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ABSTRACT
Most existing collaborative filtering techniques have focused
on modeling the binary relation of users to items by ex-
tracting from user ratings. Aside from users’ ratings, their
affiliated reviews often provide the rationale for their rat-
ings and identify what aspects of the item they cared most
about. We explore the rich evidence source of aspects in user
reviews to improve top-N recommendation. By extracting
aspects (i.e., the specific properties of items) from textual
reviews, we enrich the user–item binary relation to a user–
item–aspect ternary relation. We model the ternary relation
as a heterogeneous tripartite graph, casting the recommen-
dation task as one of vertex ranking. We devise a generic
algorithm for ranking on tripartite graphs — TriRank — and
specialize it for personalized recommendation. Experiments
on two public review datasets show that it consistently out-
performs state-of-the-art methods. Most importantly, Tri-
Rank endows the recommender system with a higher degree
of explainability and transparency by modeling aspects in
reviews. It allows users to interact with the system through
their aspect preferences, assisting users in making informed
decisions.

Categories and Subject Descriptors
H.3.3 [Information Storage and Retrieval]: Information
Search and Retrieval - information filtering

Keywords
Reviews, Aspects, Explanable Recommendation, Top-N Rec-
ommendation, Tripartite Graph Ranking

1. INTRODUCTION
Recommender systems serve to help users discover choice

products to consume, matching users to items of potential
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interest (e.g., products, businesses, movies, etc.). Among
the various recommendation techniques, collaborative filter-
ing (CF) is widely used, due to its effectiveness in providing
personalized recommendation based on the wisdom of the
crowds. By and large, existing CF techniques have focused
on modeling user–item relations, such as ratings. As a single
rating only indicates a user’s overall satisfaction for the item,
it is hard to infer the actual rationale of the rating. Differ-
ent users may care about different aspects of the same item.
For example, in the restaurant domain, one user may give a
5-star rating for food quality, while another user may give
the same rating, but due to favorable ambiance. Since ex-
isting CF techniques largely lack such fine-grained analysis,
they can fail to accurately model a target user’s interests.

Aside from ratings, most Web 2.0 systems also give users
the opportunity to leave reviews on the provided items.
These reviews often justify a user’s rating, offering the un-
derlying reasons for the rating by discussing the specific
properties of the item. Thus they are well-suited as a com-
plementary data source for collaborative filtering. In this
work, we leverage on this key observation to address the
task of top-N recommendation; that is, to produce an or-
dered list of N items that will be most appealing to a user.

Leveraging user reviews (or interchangably, “comments”)
is non-trivial for systems, as these reviews are written by
users freestyle, exhibiting noise and irrelevant content. Re-
cent research [10, 11, 17, 19] have largely modeled reviews
at the word level, distilling them into latent topics to com-
bine with the latent factor model. Although these methods
achieve good prediction accuracy, the recommendation pro-
cess is not transparent and the generated recommendations
are not explainable to users, a well-known drawback of the
latent factor model [14]. To improve users’ experience and
trust, transparency and explainability become increasingly
important for practical recommender systems [27]. More-
over, improvements in rating prediction (a lower error rate)
may not directly translate into improvements in top-N rec-
ommendation [3]. As systems usually make only their top
suggestions visible, targeting improvement at the top ranks
is most beneficial for recommendation in practice.

Instead of modeling reviews at the word level, we propose
to model reviews in the level of distilled aspects, which are
the specific properties of items and expressed in reviews as
noun words or phrases [31]. For example, battery and screen
are aspects of digital products, food quality and ambiance
are aspects of restaurants. Given the aspects extracted from
reviews, we first model the user–item–aspect relation as a
tripartite graph. Then we devise TriRank, a generic al-



gorithm based on the graph regularization framework [9,
36] for ranking in tripartite graphs. TriRank ranks vertices
by accounting for both the structural smoothness (encod-
ing collaborative filtering and aspect filtering effects) and
fitting constraints (encoding personalized preferences). Be-
sides TriRank’s superior performance, there are two key
properties making it suitable in practice: first, the recom-
mendation process is transparent by explaining its recom-
mendations with respect to aspects, allowing users to cus-
tomize their recommendations to fit their preferences (i.e.,
scrutability [27]). Second, TriRank is tolerant of noisy as-
pects, common in automated aspect extraction, such that
porting to new domains can be done without manual effort.

It is instructive to clarify that this work solely relies on
the automatically detected item aspects in user reviews, and
not any other additional information, such as sentiment (a
separate area of study). We believe regardless of a user’s
sentiment on a reviewed aspect, its mention at least reflects
the user’s interest in the aspect. We believe by mining such
item aspects latent in reviews, we can infer user preference
at a finer granularity, thus providing better personalized rec-
ommendation.

This paper is organized as follows. In Section 2, we discuss
the process of aspect extraction from reviews. We detail our
TriRank method in Section 3, and conduct experiments and
empirical studies on aspects in Section 4. We review related
work in Section 5, before concluding the paper in Section 6.

2. ASPECT EXTRACTION
Aspect extraction, also termed as feature or attribute ex-

traction, has a long history in review mining (see [31]). As-
pects can be seen as the components, attributes, or prop-
erties of an item. Early seminal work [12] proposed several
language rules to extract product features from reviews. The
rules have been widely used and extended by later work,
e.g., [32] considered specific phrase patterns and sentence
patterns. Aside from the unsupervised rule-based methods,
supervised sequence labeling techniques such as the Condi-
tional Random Field have been adopted to learn aspects [13].

As our focus is to leverage aspects from user reviews,
we do not contribute to aspect extraction, but instead seek
to maximally exploit technologies that can perform it. As
such, we apply an existing state-of-the-art aspect extraction
toolkit [33] that constructs a sentiment lexicon from user
reviews. It creates entries that are feature–opinion word
pairs with an associated sentiment polarity, represented as
(F,O, S). For example, an entry such as (service, excellent,
positive) might be extracted from a restaurant review. The
key feature extraction part of the tool is a rule-based system,
mainly adopting and extending the rules proposed by [12].
As each feature is a noun word or phrase, representing the
item’s property that a user comments on, we can directly
use it as an aspect.

We apply the tool with its default settings, extracting
6, 025 and 1, 617 distinct features (i.e., aspects) from our
datasets culled from Yelp and Amazon Electronics, respec-
tively (datasets described later in Section 4). Table 1 shows
top features extracted from the two datasets, ranked by their
tf × idf score. We notice that the tool produces some fea-
tures that are good but also many noisy features, such as
“ive” (“I’ve”), “picturesmy”, “l50”, which are quirks of the
corpus. Also, some top features are domain-specific stop
words (e.g., “food”, “restaurant”, “product”), which do not

Table 1: Top automatically extracted aspects.

Yelp
bar, salad, menu, chicken, sauce, restaurant, rice,

cheese, fries, bread, sandwich, drinks, patio

Amazon
camera, quality, sound, price, product, battery,

pictures, features, screen, size, memory, lens

Table 2: Statistics of aspects extracted from reviews.

User–Aspect Item–Aspect
Dataset # of Avg. # of Dens- Avg. # of Dens-

Aspects A / User ity A / Item ity

Yelp 6,025 183.8 3.05% 138.0 2.29%
Amazon 1,617 61.4 3.80% 23.2 1.44%

represent the specific properties of items. Despite this signif-
icant level of noise, we do not perform any post filtering on
the extracted aspects to test the robustness of our proposed
method to noise.

Note that in terms of manifestation, aspects and tags (in
social tagging systems) look alike – they are both usually
short noun phrases. However, they differ fundamentally in
nature and hence utility. Tags are simple keywords that are
directly annotated by users to categorize and manage items.
Aspects, on the other hand, describe specific attributes of
items, and are implicitly extracted from free-text reviews.

Table 2 summarizes the statistics of extracted aspects on
the two datasets. We note that the densities of the user–
aspect and item–aspect matrix are much higher than that
of the user–item rating matrix (usually less than 1%, see
Table 3); a good signal that the aspect matrices contain
rich information useful for addressing the sparseness of the
original rating matrix.

3. PROPOSED METHOD
We now present our proposed method for review-aware

recommendation, by introducing the tripartite graph to model
the user–item–aspect ternary relation. We then devise the
generic TriRank algorithm for ranking on tripartite graphs.
Finally, we detail how to operationalize TriRank for person-
alized recommendation.

3.1 Data Model and Notation
Let G = (U ∪ P ∪ A,EUP ∪ EUA ∪ EPA) be a tripartite

graph, where U,P and A are vertex sets that represent users,
items and aspects, respectively. Let EUP , EUA and EPA be
edges that represent user–item, user–aspect, item–aspect re-
lations, respectively. Each input triple <ui, pj , ak> denotes
that user ui has rated item pj with a review mentioning as-
pect ak, is then represented as a triangle with edges eij , eik
and ejk (as in Figure 1). Each edge carries a weight to
denote the strength of two connected vertices; edges with
higher weight denote stronger more significant relations be-
tween vertices. For example, we can model user ui’s rating
on item pj as an edge with weight of eij . Without loss of
generality, we use the symbol R, Y and X to denote the edge
weight matrix of user–item, user–aspect and item–aspect re-
lations, respectively.

3.2 Tripartite Graph Ranking (TriRank)
The goal for item recommendation is to devise a ranking

function f : P → R, which maps each item in P to a real
number such that the value reflects the target user u’s (pre-
dicted) preference on the item. Then, sorting the resultant
items by score yields u’s personalized item ranking. Since



Figure 1: An example tripartite structure of the
given inputs (the dashed line illustrates the addi-
tional input <u1, p3, a2 >).

TriRank induces scores for all vertices in the graph, it has
the important side-affect of assigning scores to the aspect
and user vertices: these denote u’s interest on aspects and
similarity with other users, respectively.

In a nutshell, TriRank assigns the ranking score of ver-
tices by enforcing the structural smoothness and fitting con-
straints of the graph. By smoothness and fitting constraints,
we adopt the same definitions as those common to the graph
regularization framework [9, 36]:

· Smoothness implies local consistency: that nearby vertices
should not vary too much in their scores.

· Fitting encodes prior belief: that the ranking function
should not cause much deviation from the observations.

TriRank seeks to assign each vertex a score such that the
graph is sufficiently smooth and the prior belief is retained.
In the following, we first illustrate how the two constraints
in the tripartite graph capture the intuition for recommen-
dation, before describing the TriRank algorithm.

3.2.1 Illustrating Regularization Constraints
Let us first see how the smoothness works by considering

the example in Figure 1. We decompose it into two sub-
graphs in Figure 2 for ease of exposition. The left subfigure
gives the user–item structure, where edge weights denote
ratings. Assume we want to recommend items to u1, who
has only rated p1 with a score of 5. As p1 is connected more
strongly to u2 than u3, u2 is given a higher score than u3.
Finally, since the edge weights of <u2,p2> and <u3,p3> are
identical, we infer that p2 should receive a higher score than
p3. Such smoothness constraints on the user–item relation
alone yields the traditional CF effect.

Considering aspects can provide additional evidence that
influences the recommendation process. Let us continue
to recommend for u1 but base our decision on item–aspect
structure (Figure 2(b)), where edge weight denotes the num-
ber of an item’s reviews mentioning an aspect. As u1 only
previously mentions aspect a1, enforcing smoothness would
rank p3 higher than p2, as p3 is more strongly connected to
a1, in contrast to p2. This example also shows that predict-
ing based on CF and aspect filtering yield different results;
and that the smoothness constraint on the whole graph to
combine them may be beneficial.

The fitting constraint serves as a means to personalize the
ranking for each user (cf. shaded vertices of Figure 2). For a
target user u, the past ratings and reviewed aspects indicate
u’s prior (known) preference on the vertices. It should guide
the ranking process such that the resultant ranking function
should be consistent with the prior belief.

(a) User-Item structure (b) Item-Aspect structure

Figure 2: Smoothness constraints on decomposed
graphs from Figure 1. Assume u1 previously rated
item p1 with mentioning aspect a1 (shaded vertices).

3.2.2 Regularization on Tripartite Graph
We now define the regularization function to implement

the two constraints for ranking vertices.
Smoothness. Similar to the previous work [9] that de-

fines a smoothness regularizer on bipartite graphs, we devise
the regularizer on user–item structure as follows:

QUP (f) =

|U|∑
i=1

|P |∑
j=1

rij(
f(ui)√
dui
− f(pj)√

dpj

)2, (1)

where f(ui) and f(pj) denote the final ranking scores (i.e.,
parameters to learn); rij is the edge weight between ui and
pj ; d

u
i and dpj are the weighted degrees (sum of edge weights)

of ui and pj , respectively, for normalization. The counter-
part user–aspect and item–aspect smoothness regularizers
for aspect filtering can be obtained similarly.

This smoothness regularizer can be seen as a graph kernel
that measures the similarity of vertices. Although there are
various kernels [25], we have purposefully chosen this one
(originally introduced by [36]) due to its effective encoding
of the CF effect in bipartite graph scenarios. To see this,
assume we recommend for the target user u. First, mini-
mizing Eq. (1) constrains a vertex’s score based on its neigh-
bors – if a user is strongly connected by many high-scoring
items (e.g., rated items of u), the user will be given a high
score (i.e., more similar with the u); likewise, if an item is
strongly connected by many high-scoring users (i.e., similar
users), it will have a high score. Second, the quadratic na-
ture of the normalization suppresses the popularity of highly
connected vertices; this property is essential to prevent a
ranking from being dominated by popular vertices [1].

Fitting. Let the target user’s prior preference on item pj
be p0j ; then the regularizer to enforce the fitting constraint
on items is defined as:

QP (f) =

|P |∑
j=1

(f(pj)− p0j )2. (2)

We can similarly achieve such fitting regularizers on users
and aspects. This fitting regularizer corresponds to the
squared error loss that is commonly used by machine learn-
ing models in recommendation. Different with the latent fac-
tor model [14, 19] that only optimizes for rated items, Eq. (2)
also importantly takes unrated items into account (cf. sum-
ming over all items). This property is very desirable for the
top-N task, as it aims at ranking unrated items [3]. Another
option for top-N recommendation is to optimize a ranking-
based loss function, such as AUC used by Bayesian Person-
alized Ranking [23]. This is an interesting extension to be
explored in the future.



Regularization function. To account for the hetero-
geneous structure of the tripartite graph, we combine the
smoothness regularizer on each relation type with the fit-
ting regularizer using different weights for each vertex type:

Q(f) = α
∑
i,j

rij(
f(ui)√
dui
−
f(pj)√
dpj

)2 + β
∑
j,k

xjk(
f(pj)√
dpj

−
f(ak)√
dak

)2

+ γ
∑
i,k

yik(
f(ui)√
dui
−
f(ak)√
dak

)2 + ηU
∑
i

(f(ui)− u0i )2

+ ηP
∑
j

(f(pj)− p0j )2 + ηA
∑
k

(f(ak)− a0k)2,

(3)

where α, β and γ denote the weight of smoothness on user–
item, item–aspect and user–aspect relation, respectively; ηU ,
ηP and ηA denote the weight of fitting constraint on users,
items and aspects, respectively (we discuss how to set the
prior preference u0

i , p
0
j and a0k later in Section 3.3).

3.2.3 Optimizing the Regularization Function
We now minimize Eq. (3) to derive the final ranking scores

(i.e., model parameters). As the objective function is strictly
convex, standard optimization techniques find a unique so-
lution regardless of initialization. Two widely used tech-
niques are stochastic gradient descent (SGD) and alternating
least squares (ALS). SGD updates all parameters towards
the negative gradients for each training instance, while ALS
minimizes the objective function per parameter until a joint
optimum is found (i.e., coordinate-wise descent). For this
scenario, we adopt ALS over SGD as the objective function
can be analytically solved for each parameter, and impor-
tantly, it does not need to set the learning rate, which is
crucial to SGD’s effectiveness. Additionally, it usually yields
a faster convergence and is easier to parallelize than SGD.

By differentiating Q(f) with respect to f(ui), f(pj) and
f(ak), respectively, and letting the derivatives be 0, we ob-
tain the iterative update rules. Let the ranking vector for
items be ~p = [f(pj)]|P |×1, and the prior preference vector

for items be ~p0 = [p0j ]|P |×1. Let similar definitions follow for
~u, ~u0 for users, and ~a,~a0 for aspects. The equivalent update
rules in matrix form are as follows:

~u =
α

α+ γ + ηU
SR · ~p+

γ

α+ γ + ηU
SY · ~a+

ηU

α+ γ + ηU
~u0,

~p =
α

α+ β + ηP
ST
R · ~u+

β

α+ β + ηP
SX · ~a+

ηP

α+ β + ηP
~p0,

~a =
γ

γ + β + ηA
ST
Y · ~u+

β

γ + β + ηA
ST
X · ~p+

ηA

γ + β + ηA
~a0,

(4)

where SR is the symmetric normalized form of matrix R,
defined as [

rij√
dui

√
d
p
j

]|U|×|P |; SX and SY are defined simi-

larly. We note that a closed-form solution can be obtained
analytically, but omit them due to space limitations.

3.3 Personalized Recommendation
Given the general TriRank algorithm, we need to cover

how we obtain the initial graph (specifically, edge weights
and the target user’s prior preference) to concretize the generic
algorithm for our review-based recommendation scenario.

Edge weights. User–item edge weights from relation
R can be set as in traditional CF: in cases with explicit
feedback, it can be the rating score; for implicit feedback,
whether the user has interacted with or browsed the item

Algorithm 1: TriRank for review-aware top-N
item recommendation.
Input: User-Item interactions R and reviews.

Offline Training (for all users):
1. Extract aspects from reviews (Section 2).
2. Build item–aspect matrix X and user–aspect matrix Y .
3. TF term weighting: X = X.tf();Y = Y.tf().
4. Build symmetric normalized matrices SR, SX , SY .

Online Recommendation (for target user ui):
5. Build ui’s prior preference vectors ~p0, ~a0 and ~u0.
6. L1 norm on ~p0, ~a0 and ~u0.
7. Randomly initialize ranking vectors ~p, ~a and ~u.
8. Iteratively run update rules Eq. (4), until convergence.
9. Recommend top ranked items to ui, and explain the

recommendation using top ranked aspects.

(measured as either a binary yes/no, or an integer view
count). Our datasets provide explicit user ratings, so we
use these ratings as-is.

For the user–aspect relation Y and the item–aspect re-
lation X, edge weights connote the degree of user interest
(item speciality) with respect to the aspect. Once aspects
are identified in reviews, we can use either the actual count
(number of mentions) within all a user’s (item’s) reviews, or
the review frequency (number of reviews that mention the
aspects). As reviews vary in length, an aspect may occur
multiple times in long reviews, but may not imply that the
user pays more attention to the aspect1. As such, we use
review frequency in our experiments. As in general IR, we
take the logarithm of the review frequency, to dampen the
effect of aspects that appear very frequently.

Prior preference. We need to set the prior preference
vectors for the three vertex types, with respect to the target
user ui for personalization.

For items, the item prior preference vector ~p0 takes a pos-
itive value if the target user has interacted with the item,
otherwise, 0. Thus we adopt the ith row vector of R as the
~p0 for the target user ui. Similarly, for aspects, the aspect
preference vector ~a0 is set as the row vector of user–aspect
matrix Y . As the smoothness part of Eq. (3) normalizes the
edge weight by a vertex’s degree, we also apply the L1 norm
on ~p0 and ~a0 for meaningful combination.

The user preference vector ~u0 should denote the target
user’s similarity with other users. We can set ~u0 based on a
user’s social network when it is available. We can also adopt
standard user-based CF, and set ~u0 by measuring user sim-
ilarity from the rating matrix R. In this work, we adopt the
most basic approach, simply setting the target user herself
as 1, and all other users as 0. Note that this variable does
not directly reflect user’s preference on aspects or items, so
its design is beyond the scope of this work.

TriRank works by enforcing the collaborative filtering and
aspect filtering effects, and is summarized in Algorithm 1.
For convergence, one can monitor Q(f)’s value until it sta-
bilizes or set a maximum number of iterations.

The iterative solution Eq. (4) presents a more transparent
view on the ranking process. The scores of items, users and
aspects mutually reinforce each other – a score increase in
an item will increase the score of its connected users and

1Note that this is the same argument for the analogous doc-
ument frequency over collection frequency, in general IR.



Figure 3: Mock user interface for showing the ratio-
nale behind recommending Chick-Fil-A to a user.

aspects; similarly, for users and aspects. The overall solu-
tion can be seen as a semi-supervised learning process [36]
on graphs – with the prior preference as labeled data, the
algorithm propagates the labels to other unlabeled vertices.

3.4 Discussion
There are three properties of TriRank that merit a more

detailed discussion: explainability, insensitivity to noisy as-
pects, and structural ambiguity.

Explainability. As TriRank ranks items in an easily ex-
plainable way, it provides users more transparency in un-
derstanding the system behavior. We can attribute recom-
mendations to the top-ranked aspects matching the target
user and recommended item. Figure 3 shows a mock-up
interface for explaining recommendation based on aspects,
inspired by tag-based explanation [28]. Aspects are sorted
by item’s speciality by default, but a user can sort accord-
ing to her predicted preference. This property makes the
system scrutable [27], allowing a user to control how the
system utilizes her reviews. For example, if a user dislikes
a recommendation due to inaccurately-captured aspects or
she has updated preference not captured in her reviews, she
can edit her aspect preference. TriRank can then encode
the new aspect query vector (i.e., ~a0) and return the revised
recommendations (shown later in Section 4.3).

This is a major advantage over the recent solutions [19, 34]
which integrate reviews using a latent factor model (LFM).
Such LFM methods only provide single-shot recommenda-
tion where the rationale for the recommendation is opaque.
In contrast, the scrutability provided by our method easily
allows recommendation to become a cyclical process – a user
can iteratively interact with the recommender system, where
her actions improve the system’s recommendations in turn.
This iterative and scrutable nature are becoming increas-
ingly important for real-world recommender systems [27].

Insensitivity to noisy aspects. As mentioned in Sec-
tion 2, extracted aspects are noisy. For noisy aspects which
are outliers (e.g., “picturemy”, “150”), they usually occur
less frequently in reviews as compared with those from nor-
mal aspects. As such, they will have smaller edge weights
in the tripartite graph, thus exerting less impact on the
ranking (see xjk and yik of Eq. (3)). For noisy aspects
which are domain-specific stop words, although they have
high frequency in reviews, they actually distribute evenly
for all users and items (i.e., column vector of SX and SY of
Eq. (4)). As a result, they will contribute evenly across all
items’ ranking scores, hence not changing the relative rank-
ing among items. As such, TriRank is relatively insensitive
to noisy aspects (either outliers or stop words).

Structural ambiguity. Given a list of triples as inputs,
we can uniquely represent them as a tripartite graph, but not

Table 3: Statistics of datasets in evaluation.

Dataset Review# Item# User# Avg Density
Yelp 114,316 4,043 3,835 29.8 0.74%
Amazon 55,677 14,370 2,933 19.0 0.13%

“Avg” denotes the average number of reviews per user.

vice versa. This is because in the tripartite graph, we cannot
attribute a specific edge to an input tuple, as the conversion
to the tripartite graph does not represent tuple association.
More specifically, let the reviewed aspects of user ui and item
pj be Ai and Aj , respectively. Assume ui interacts with pj ,
then the tripartite structure can not differentiate the aspects
in Ai ∩ Aj for the interaction rij . When such ambiguities
occur, they can act like unseen additional inputs, which can
complement the actual observed data in a manner similar to
transitive reasoning.

4. EXPERIMENTS
We first introduce our experimental settings, and then

compare its performance with other methods. We then
study the utility of aspects in depth. Finally, we perform
a few case studies of TriRank’s recommendation output.

Datasets. We experiment with two publicly accessible
datasets: Yelp2 and Amazon Electronics [19].

1. Yelp. This is the Yelp Challenge dataset published on
April 2013. It includes 11,537 items, 229,907 reviews and
45,981 users. The dataset is very sparse – 49.6% of users
only made one review, making it difficult for evaluation.

2. Amazon. This dataset contains user ratings and
reviews on Amazon products of Electronics category, pub-
lished by [19]. The original dataset contains over 800K users,
80K items and 1.3M reviews. It is more sparse than the Yelp
dataset – with 77.9% of users making only one review.

Following the common practice by other works [4, 34] in
evaluating recommender algorithms, we filter out the items
and users having fewer than 10 reviews. Table 3 summarizes
the statistics of the filtered datasets. We split each dataset
into three parts for training, validation and testing by time.
For each user, we sort her reviews in chronological order.
The first 80% are used for training, and the remaining most
recent 20% are randomly split as validation set (for param-
eter tuning only) and test set (for evaluation).

Evaluation Metrics. Given a user, each algorithm pro-
duces a ranked list of items. To assess the ranked list with
the ground-truth item set (GT), we adopt Hit Ratio (HR),
which has been commonly used in top-N evaluation [15, 29].
If a test item appears in the recommended list, it is deemed
a hit. HR is calculated as:

HR@K =
Number of Hits @K

|GT |
. (5)

As the HR is recall-based metric, it does not reflect the
accuracy of getting top ranks correct, which is crucial in
many real-world applications. To address this, we also adopt
Normalized Discounted Cumulative Gain (NDCG), which
assigns higher importance to results at top ranks, scoring
successively lower ranks with marginal fractional utility:

NDCG@K = ZK

K∑
i=1

2ri − 1

log2(i+ 1)
, (6)

2http://www.yelp.com/dataset_challenge

http://www.yelp.com/dataset_challenge


(a) Yelp – Hit Ratio (b) Yelp – NDCG (c) Amazon – Hit Ratio (d) Amazon – NDCG

Figure 4: Performance evaluated by Hit Ratio and NDCG from position 10 to 50 (i.e., K).

where ZK is the normalizer to ensure the perfect ranking has
a value of 1; ri is the graded relevance of item at position i.
We use the simple binary relevance for our work: ri = 1 if
the item is in the test set, and 0 otherwise.

For both metrics, larger values indicate better performance.
In the evaluation, we calculate both metrics for each user in
the test set, and report the average score.

Baselines. We compare TriRank with the following com-
monly used and competitive methods in top-N evaluation:

1. Item Popularity (ItemPop). Items are ranked by
their popularity judged by number of ratings. Although it
is not personalized, it is surprisingly competitive in top-N
evaluation [3], as users tend to consume popular items.

2. ItemKNN [24]. This is standard item-based CF,
and has been used commercially by Amazon [16] and Movie-
Lens [28]. We adopt cosine similarity to measure the similar-
ity among items. We test the method with different number
of neighbors, finding that using all neighbors works best.

3. PureSVD [3]. A state-of-the-art for top-N recom-
mendation, which performs Singular Value Decomposition
on the whole matrix, thus directly considering all instances.
unlike other latent factor methods that optimize against er-
ror only on rated instances. This property is important
when applying matrix factorization models for top-N evalua-
tion. We follow the implementation in [3], using the package
SVDLIBC3, tuning the number of latent features from 10 to
200, finding the best performance at 30.

4. Personalized PageRank [8]. This is a widely used
graph method for top-N recommendation, e.g., by [15, 29].
We perform Personalized PageRank on the user–item graph4,
and set the personalized vector same with TriRank’s prior
item vector ~p0. The damping parameter (i.e., weight of the
personalized vector) was respectively optimized to 0.9 and
0.3, for Yelp and Amazon datasets.

5. ItemRank [6]. This is another graph based method
that recommends based on the item–item correlation graph.
Similar to Personalized PageRank, we set the personalized
vector identically as ~p0 and tune the damping factor.

6. TagRW [35]. This is the state-of-the-art method to
model tags for top-N item recommendation. As we have
mentioned that aspects are similar with tags in terms of for-
mat, we need to compare with such a method to study how
tag-aware methods perform on the task of modeling aspects.

3http://tedlab.mit.edu/~dr/SVDLIBC
4We also evaluated Personalized PageRank on the user–
item–aspect tripartite graph. Even with optimal tuning of
each edge and vertex type, performance did not improve;
thus we only report Personalized PageRank’s performance
on the standard user–item graph.

TagRW enhances ItemRank [6] by incorporating tags into
building the item–item graph and performing an additional
random walk on user–user graph. We feed aspects (all the
same settings with TriRank) as tags into the method, and
tune the five parameters of the method in a sequential way,
as suggested by their paper.

As the existing review-aware methods [4, 17, 19, 34] are
optimized for predicting observed ratings, it is unfair to
compare with them for top-N evaluation. We validate this
by evaluating the Hidden Factors and Topics model [19],
which is state-of-the-art for review-aware rating prediction.
It achieves poor top-N performance in our settings, worse
than Item Popularity. Thus we do not further compare with
other methods designed for rating prediction.

TriRank has six regularization parameters to tune – three
for the traditional collaborative filtering effect (α, ηU , ηI)
and three for the aspect filtering effect (β, γ, ηA). As per-
forming grid-search on all six parameters simultaneously is
time-consuming, we separately tune those for CF and those
for aspects – first fixing β, γ, ηA as 0, searching for α, ηU , ηI ;
then performing the reverse with the optimal α, ηU , ηI . Per-
formance was stable across many parameter settings, thus
we report results for a selected set.

4.1 Performance Study
Figure 4 plots the performance when K ranges from 10 to

50, and Table 4 shows the concrete scores obtained at posi-
tion 10 and 50. We first focus on results of the Yelp dataset.
From Figure 4(a) and (b), we see that both metrics exhibit
the same trend: TriRank performs best, outperforming all
other methods with a large margin; followed by PageRank
and ItemKNN, where PageRank performs slightly better
than ItemKNN. PureSVD, ItemRank and TagRW obtain
similar HR scores, while NDCG tells the quality of rank-
ing: PureSVD ranks correct items higher than ItemRank
and TagRW. Item Popularity performs the worst, indicating
the importance of modeling users’ personalized preferences,
rather than just recommending popular items.

Surprisingly, TagRW does not always outperform Item-
Rank, although it utilizes additional aspect information. It
shows that their method for integrating tags into recom-
mendation may not be effective for aspects. Analyzing the
results, we believe that there are two reasons responsible for
TagRW’s inferior performance. First, they integrate aspects
by transforming to the item–item and user–user similarity
graph, which may lead to signal loss. Second, noisy as-
pects may have an adverse impact on their method, and the
impact is highly dependent on the similarity measure they
use. Our proposed TriRank mitigates both of these nega-

http://tedlab.mit.edu/~dr/SVDLIBC


Table 4: Performance of compared methods and TriRank at rank 10 and 50.

Dataset Yelp Amazon
Metric(%) HR@10 NDCG@10 HR@50 NDCG@50 HR@10 NDCG@10 HR@50 NDCG@50
ItemPop 3.06 1.85 10.61 4.08 2.38 1.36 6.13 2.37
ItemKNN 4.90 3.21 15.72 6.37 11.17 9.75 12.69 10.15
PureSVD 4.79 3.17 14.94 6.16 11.52 9.64 14.94 10.55
PageRank 4.79 3.24 15.90 6.52 12.10 10.33 17.49 11.78
ItemRank 4.64 3.05 14.67 6.01 10.92 8.97 16.84 10.58
TagRW 4.36 2.85 15.25 6.02 11.23 8.96 17.47 10.65
TriRank 5.92∗∗ 3.97∗∗ 18.58∗∗ 7.69∗∗ 12.71∗∗ 10.86∗∗ 18.44∗∗ 12.36∗∗

“**” denotes the statistical significance for p < 0.01.

tive factors by 1) directly modeling aspects into the user–
item relation as a tripartite graph, and 2) ranking vertices
by regularizing the tripartite graph.

With respect to the Amazon dataset, TriRank again achieves
the best performance on both metrics (p < 0.01 in most
cases). Focusing on Figure 4(c) that shows the HR scores,
TriRank is followed by PageRank and TagRW, which signif-
icantly outperform other methods. When K is set to 30–
40, the HR differences between TriRank and PageRank and
TagRW are small, but the NDCG reveals significant gaps
among the three methods, indicating that TriRank success-
fully orders the correct items more effectively than the other
two. Meanwhile, TagRW and ItemRank better PureSVD, as
evaluated by HR (K ≥ 15), but not by NDCG, which indi-
cates the matches of TagRW and ItemRank actually occur
at lower ranks. This reinforces our point that a good recall
score does not necessarily translate to a high-quality rank-
ing, hence the necessity to evaluate by ranking based mea-
sures, such as NDCG. ItemKNN performs worst among all
the non-trivial personalized methods. ItemPop performed
very weak, and as such, was entirely omitted in the figure
to better highlight the performance of the other methods.

Looking at the interesting performance variations across
the two datasets, we first notice that ItemPop only per-
forms well on the Yelp dataset. We believe this is caused by
consumption behavior differences across the two domains –
people may visit popular restaurants or businesses rated in
Yelp, but only purchase certain products on demand from
Amazon. Similarly, ItemKNN performs strongly on the Yelp
dataset (better than PureSVD), but poorly on the Amazon.
One possible reason comes from data sparsity: as in Ta-
ble 3, each item of the Amazon dataset only has 3.9 reviews
on average. In such cases, the similarity measure fails in
neighbor-based CF. An interesting finding is that PageRank
consistently outperforms ItemRank, although both rely on
Personalized PageRank with the same personalized vector.
We believe the explanation is due to the fact that ItemRank
ranks based on the transformed item–item correlation graph.
Transforming the user–item graph to an item–item correla-
tion graph will lose signal especially when the data is sparse,
e.g., when two items have no common users reviewing them.
In such cases, it is more beneficial to directly rank from the
user–item graph. Finally, TagRW betters ItemRank only on
the Amazon dataset, indicating that the tag-based method
to integrate aspects does not lead to consistent improvement.
Our proposed TriRank achieves the best performance on the
two datasets evaluated by both metrics, demonstrating its
superiority in providing personalized item ranking to users
by mining aspects in reviews.

4.2 Utility of Aspects

Table 5: Performance of TriRank with different pa-
rameter settings at rank 50.

Dataset Yelp Amazon
Settings HR NDCG HR NDCG
0. All set 18.58 7.69 18.44 12.36
1. β = 0 (no
item–aspect)

17.05 6.91 16.23 11.31

2. γ = 0 (no
user–aspect)

18.52 7.68 18.40 12.36

3. ηA = 0 (no
aspect query)

18.21 7.51 17.62 12.10

4. β, γ, ηA =
0 (no aspects)

17.00 6.90 15.97 11.16

5. α = 0 (no
user–item)

11.67 4.84 10.32 5.08

There are natural issues about aspects that we also wish
to address:

1. How do the aspect-related components (e.g., item–
aspect and user–aspect) contribute to the performance?

2. How does the quality of aspects impact the perfor-
mance? Can TriRank handle the inherent noise in au-
tomatically extracted aspects well?

4.2.1 Aspect Importance Study
As TriRank is modular, with parameters for each type

of vertices and edges, it is easy to answer the first ques-
tion by varying the aspect-related parameters: β and γ to
control the smoothness for the item–aspect and user–aspect
relation, respectively, and ηA for the aspect query vector.
Setting a parameter to 0 removes the corresponding effect.

Table 5 shows TriRank’s performance with different pa-
rameter settings, evaluated at rank 50. In both datasets,
when item–aspect smoothness is eliminated by setting β = 0
(Row 1), performance drops significantly. This indicates
the importance of item–aspect relation, and validates our
motivation that modeling user preference via decomposed
aspects can yield more fidelity over modeling user–item rat-
ings only. In contrast, when user–aspect smoothness is re-
moved (Row 2), the performance remains unchanged. This
shows that user–aspect smoothness contributes substantially
less to TriRank’s performance; however, we note that at least
the target user’s portion of the user–aspect relation can not
be removed in recommendation, as the rated aspects of a
user form her aspect query vector needed for recommenda-
tion. Row 3, which exhibits low performance, validates this
point, as here we have removed the aspect query vector by
setting ηA as 0. If we remove the modeling of aspects in its
entirety (Row 4), TriRank degrades to the Bipartite User–
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Figure 5: TriRank performance with respect to per-
centage of top aspects selected.

Item Ranking algorithm [9] on the user–item graph, and
performs even worse. This further reveals the importance of
modeling aspects for quality recommendation.

To round out our study, Row 5 shows the performance
of removing user–item smoothness, which encodes standard
CF in the terminology of our regularization approach. The
resulting performance is worst among all settings. The user–
item relation is still fundamental to model and is most im-
portant, followed by the importance of the item–aspect smooth-
ness; user–aspect smoothness contributes least and may be
removed. However, the reviewed aspects of a particular tar-
get user are still critical for capturing her personalized pref-
erence.

4.2.2 Aspect Quality Study
For the second question, we first rank aspects by their

tf×idf score in the item–aspect matrix, and then select top
scoring aspects to build the tripartite graph and inspect Tri-
Rank’s performance.

Figure 5 shows TriRank’s performance with respect to
percentage of top aspects selected. As we can see, both
datasets show the same trend: when the filtering ratio is
moderate, performance remains largely unchanged. The
filtering inflection point for both datasets is around 30%.
When we filter out aspects beyond this point, performance
starts to drop significantly. This indicates that the aspects
with tf× idf play a dominant role in modeling users’ prefer-
ence for quality recommendation. We further validate this
conclusion by filtering in the reverse direction (not shown;
i.e., dropping the top x% aspects ranked by tf×idf), finding
that even a small amount of filtering (1%) leads to signif-
icant degradation. We conclude that one can safely filter
out the low tf × idf scoring aspects for efficiency, as they
contribute less to recommendation performance.

Interestingly, TriRank’s performance does not improve when
only high tf × idf aspects are utilized. Although slight im-
provements can be obtained with tuning, they are not statis-
tically significant. We further evaluate TriRank with the 124
high-quality aspects selected in [34]’s work on the same Yelp
Challenge dataset. Even after all parameters are re-tuned,
test performance is not improved. This validates the nice
property of TriRank of being relatively insensitive to noisy
aspects, which are also expected to have less impact in the
ranking outputs as previously explained (Section 3.4). Tri-
Rank can effectively utilize the merits in the automatically
extracted aspects, without the need to filter out noisy as-
pects manually. Compared to the Explicit Factor Model [34]
that integrates only high-quality aspects into a matrix fac-
torization model and then generates recommendations by
optimizing the predicted ratings in an opaque manner, Tri-

Figure 6: Training reviews of a sampled Yelp user.

Rank is more transparent in leveraging aspects and also is
more tolerant of low-quality aspects.

4.3 Case Studies
While macro-level empirical analysis are useful, it is also

instructive to examine actual results to better understand
the outputs of TriRank. To this end, we give two case stud-
ies drawn from the Yelp dataset to demonstrate its explain-
ability and scrutability.

4.3.1 Explainability
Figure 6 shows four training reviews of a sampled user5.

From the first two reviews, we can see the user is inter-
ested in “chicken”, although she gives low ratings to the
two businesses. In the heldout test set, she reviews the
business Chick-Fil-A with a comment “I love Chick-Fil-A...
the spicy chicken sandwhiches [sic], the lemonade, the soup,
the brownies”, which further validates her preference for
“chicken”. As expected, TriRank ranks Chick-Fil-A highly (6th

position), mainly due to chicken being a top aspect of this
business (3 of its 7 training reviews mentioned “chicken”).
Examining the top items returned by PageRank, none have
“chicken” as a top aspect, and most of them are popular
items with more than 100 reviews. This is because random
walk models are easily biased to popular items, as reported
by [1]. Moreover, the third and fourth reviews show that
the user is also interested in “shrimp”. As a result, TriRank
ranks the seafood restaurant Red Lobster highly in the 3rd

position. Although it is evaluated as a loss as the test set
does not contain the item, when we checked her complete
history in Yelp.com, we found she actually reviewed this
restaurant later (outside of the dates in the Yelp Challenge
dataset), mentioning “shrimp”. Again, the recommended
Red Lobster is not a popular item with only 7 training re-
views. This case study demonstrates TriRank’s capability
of recommending more relevant and personalized items (not
just popular items) according to a user’s reviewed aspects.

4.3.2 Scrutability
Another key property of our TriRank instantiation is the

encoding of aspect query vector ~a0, serving as the gateway
to edit a target user’s preference. We simulate the process
on a sampled user6.

For this user, 9 of the 14 training reviews mentioned “ser-
vice”, which is the top aspect, followed by “beer”. However
in the test set, he reviews the business“Total Wine & More”,
whose top aspects are “wine” and “liquor”. In this case, both

5User ID “8fTTvS499XCz4oP49kxq8A”. Only part of each
review is shown as the original is long.
6User ID “omoEjYFKVV7e-DtnezeUOw”.



TriRank and PageRank fail to recommend the correct item,
and all top items returned do not have wine as a specialty.
We simulate user feedback by editing the aspect query vec-
tor to set “wine” to a higher value, and re-run TriRank with
all other parameters unchanged. In the updated ranked list,
8 of the top-10 items have “wine” as the top aspect, and the
correct item“Total Wine & More” is ranked in 2nd position.

5. RELATED WORK
While collaborative filtering systems perform well in gen-

eral, their performance suffers when the amount of user feed-
back is insufficient (i.e., in cold-start). Another important
shortcoming is that they do not capture the rationale for
user’s rating, and thus can not accurately capture a target
user’s preference. To overcome these weaknesses, various
forms of side information have been incorporated into CF,
including tags [35], geo-location [11] and user reviews [19]. In
this section, we first study the area of review-aware methods,
and then examine graph-based recommendation techniques
as TriRank falls into this category.

5.1 Review-aware Recommendation
User reviews have been utilized to assist recommender

systems in many domains, for movies [4], hotels [20], restau-
rants [5] and e-commerce [19]. Regardless of domain, we can
categorize the approaches based on how reviews are inte-
grated into the recommender: 1) word-based, 2) sentiment-
based, and 3) aspect-based methods.

Word-based. These approaches directly factorize the re-
view words into CF. [26] used words to measure similarity,
whereas [11] modeled each word as a latent vector within the
latent factor model. As the original word space is large and
sparse, dimension reduction techniques have been adopted.
McAuley and Leskovec [19] employed Latent Dirichlet Allo-
cation (LDA) [2] to winnow down the word space, and com-
bined with the standard latent factor model. Subsequently,
[17, 30] adopted a full Bayesian treatment to combine topics
and latent factors for rating prediction.

Sentiment-based. These approaches utilize the user’s
explicitly mentioned opinions on items. [21] proposed to
fill in the missing ratings with a predicted sentiment score
before applying neighbor-based CF. [22] built a user–item
opinion matrix, where each entry was the aggregated sen-
timent score of a review, and then applied traditional CF
on the opinion matrix. More recently, [4] proposed an inte-
grated graphical model to jointly model the sentiment and
ratings for movie recommendation.

Aspect-based. Our work falls into this category. Early
work [5] along this line manually annotated six aspects in
the restaurant domain (e.g., service, ambiance, etc.), and
classified sentences with respect to these aspects. Their re-
gression method validated the usefulness of aspects for rat-
ing prediction. Musat et al. [20] built topical profiles of users
and items from reviews, and predicted ratings at the topic
level. They tested two ways to extract topics — LDA and
opinion word frequency — finding the latter produced higher
quality topics. Recently, Zhang et al. [34] jointly factorized
the user–item rating matrix by inserting aspects, decompos-
ing it into item–aspect and user–aspect matrices, where the
aspects were automatically extracted.

Several hybrid methods have also integrated aspect and
sentiment [4, 5, 34] as they are closely related. In con-
trast, our work focuses on integrating aspect into CF for

explainable recommendations, thus we forgo incorporating
sentiment, to minimize the reliance on sentiment analysis
accuracy. Compared to the above review-aware works, our
method explores a graph model to integrate aspects, which
has not been previously been investigated. Moreover, our
proposed TriRank affords the recommender a finer degree
of user interaction — aspect preference — allowing for both
more accurate and transparent recommendation.

5.2 Graph-based Recommendation
Graphs form a natural representation for modeling the

relationship among data objects. In recommender systems,
graph models have been used widely and commercially (e.g.,
by Twitter [7] and YouTube [1]), due to their good inter-
pretability in generating recommendations. A typical work-
flow is first representing items as vertices of a graph, and
then admitting recommendation as a vertex-ranking prob-
lem. For example, in YouTube video recommendation, [1]
built a user–video co-view graph for video items, adopting
label propagation for selecting important videos.

Besides directly working on the heterogeneous user–item
graph, another family of approaches [6, 18, 35] projects the
user–item graph to an item–item graph (as the ranking tar-
get is item), and then applies homogeneous graph ranking
techniques, such as personalized PageRank [8]. Specifically,
[6] recommended based on an item correlation graph, where
entries denoted the likelihood that two items are co-rated.
[18] proposed an item preference graph, where entries de-
noted the strength that users prefer one item over another.

We point out that a key advantage of retaining the user–
item structure is that additional information can be eas-
ily incorporated by adding new types of vertices. However,
existing ranking algorithms do not cater to heterogeneous
structures, as they have primarily focused on homogeneous
graphs [8, 36] or bipartite graphs [9]. Thus, a corresponding
algorithm must be devised to suit the specific heterogeneous
graph and ranking purpose. For example, [29] modeled long-
term and short-term user preference by introducing session
nodes, ranking vertices by propagating user preference via
Breadth-First-Search; [15] incorporated contexts (e.g., loca-
tion, time) as vertices in the user’s side, and adjusted PageR-
ank for ranking in such a mixed bipartite graph. Similar to
above works, our method retains the user–item structure,
extending it to a user–item–aspect tripartite graph for mod-
eling aspects. One major difference is that we specifically
consider the ternary relationship between user, item and as-
pect, which has not been studied before.

6. CONCLUSION
We have studied how to utilize item aspects in user re-

views for top-N recommendation. We model the user–item–
aspect relation as a tripartite graph, and propose TriRank, a
generic algorithm for ranking the vertices of tripartite graph
by regularizing the smoothness and fitting constraints. We
employ TriRank for review-aware recommendation, where
the ranking constraints directly model the collaborative and
aspect filtering, and also personalization. TriRank achieves
state-of-the-art performance over two public review datasets,
even with automatically extracted aspects that have signifi-
cant noise. We validate TriRank as being largely insensitive
to low-quality aspects, a desirable property when porting
to other domains as it avoids manual efforts in filtering out
noisy aspects. Most importantly, TriRank’s incorporation



of aspects provides users with more transparency into the
recommender system behavior and affords user interaction
to further improve recommendations.

Our introduction to TriRank is in its basic form, which
has already shown significant utility. TriRank can be fur-
ther extended in many ways, for example by adopting a
more suitable loss function, or by extending to more general
n-partite graphs. We hope to extend TriRank to such cases,
by jointly modeling the additional information latent in user
reviews that may be useful for recommendation: temporal
factors [9], category taxonomies [10] and sentiment [21]. An-
other open issue is in optimal parameter settings. Our cur-
rent work reports results when the regularization parameters
are set uniformly for all users; however in some exploratory
work, we found that a specific parameter setting for a subset
of users improves performance. This reveals the potential
for improvement by setting parameters individually or for
groups of similar users based on their preference on aspects.
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