly and periodically crawl the item pages to build
view histories, a very bandwidth intensive activity.

To assist external observers in predicting items’ popu-
larity, we are more interested in an alternative and more
viable solution — modeling the affiliated user comments of
items. In contrast to view count, the advantage of comments
is the exposure of users’ commenting activities up to the
current time — crawling once, one can get the previous
history and perform the prediction directly. However, the
key deficiency is that the comment history can be much
sparser than view history, since a user viewing an item
may not comment on it. For example, it is common that
two items have no comments during the time interval,
while they attract views at a different rate. As such, existing
view-based solutions [31], [30] (which are mostly regression-
based methods) can fail to leverage the comment series to
predict popularity accurately.

To tackle the sparsity issue in user comments for quality
prediction, we need to account for more popularity signals
in addition to the comment count. Here, we propose three
ranking hypotheses observed from user comments that we
wish to incorporate into our popularity prediction solution:

H1. Temporal Factor: If an item has received many
comments recently, it is more likely to be popular in the
near future. More recent comments are a salient signal that
more users focused on the item recently.

H2. User Social Influence: If the users commenting on
an item are more influential, the item is more likely to
receive more views in the future. This is enabled by the
Web 2.0 social interfaces that propagate a user’s comments
to friends and followers.

H3. Item Current Popularity: If an item has already been
popular, it is likely to garner more views in the future. This
is partially effected by the existing visual interfaces of Web
2.0 systems: the more views an item has, the more likely it
will be promoted to users.

6.1.2 BiRank Customization
To customize BiRank for a certain ranking purpose, we need
to construct the weighted bipartite graph model and devise
the query vectors.
Bipartite Graph Construction. As we deal with users’ com-
menting behaviors on items, we model their relationship
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as a bipartite graph – users and items form the two sides
of vertices U and P , respectively, and edges E represent
comments. If and only if a user has commented on an item,
there is an edge between them. We use the edge weight to
model the respective comment’s contribution towards the
item’s future popularity. As the hypothesis H1 shows a
strong near-term correlation, we assignw based on temporal
considerations. Specifically, recent (older) comments should
contribute more (less) to an item’s future popularity. To
achieve this, we choose a monotonically decreasing expo-
nential decay function:

wij = δa(t0−tij)+b, (15)

where δ is the decay parameter that controls the decay rate,
t0 is the ranking time and tij is the commenting time; a
and b are constants, to be tuned for the particular media
and site. Time units are arbitrary; they can be assigned as
minutes, hours, days, weeks or other units, depending on
the temporal resolution and the domain of the items to rank.
If no edge exists between ui and pj , then wij is zero. In our
empirical study, we find a setting of δ = 0.85, a = 1, b = 0
leads to good performance, and thus use this setting across
datasets. As we focus on short-term popularity prediction,
we set the time unit as 1 day.
Query Vector Setup. We devise the user query vector u0

and item query vector p0 to account for the hypotheses H2
and H3, respectively. Intuitively, if a user has more friends,
his behavior is likely to influence more users. Thus we set
a user’s prior score in the query vector proportional to the
log value of his number of friends:

u0i =
log(1 + gi)∑|U |
k=1 log(1 + gk)

,

where gi is user ui’s number of friends at the ranking time.
Note that we use add-1 smoothing to address the case where
a user has no friends.

H3 models the current popularity factor on items. As
such, the item query vector should encode our prior belief
on each item’s popularity prior to examining its recent
comments. We capture this potential “rich-get-richer” effect
by defining an item’s score in the query vector as:

p0j =
log vj∑|P |
k=1 log vk

,

where vj denotes the view count of item pj at ranking time.

After finalizing the edge weights and query vectors, the
rationale in our design can be more clearly seen by looking
into the BiRank iteration in Eq. (3). First, it captures the
mutual reinforcement between users and items — the more
recent the comments are by a user on an item, the higher
the popularity score the item will receive; and in return, the
popularity of the target item increases the user’s influence.
Second, the score of items and users is partially determined
by the original setting of the query vector. To sum up,
BiRank determines a user’s social influence based on two
source of evidence: his level of activity and his number of
friends. Analogously, BiRank determines an item’s future
popularity based on four aspects: the frequency and recency
of comments on it, the influence of the users commenting

on it, and its current accumulated popularity. Thus, from
a qualitative point of view, we see that the formulation of
BiRank can encode our hypotheses on the ranking function.

6.2 Personalized Recommendation

In this subsection, we apply the generalized, n-partiteRank
to the application of personalized recommendation. This is
a more challenging task than popularity prediction, since it
needs to generate a personalized ranking of items for each
user. In what follows, we first show how to employ BiRank
to encode the well-known collaborative filtering effect for
recommendation. Then we use the TripartiteRank (short
for TriRank) to additionally model aspects (extracted from
comments’ texts) for enhanced recommendation.

6.2.1 Collaborative Filtering with BiRank

In recommendation systems, collaborative filtering (CF) is
the most successful and widely-used technique for per-
sonalization. It exploits user–item interactions (e.g., ratings,
click histories) by assuming that users with similar interest
consume similar items. The core of a CF algorithm lies
in how it models the similarity among users and items.
For example, neighbor-based CF [32] directly estimates the
similarity by adopting statistical measure on the user–item
matrix, while latent factor-based CF [26] estimates the sim-
ilarity by projecting items/users into a latent space. Under
our BiRank paradigm, similarity is estimated by means
of smoothing the user–item graph with the target user’s
known preference, embodied as a query vector. We use an
example in Figure 3 to illustrate how the smoothness works.

Fig. 3: A toy example of using BiRank to model the collab-
orative filtering effect. The target user u1 has previously
rated item p1 with a rating score 5 (in tail).

Users and items represent the two types of vertices, and
edge weights denote the rating scores (here, a zero score
means the user did not rate the item; a missing value).
Assume we want to recommend items to the target user u1,
who has rated p1 with a score of 5. We construct the query
vector by setting the prior of p1 to 5 and other vertices to 0.
Now, we consider how the BiRank predicts u1’s preference
(i.e., the similarity to other items) with this setting. As p1 is
connected more strongly to u2 than u3, by the smoothness
constraint, u2 will be given a higher score than u3. This
indicates that BiRank treats u2 more similar with u1 than u3.
Finally, since the edge weights of < u2,p2 > and < u3,p3 >
are identical, BiRank will assign p2 a higher score than p3,
meaning that p2 is a more suitable candidate to recommend
for u1 than p3. From this qualitative analysis, we see that by
properly setting the query vector’s values, smoothing the
user–item relation results in a collaborative filtering effect.
More specifically, by setting the query vector as the rated
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TABLE 2: Top automatically extracted aspects.

Yelp bar, salad, menu, chicken, sauce, restaurant,
rice, cheese, fries, bread, sandwich, drinks

Amazon camera, quality, sound, price, battery,
pictures, screen, size, memory, lens

items of the target user, BiRank functions similar to item-
based CF [32] which represents a user by his historical
actions for personalization.

6.2.2 Modelling Aspects with TriRank
Aside from ratings, which form the basis for collaborative
filtering, most Web 2.0 systems also encourage users to pen
reviews. These reviews justify a user’s ratings, offering the
underlying reasons for the rating by discussing the specific
properties of the item. We term these specific properties as
aspects, which are nouns or noun phrases that represent
the features of items (see Table 2 as examples). Aspects are
well-suited as a complementary data source for CF, since
a mention of an aspect implies the user’s interest in the
aspect, which in turn reveals the user’s preference. In this
subsection, we model the aspects with TriRank to improve
the CF-based recommendation. Similar to the application
of BiRank to popularity prediction, we first show how to
construct the tripartite graph, and then design the query
vectors to implement the personalized ranking.

Tripartite Graph Construction. After extracting aspects
from user reviews, we construct a tripartite graph with
users, items and aspects as the three types of vertices. We
formalize the input as a list of triples, where each triple
< ui, pj , ak > denotes that user ui has rated item pj with a
review mentioning aspect ak and is represented as a triangle
with edges eij , eik and ejk in the graph. Figure 4 shows an
example of the tripartite graph.

Fig. 4: An example of the tripartite graph (the dashed line
illustrates the additional input < u1, p3, a2 >).

Each edge carries a weight, which is crucial to determine
the meaning of smoothness and the behavior of TriRank.
The setting of user–item edge weights should encode the
collaborative filtering effect: in cases with explicit feedback,
it can be the rating score (as illustrated previously in Sec-
tion 6.2.1); for implicit feedback, it can denote whether the
user has interacted with or browsed the item (measured
as either a binary yes/no, or an integer view count). Our
datasets provide explicit user ratings, so we use these rat-
ings as-is. The setting of aspect connected edges should
reflect the aspect filtering effect: if a user is interested in an
aspect, then the system should rank the items that are good
at this aspect high. Thus, we set the edge weights of user–
aspect relation and item–aspect relation to connote the degree
of user interest (item specialty) with respect to the aspect.
Once aspects are identified in reviews, we use the review

frequency (i.e., number of reviews that mention the aspect)
within all a user’s (item’s) reviews as the edge weight. As is
done in general information retrieval, we take the logarithm
of the review frequency, to dampen the effect of aspects that
appear very frequently.
Query Vector Setup. The query vectors should encode the
target user’s prior preference on the vertices, which serve as
the gateway for personalization. Here we discuss how to set
the query vectors for target user ui.

For the item query vector p0, an element takes a
positive value if the target user has interacted with the
item; otherwise, 0. Thus we adopt the ith row vector of the
user–item matrix as the p0 for the target user ui. Similarly,
the aspect query vector a0 is set as the respective row
vector of the user–aspect matrix, denoting the target user’s
prior preference on aspects. The user preference vector u0

should denote the target user’s similarity with other users.
When user’s social network is available, we can use her
friends information to initialize u0. Due to the lack of social
information in our dataset, we adopt a simple approach,
setting the target user herself as 1, and all other users as
0. Considering that the weight matrix is symmetrically
normalized, we also apply the L1 norm on p0, a0 and u0

respectively, for a meaningful combination.

Our final recommendation solution works as follows.
After constructing the tripartite graph, we preform TriRank
with the personalized query vector for each target user. The
ranking process follows the iteration defined in Eq. (14).
After convergence (usually in 10 iterations), items with the
highest scores serve as the recommendations for the user,
and the aspect vertices with the highest scores can be used
as explanatory factors for the recommendations [29].

7 EXPERIMENTS

In this section, we empirically examine BiRank’s properties
and effectiveness. We first conduct experiments on synthetic
data to study BiRank’s convergence and time efficiency.
Then we perform experiments on real-world datasets to
evaluate BiRank performance for the two applications of
popularity prediction and personalized recommendation.

7.1 Experiments on Synthetic Data

7.1.1 Datasets
We concern ourselves with two forms of generated graphs:
1. Synthetic Random Graphs. These random graphs are
generated by sampling edges from a uniform distribution.
We control the density of generated bipartite graphs to sim-
ulate real-world graph sparsity. Given the expected density
of the graph, we visit each potential edge and generate a
uniformly random number in the range (0, 1); if the number
is less (or equal) than the density value, we add the edge
into the graph.
2. Synthetic Power-law Graphs. Considering that many
real-world graphs follow a power-law distribution, such as
document–word and user–item graphs, we also generate the
power-law bipartite graphs. We adopt the power-law graph
generation algorithm in [33]: starting from an empty graph,
it follows two main steps: first it assigns a degree x to each
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vertex v from the distribution p(dv = x) ∝ x−λ where
λ > 1; then, it sorts the vertices by degree in decreasing
order, and assigns neighbors to each vertex according to the
degree. We adjust the second step for generating bipartite
graph – sampling neighbors of a vertex only from the
vertices of the other side.

7.1.2 Convergence Study
There are two natural questions need to be answered empir-
ically regarding BiRank’s convergence4:
1) Will BiRank iterations converge to the optimal solution

of the regularization function as analyzed theoretically?
2) How does the algorithm hyper-parameters (i.e., α and β)

influence BiRank’s convergence rate?
Since our findings were consistent across many settings, we
only report results with a set of representative settings.

(a) Random (10K × 50K) (b) Power-law (10K × 50K)
Fig. 5: Convergence status of two generated graphs.

1. Convergence to optimum. Figure 5 plots the convergence
status of each iteration on two representative synthetic
graphs (the random setting has a density of 1%; the power-
law graph sets λ = 2). The black line (Stationary) bench-
marks the optimal solution from the direct calculation of the
stationary solution Eq. (8). The blue line (Iterative) shows
the regularization function’s value after the update of each
iteration; the red line (Vector Diff, y-axis scale of the right)
shows the difference (i.e., squared sum) of the ranking vector
before and after the update of each iteration. As we can see,
BiRank successfully finds the optima of the regularization
function in all four cases. Our further examination (not
shown) validates that the ranking vector obtained by BiRank
iterations is actually same with the stationary solution. This
demonstrates BiRank’s ability in converging to the unique
and optimal solution of the regularization function, regard-
less of the graph structure. Moreover, the convergence rate
is rather fast for these simulated problems – also usually
within 10 iterations. Another finding is that the deepest
descents are in the early iterations, which impose the most
influence to the ranking.
2. Convergence rate w.r.t. algorithm parameters. In BiRank,
α and β are the hyper-parameters to combine the score cal-
culated from the graph structure and query vector. They act
like the damping factor in PageRank, and are crucial to the
ranking results and convergence. We study the impact of the
two parameters on the convergence rate. The convergence
threshold is set as 0.0001 for Vector Diff, a strict condition
that guarantees a sufficient convergence. Figure 6 plots the
number of iterations to converge on two graphs of size

4. Note that due to the difficulty of controlling the eigenvalues of
generated graphs, we do not empirically study the impact of the second
dominant eigenvalue on convergence rate. While the impact has been
theoretically proved in Theorem 2.

(a) Rand (density=1%) (b) Power-law (λ = 2)

Fig. 6: Convergence rate w.r.t. α and β.

10K × 20K. Both graphs show the same trend that BiRank
needs more iterations to converge with a larger α (and β).
This verifies our qualitative analysis in Section 4.2.2 that
smaller value of α (and β) leads to a larger effect of the static
query vectors, helpful in achieving quick convergence.

7.1.3 Time Efficiency
In Section 4.1.1, we analyzed the theoretic time complexity
of BiRank: O(n), in the number of graph edges. We now
empirically validate this property. We adopt sparse repre-
sentation for matrices, and implement BiRank in Java. The
experiments are run on a modern desktop (Intel 3.5GHz
CPU with 16GB RAM running on a single thread).

(a) Random Graphs (b) Power-law Graphs
Fig. 7: Running time per iteration w.r.t. number of edges.

Figure 7 shows the average time per iteration for graphs
of different settings. First, from each single line, we see that
the actual running time per iteration exhibits linearity w.r.t.
to number of edges in the graph. More specifically, each
iteration takes about 0.9 seconds for graphs with 2M edges,
steadily increasing to 9 seconds for graphs with 20M edges.
This is rather efficient, given that we only run the algorithm
in a single thread; for large-scale graphs, one can easily
scale up the algorithm by parallelizing the matrix operations
in multiple threads. Comparing across lines, we find that
graphs of larger size take more time but still within the same
magnitude. As the edge count is the same, the additional
time is due to traversing additional vertices in such larger
graphs when performing matrix operations.

7.2 Evaluation of Popularity Prediction

We now evaluate how does BiRank perform for the applica-
tion of comment-based popularity prediction.

7.2.1 Experimental Settings
Datasets and metrics. Table 3 shows the demographics of
the three real-world datasets used in this evaluation. Each
dataset is constructed by the search results of some seed
queries. More details about the dataset are given in [1]. The
evaluation ground-truth (GT) is the number of views (note,
not the number of comments) received in the future three
days after the original crawl date (i.e., ranking date t0).
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TABLE 3: Demographics of the three Web 2.0 datasets.
Dataset Item# User# Comment# Avg C/I Crawled Date
YouTube 21,653 3,620,487 7,246,287 334.7 2012/8/9
Flickr 26,815 37,690 169,150 6.3 2012/9/3
Last.fm 16,284 77,996 530,237 32.6 2012/10/24

Given a set of items, BiRank outputs a ranking list
of the items, indicating their predicted popularity. To
assess the quality of the predicted ranking with the GT
ranking globally, we adopt the Spearman coefficient, which
measures the agreement between two rankings.

Baselines. We compare with the following six baselines:
1. View Count (VC): Rank based on the current view count
of items, corresponding to our Hypothesis H3 alone.
2. Comment Count in the Past (CCP): Rank based on the
number of comments received in the 3-day period prior to
t0, corresponding to our Hypothesis H1.
3. Multivariate Linear model (ML) [31]: A state-of-the-art
regression method for popularity prediction. We apply this
method on the comment series with the time unit as 3 days.
This baseline is to test the traditional view-based methods
when applied to modeling comments.
4. PageRank [2]: This is the most widely used graph ranking
method. Since the bipartite nature can cause the random
walk to be non-stationary, we employ the standard method
to set a uniform self-transition weight wii = 1 for all nodes
before converting to a stochastic matrix.
5. Co-HITS [8]: This algorithm is devised for ranking on
bipartite graphs by interleaving two random walks. To make
a fair algorithmic comparison with BiRank, we apply the
same query vectors to Co-HITS and tune the parameters in
the same way.
6. BGER [20]: This is another algorithm designed for rank-
ing on bipartite graphs. Instead of simulating a random
walk, it normalizes the edge weights in a different way and
is analogously explained as heat diffusion. We apply the
same query vectors and parameter search for this method.

To expedite parameter tuning, we randomly held out
10% of the dataset as the development set, and employ grid
search to find the optimal parameters. Then the performance
is evaluated on the remaining 90% as the testing items.

7.2.2 Performance Comparison
Table 4 shows the performance of the methods on the three
datasets. First, we can see that the three bipartite graph
ranking methods (lines 5 – 7) significantly outperform other
methods. This is because these methods model all the three
ranking hypotheses we proposed, while other methods only
partially model the hypotheses. Among the three bipartite
ranking methods, BiRank achieves the best performance in
general (best on two datasets YouTube and Flickr), followed
by Co-HITS (best on Last.fm) and BGER. Further experi-
mentation of 10-fold cross validation shows that the im-
provements of BiRank over Co-HITS and BGER on YouTube
and Flickr datasets are consistent and statistically significant
(p < 0.01, via one-sample paired t-test). Moreover, Co-HITS
outperforms BGER consistently, although the random walk
treatments of Co-HITS are suspicious to bias the high-degree
vertices while BGER does not have this issue. We suspect the
reason of Co-HITS’s strong performance might be that the
bias effect is diluted by the setting of query vectors, which
can regulate the random walks effectively.

TABLE 4: Popularity prediction evaluated by Spearman
coefficient (%). “*” denotes the statistical significance for
p < 0.01 judged by the one-sample paired t-test.

Method YouTube Flickr Last.fm
1. VC 73.39 58.42 67.31
2. CCP 83.35 59.43 67.21
3. ML 78.24 58.00 38.09
4. PageRank 80.72 28.15 10.24
5. Co-HITS 85.21 63.81 72.71∗
6. BGER 84.10 63.17 68.94
7. BiRank (ours) 88.21∗ 64.76∗ 70.93

Focusing on the result of PageRank (line 4), we see that it
performs very poorly for Flickr and Last.fm. This indicates
that just the centrality of an item in the user–item temporal
graph is insufficient for accurate popularity prediction. In
addition, the performance discrepancy between PageRank
and CoHITS (also a random walk-based method) highlights
the importance of separately handling the two vertex types
within the bipartite graph.

It is surprising that the regression approach ML under-
performs CCP, as ML leverages more information: com-
ments in the recent 30 days compared with CCP’s access
to only three days. We believe there are two reasons for this:
1) the nature of short-term prediction, and 2) the sparsity of
comments. As the prediction task is a short-term one, the
most recent data carries the most signal – “What happened
yesterday will happen tomorrow”; the performance score of
CCP verifies this point. Secondly, the sparsity in comment
series (e.g., some time units have zero count) can negatively
affect the regression process in an unexpected manner.

7.3 Evaluation of Personalized Recommendation
In this subsection, we study how do our BiRank and TriRank
perform for the task of personalized item recommendation.

7.3.1 Experimental Settings
Datasets. We experiment with two public review datasets:
Yelp5 and Amazon Electronics6. We follow the common
practice in evaluating recommendation algorithms [28], [26]
that filters out users and items with fewer than 10 reviews.
We used the sentiment analysis tool developed by [34] for
extracting aspects from review texts. Table 5 summarizes the
statistics of the filtered datasets and Table 2 shows examples
of the top aspects extracted.

TABLE 5: Statistics of datasets in evaluation.
Dataset Review# Item# User# Aspect#
Yelp 114,316 4,043 3,835 6,025
Amazon 55,677 14,370 2,933 1,617

Baselines. We compare with the following methods that are
commonly used in top-K recommendation:
1. Popularity (ItemPop). Items are ranked by their popu-
larity judged by number of ratings. This non-personalized
method benchmarks the performance of the top-K task.
2. ItemKNN [32]. This is standard item-based CF. We tested
the method with different number of neighbors, finding that
using all neighbors works best.
3. PureSVD [35]. A state-of-the-art model-based CF method
for top-K recommendation, which performs SVD on the
whole matrix. We tuned the number of latent factors.

5. yelp.com/dataset challenge. Downloaded on October 2014.
6. snap.stanford.edu/data/web-Amazon-links.html

yelp.com/dataset_challenge
snap.stanford.edu/data/web-Amazon-links.html
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(a) Yelp – NDCG (b) Amazon – NDCG

Fig. 8: Performance comparison of top-K recommendation
evaluated by NDCG from position 10 to 50 (i.e., K).

4. PageRank [4]. This graph method has been widely used
for top-K recommendation, such as by [36]. For a fair
comparison, we set the personalized vector the same with
TriRank’s query vectors and tuned the damping factor.
5. TagRW [37]. A state-of-the-art tag-based recommendation
solution, which performs random walks on the user–user
and item–item similarity graph. Since tags have a similar
form with aspects, we feed aspect as tags into the method.

For each user, we sort her reviews in chronological order.
The first 80% are used for training, followed by 10% as
validation (for parameter tuning) and 10% as test set (for
evaluation). Given a test user, we assess the ranked list of
top-K items with Hit Ratio [28] and NDCG [29].

7.3.2 Performance Comparison
Figure 8 plots the performance of top-K recommendation
methods evaluated by NDCG from position 10 to 50. Perfor-
mance of hit ratio shows a similar trend with NDCG, and
is thus omitted for space. ItemPop performed very weakly
on the Amazon dataset, and is entirely omitted in Figure 8b
to better highlight the performance of the other methods.
As can be seen, our TriRank consistently outperforms the
baselines with a large margin, and the one-sample paired
t-test verifies that the improvements over all baselines are
statistically significant with p < 0.01. For a more detailed
discussion, we further show the concrete scores obtained at
the position 50 in Table 6.

Focusing on Lines 1–4 that are all CF methods that only
model the user–item relationship, we see that our BiRank
achieves the best performance on both datasets; specifically,
it improves over the competitive recommendation methods
ItemKNN and PureSVD with a relative improvement about
8.3%. This is very encouraging, and gives evidence of the
merit of our specification of BiRank (in Section 6.2.1) for
collaborative filtering. ItemKNN performs very well on
the Yelp dataset (better than PureSVD), but poorly on the
Amazon one. One possible reason comes from data sparsity:
as in Table 5, each item of the Amazon dataset only has 3.9
reviews on average. In such cases, the statistical similarity
measure may fail in neighbor-based CF. In contrast, model-
based methods are more robust to sparse data by projecting
users and items to the latent space. Lastly, we see Item
Popularity performs the worst, indicating the importance
of modeling users personalized preferences, rather than just
recommending popular items.

Moving to Lines 5–7 of review-based methods, we see
that they generally improve over the methods that use CF
only, indicating the utility of reviews (more specifically, item

TABLE 6: Recommendation performance (%) evaluated at
Rank 50. BiRank outperforms CF-based methods (Lines
1–3) and TriRank outperforms all other methods.

Dataset Yelp Amazon
Metric(%) HR NDCG HR NDCG
1. ItemPop 10.61 4.08 6.13 2.37
2. ItemKNN 15.72 6.37 12.69 10.15
3. PureSVD 14.94 6.16 14.94 10.55
4. BiRank (ours) 17.00∗ 6.90∗ 15.97∗ 11.16∗

5. PageRank 15.90 6.52 17.49 11.78
6. TagRW 15.25 6.02 17.47 10.65
7. TriRank (ours) 18.58∗ 7.69∗ 18.44∗ 12.36∗

aspects) for uncovering users’ preference and complement-
ing with user ratings. Second, TriRank achieves the best
performance, further improving over BiRank with over a
10% relative improvement and outperforming PageRank
and TagRW significantly. This verifies the effectiveness of
our TriRank in incorporating the aspects for enhanced rec-
ommendation. Lastly, TagRW is inferior to PageRank in
utilizing the same aspect source. We believe the main rea-
son comes from TagRW’s transformation of the user–item–
aspect graph to user–user and item–item graphs, which
can cause some signal loss especially when the original
relationships are sparse.

8 CONCLUSION

We focus on the problem of ranking vertices of bipartite
graphs, and more generally, n-partite graphs. We devise a
new, generic algorithm – BiRank – which ranks vertices by
accounting for both the graph structure and prior knowl-
edge. BiRank is theoretically guaranteed to converge to a
stationary solution, and can be explained from both a regu-
larization view and a Bayesian view. This appealing feature
allows future extensions to BiRank to be grounded in a prin-
cipled way. To demonstrate the efficacy of our proposal, we
examine two ranking scenarios: a general ranking scenario
of item popularity prediction by modeling the user–item
binary relationship, and a personalized ranking scenario
of item recommendation by modeling the user–item–aspect
ternary relationship. By properly setting the graph’s edge
weights and query vectors, BiRank can be customized to
encode various ranking hypotheses. Extensive experiments
on both synthetic and real datasets demonstrate the effec-
tiveness of our method. In future, we will study how to
optimally learn the hyper-parameters of BiRank. Owing to
the two views of BiRank, two solutions can be explored
— by adapting the parameters based on the validation
set [38], or by integrating over the parameters under the
Bayesian network formalism. Moreover, we will explore
how to integrate the graph regularization framework with
matrix factorization methods, which have been shown to be
very effective for many tasks such as recommendation [26]
and clustering [39].
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