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ABSTRACT
We introduce a general, interest-aware topic model (IATM), in
which known higher-level interests on topics expressed by each user
can be modeled. We then specialize the IATM for use in consumer
health forum thread recommendation by equating each user’s self-
reported medical conditions as interests and topics as symptoms
of treatments for recommendation. �e IATM additionally models
the implicit interests embodied by users’ textual descriptions in
their pro�les. To further enhance the personalized nature of the
recommendations, we introduce jointly normalized collaborative
topic regression (JNCTR) which captures how users interact with
the various symptoms belonging to the same clinical condition.

In our experiments on two real-world consumer health forums,
our proposed model signi�cantly outperforms competitive state-of-
the-art baselines by over 10% in recall. Importantly, we show that
our IATM+JNCTR pipeline also imbues the recommendation pro-
cess with added transparency, allowing a recommendation system
to justify its recommendation with respect to each user’s interest
in certain health conditions.
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1 INTRODUCTION
People participate in online health forums in part to discuss their
symptoms and clinical conditions with others. �ey post health
related questions to learn from the experience of the community.
�e majority of users participate in online health communities with
the goal of meeting a medical information need [10, 16, 18]. �is is
the problem we address in this work. We acknowledge that patients
also participate for emotional support and social reasons [3, 7, 34],
but this is beyond the scope of this current work.

Finding relevant information can be di�cult, and recommenda-
tion systems can help bridge this gap by providing users with dis-
cussion threads relevant to their condition- and symptom-speci�c
interests.
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Table 1: A query ALS thread (le�), and lexically similar but
unrelated posts for Parkinson’s Disease (right).

ALS�reads Parkinson’s Disease �reads
does any one experi-
ence lower back pain
a�er si�ing a spell then
standing up ? …

… I have extreme pain in my lower back and
hips. �ere are days it just hurts to walk …
I have been having back pain for 3 years and it
gets continually worse. My lower back gets …

We observe that the symptoms experienced by patients with
di�erent clinical conditions are o�en similar. However, the proper
treatment crucially depends on the underlying cause (i.e., the clini-
cal condition or disease). �is leads to many lexically similar user
queries which require di�erent answers as shown in Table 1. Many
traditional approaches — such as topic models — struggle to iden-
tify the correct underlying condition, as they mainly use word
co-occurrence to determine relevant answers.

We observe that context is a key factor to identify the appropriate
latent conditions and symptoms. In this scenario, the key contextual
evidence is the participation that a user manifests with respect to
a speci�c medical condition, either by subscribing to a subforum
related to a condition or by authoring a post in the forum inferrably
related to a condition1. We believe that such context must be
accounted for in order to recommend relevant discussion threads
in health forums. We introduce a two-stage approach that captures
such context.

Our solution leverages the topic model framework to properly
incorporate the contextual information. Our topic model — which
we term the interest-aware topic model (IATM) — is a general model
that encompasses both the evidence of each user’s thread and word
interactions, but crucially, also the user’s self-reported (and thus
observed) interests.

A key characteristic of the IATM is that even though it can model
explicit user interests (i.e., a patient is subscribed to a Parkinson’s
disease subforum), in the absence of such explicitly indicated inter-
ests, the IATM treats users’ interests as a partially-observed random
variable and a�empts to infer the full and latent value. As users
may not explicitly type themselves, yet actively participate, this is
important to account for.

�e IATM also natively models the side information of user pro-
�les. User pro�les are ubiquitous to many Web 2.0 sites, inclusive
of health forums. In IATM, user pro�les are treated as normal
documents during the training process, used in determining the
interests of the user. In our health forum recommendation scenario,
user descriptions do give useful information about the user, which

1In our scenario, we require actions that leave a traceable correlation with interest.
�is allows our framework to be applied even in cases where the recommendation
is done by a third party (as done in our evaluation) and not necessarily done by the
service provider.



signi�cantly aids the recommendation process, especially for users
that have li�le interaction history — a form of cold start.

In further analyses of our datasets, we note further modeling
di�culties. Even when con�ned to a single condition, discussion
on di�erent symptoms also o�en appear similar due to commonly
a�ected parts of the body. Consider the following posts:

(a) [about back pain] “I’ve had back pain for over a year now and it’s ge�ing
unmanageable — increasingly I can hardly put weight on my right leg …”

(b) [about leg cramps] “Sometimes I get cramps in my leg. Only thing I have
found that helps it is if I get up and put my body weight on it …”

�ese posts have common words (bolded) but are about di�erent
symptoms of Parkinson’s disease. Although the topic distributions
in two posts (documents) are similar, each user’s preferences are
clearly directed towards di�erent particular topics. We observe sim-
ilar distribution bias with users’ participation in clinical treatment
discussions and other condition-speci�c topics.

To address this second, �ne-grained disambiguation problem,
we develop a novel graphical model, jointly normalized collabo-
rative topic regression (JNCTR). JNCTR is a logical adaptation of
the original collaborative topic regression (CTR) model [32], itself
motivated to handle such divergences in each user’s interests in
documents with similar topic distributions. JNCTR extends CTR by
taking both the user–topic and thread–topic distributions coming
from IATM as input, but additionally accounts for the user–thread
interaction history in the form of ratings. �is model allows us to
understand the di�erences between symptoms that originate from
a single condition. JNCTR updates both the user–topic and thread–
topic distributions based on the past user–thread interactions. We
compute thread recommendations for each user using the resultant
user–topic and thread–topic distributions.

Online health forum users o�en use their ownwords and phrases
to describe their experiences [12, 20]. Standard medical ontologies
and thesauri (e.g., UMLS2) struggle to cover the medical terms
found in user–generated medical content [9]. We believe that our
specialized IATM+JNCTR model is the �rst a�empt to understand
how clinical conditions and their symptoms and treatments explain
the interaction of users in a health forum. �e contributions of our
work are summarized as follows:
•We formalize the problem of interest-aware recommendation,

of which health forum thread recommendation is a speci�c instan-
tiation of conditions-as-interests. We investigate how to best utilize
user participation in the forum, formulating this as an implicit
feedback-based recommendation problem.
•We apply our framework to two real-world datasets obtained

from PatientsLikeMe3 and HealthBoards4, demonstrating signi�-
cant improvement over state-of-the-art baselines.
•We extend our experiments to demonstrate how our proposed

IATM+JNCTR model deals gracefully with both cold-start users
and cold-start items (“threads” in our work). �e model can explain
a recommendation due to its modeling of latent variables. We
further investigate how our model performs in recommendation
justi�cation by analyzing its recommendations to speci�c users.

2h�ps://www.nlm.nih.gov/research/umls/
3h�p://www.patientslikeme.com
4h�p://www.healthboards.com

2 RELATEDWORK
�e motivations behind user participation in consumer medical
information discussion forums have been systematically studied
by the medical informatics community in recent years [3, 14, 34].
However, to the best of our knowledge, such work has been limited
to large-scale surveys of self-reported behavior, and the commu-
nity has not seen much development of practical recommendation
techniques for health forums as of current.

While acknowledging the varied societal and emotional support
needs of users, we �nd value in addressing the primary information
need for consumer health information. As such, our task falls into
the guise of recommendation systems, an area which has seen
much recent interest with the popularity of Web 2.0 systems that
integrate users and items into Web applications. For brevity, we
limit our discussion to relevant prior work in the areas of topic
modeling, content-based and context-aware recommendations, and
community question answering.

Topic Models. Topic models regard documents as mixtures
of latent topics with certain distributional properties. For textual
documents, several works have focused on modeling latent factors
of the content using latent Dirichet allocation (LDA) [4] and its
variants [17, 26, 28]. For example, the author–topic model [28]
learns the topic distribution of authors for a set of documents. On
the other hand, labeled LDA relies on annotated tags to constrain
the possible topics for each document [26].

While these models are useful on their own for modeling either
users or items, they do not capture the dynamics between both.
LDA can be used as a starting point for re�nement to account these
factors. Agarwal et al. [1] leveraged LDA-discovered latent topic
distributions for matrix factorization-based collaborative �ltering
(CF). �ey report modest improvement over other methods — the
reason being that o�en the topic distributions of di�erent items
look similar, even though they appeal to di�erent sets of people.
�ere also exists a set of focused topic models that cater to speci�c
use cases [6, 35]. Chen et al. [6] proposed a Contextual Focused
Topic Model, where they assume a word to be generated from either
the author or the venue or the document characteristics – not from
a joint combination of them, as in our case.

Content-based andContext-aware Recommendation. Cer-
tain content-based recommendation systems further account for
information associated with content associated with users. Wang et
al. [32] proposed collaborative topic regression (CTR) and showed
the e�ectiveness of adjusting the LDA-discovered topic distribu-
tions by doing a regression from the observed user–item ratings in
scholarly documents. In the same context, Charlin et al. [5] showed
that the cold-start performance of a similar model can be improved
if there is bootstrapping information available in the form of docu-
ment content associated with users. Although it is possible to use
a textual content agnostic o�-the-shelf CF method to recommend
articles to a user to comment on [30], considering associated textual
content improves performance signi�cantly in other platforms, e.g.,
news articles or blogs [2], demonstrating the e�cacy of modeling
such side information.

Along with the past user–item interaction history, Context Aware
Recommendation methods consider the interaction contexts which

http://www.patientslikeme.com
http://www.healthboards.com


Figure 1: �e pipeline for our three-stage recommendation framework. IATM �rst provides user–topic and document–topic
distributions for all the diseases, and then JNCTR further optimizes those distributions. Finally, the ranking combinermerges
the ranked documents depending on the user–interest alignment estimated from the �rst stage.

can be equated to the medical conditions of a user in our scenario.
Tensor Factorization [11] and Factorization Machines [27] are two
promising methods, primarily designed to predict ratings in an
explicit feedback-based system. Nguyen et al. [19] demonstrate that
such techniques can also be pro�tably applied in implicit feedback
scenarios such as ours.

Recommendation in Community�estion Answering. In
community question answering systems, prior work has addressed
recommending semantically related question threads that re�ect
di�erent aspects of the user’s query and provide supplementary
information. Wang et al. [33] recommend more relevant threads
by extending a language model with the popularity of a question.
Pedro and Karatzoglou [24] extend Learning to Rank to supervised
LDA applied speci�cally to recommend relevant question threads.
Zhou et al. [39] propose a translation model-based thread recom-
mendation by incorporating answer information. In recent work,
Omari et al. [22] and Palo�i et al. [23] improve ranking of relevant
discussion threads in health forums. However, both works do not
address the recommendation of relevant threads to speci�c user’s
interests.

While the previous work can handle recommendations in health
forums, there is important evidence that needs to be modeled to
achieve be�er recommendation accuracy [5, 15, 37]. In particular,
in health forums, each user can o�en express explicit interests in
di�erent conditions. We note that, in most of existing recommen-
dation systems, construction of user pro�les has been independent
of the recommendation process itself.

We propose a uni�ed framework of both user pro�les and user
participation in a health forum. �is leads to not only signi�cant
improvement over other state-of-the-art methods but also enhance-
ment of transparency in the recommendation task.

3 METHODS
Our recommendation methodology takes full advantage of the dif-
ferent sources of evidence that in�uence recommendations of items
in a generic context. It is a three-stage methodology comprising of:
1) a topic model (IATM), 2) topic regression (JNCTR), and 3) ranking

combination, as shown in Figure 1. We �rst give a short overview of
the �rst two key models before describing how we instantiate them
for the health forum recommendation task. We then describe the
three stages in technical detail, and �nally discuss our instantiation
of the model for health forum thread recommendation to create a
condition-aware topic model.

Method Overview. Our proposed interest-aware topic model is a
generic topic model that can be used in many recommendation sce-
narios involving users. Without loss of generality, IATM assumes
that users interact with documents (or items, as in the literature).
�e interactions generate some textual evidence that ties users and
documents together — such as contributing a post within a larger,
multi-user thread (document), commenting or authoring the entire
document, such as one’s own user pro�le. Like the standard topic
model, documents are modeled as mixtures of topics; however, a
key distinction in IATM is that it assumes that topics are related
to certain higher-level interests in a generative relationship. IATM
captures explicit expressions of user interests, but crucially main-
tains the observations of these interests only as partially observed.
�is distinction allows the IATM to infer other interests of the user
that are suggested by the contextual evidence of the user’s other
interactions.

JNCTR advances this step further, taking in the output of IATM’s
user–topic and document–topic distributions and further account-
ing for user–document interactions. As IATM already accounts for
interests, we can instantiate standard collaborative topic regression
for each interest separately, and jointly normalize them to output
re�ned user–topic and document–topic distributions. �ese are
then fused to generate recommendations.

Instantiating the Model for Health Forum Recommenda-
tions. IATM+JNCTR can be applied to various Web 2.0 contexts
— recommendation tasks such as ones for movies, products, and
discussion forums. �ese contexts all have document–user interac-
tions, where user interests are partially observed through forum
subscriptions or folksonomy tags, among other means.

For clarity, we now instantiate IATM+JNCTR for the health
forum thread recommendation problem. In our scenario, users
express their interests by subscribing to forums at health websites,



which are largely speci�c to a medical condition. As in the general
case, we do not expect users to necessarily subscribe to all the
condition-speci�c forums that are relevant to them; we model such
subscriptions as being partially observed.

�e goal of our recommendation system is to recommend rele-
vant health forum threads to users. Users can participate in forum
threads by contributing posts, which forms the user–document
interactions in our IATM+JNCTR framework. A user can report her
clinical conditions as part of her user pro�le’s free text description
(e.g., “About Me”). Such user documents are only used as evidence
during training; to be clear, we do not recommend user pro�les. Fi-
nally, individual threads on a particular condition discuss di�erent
symptoms and treatments in di�ering proportions. We assume that
users are interested in certain symptoms that they experience, and
treatments that they are undergoing.

In our health forum thread recommendation, we equate the
following IATM terms with ones speci�c to our scenario: interest
→ condition; topic → (symptom, treatment); and document →
thread.

3.1 Interest-Aware Topic Model (IATM)
We use the standard plate notation for the graphical model as shown
in Figure 2. �ere areU users and V thread documents. Since each
user has a user document (i.e., a user pro�le), there are U user
documents; hence we have altogether D = U + V documents. Y
denotes the set of all possible interests. In Figure 2, an interest y
is sampled from a uniform distribution from the set of interests
yd ⊂ Y , where yd is the union of all interests reported by the users
participating in document d . Each interest y has Z latent topics
which denote the �ne-grained sub-topics of an interest (e.g., in our
instantiated IATM for medical conditions, they would be di�erent
symptoms or medications for a condition).

For each word in a document, a latent topic z is sampled from an
interest y according to the topic distribution of the user θu , as well
as the topic distribution of the thread θv . �e reason behind this
approach is intuitive: when a user contributes to a thread document,
the topic of the user’s words are dependent on the overall thread
topic as well as the user’s own set of interests. However, in the case
of a user document (i.e., the user pro�le), the choice of topic is only
dependent on the user’s own interests. A topic z is sampled only
from the interest y and θu , for such user documents.

A word w is sampled from z and the word–topic distribution
ϕ. We invoke blocked Gibbs sampling as the exact inference of
the full posterior is intractable. �e inference process is similar to
the author–topic model [28]; but in IATM, the author of a word is
observed. We have two sets of latent variables, z and y. We draw
each (z,y) pair as a block, conditioned on all other variables:

P(zx = h,yx = k |wx =m,z−x ,y−x ,w−x ,yd ) ∝

(q1
nihk + αu∑
z n

i
zk + Zαu

+ q2
ndhk + αv∑
z n

d
zk + Zαv

) ∗
nkmh + β∑

w nkwh +W β
,

(1)

where zx = h andyx = k denote that the xth word indth document
is assigned to topic h under interest k ;wx =m represents that xth
word is themth word in the vocabulary; z−x and y−x represent
all topic and interest assignments not including the xth word; nihk
is the number of times topic h is assigned with interest k for user

Figure 2: Plate notation for our interest-aware topic model
(IATM). We observe the document words as well as partially
observe the interests that select the topics for the words in
the document (gray nodes). Topics are dependent on the in-
terest (y), user (θu ), and thread document (θv ).

i , not including the instance under consideration; andW is the
total number of unique words in the vocabulary. Similarly, ndhk
represents the number of times topic h has appeared under interest
k in the dth document; and nkmh denotes the number of times the
mth word in the vocabulary has appeared in topich under interest k
— excluding the current instances in all the cases. �e three factors
in Equation (1) represent the random variables θu (probability of
topic given interest and user), θv (probability of topic given interest
and thread), and ϕ (probability of a word given interest and topic).
�e Dirichlet priors for these three distributions are αu ,αv , and
β , respectively. We use a Dirichlet mixture of the two individual
Dirichlet densities (θu , θv ) as the prior [25, 31], giving equal weights
to the mixture coe�cients (i.e., q1 = q2 = 0.5). We also learn the
user–interest distribution γ . �ese distributions are estimated from
the samples using the following equations:

θhiku =
nihk + αu∑
z n

i
zk + Zαu

,θhdkv =
ndhk + αv∑
z n

d
zk + Zαv

, (2)

ϕmhk =
nkmh + β∑

w nkwh +W β
, (3)

γ ik =
nik∑
y n

i
y
, (4)

where nik is the number of times interest k is sampled for user i .
Once the distributions are learned, we create sub-spaces of the

entire user–thread interaction matrix based on each interest. �e
interaction matrix Rk for interest k is de�ned by:

rki j =

{
1 if Ri j = 1, k ∈ Yi
0 otherwise,

whereYi is the set of interests for user i , Ri j = 1 if user i participated
in thread j; 0 otherwise. Similarly, we de�ne the user–, thread–,
and word–topic distributions for this sub-space as θku , θkv , and ϕk ,
respectively:

θku = θu {k}, θkv = θv {k}, ϕk = ϕ{k}.
As an example, given the three threads in Table 1, IATM places

the le� one in the ALS sub-space, and the right ones inside the
Parkinson’s disease sub-space.



Figure 3: Plate notation for jointly normalized collaborative
topic regression (JNCTR). Components in black are from
collaborative topic regression (CTR5 [32]). Components in
red are introduced for user modeling. Note that both plates
for user and thread are form-identical.

3.2 Joint Normalized Collaborative Topic
Regression (JNCTR)

We treat each of the resultant interest-speci�c user–thread sub-
spaces originating from IATM as a separate problem instance and
optimize them individually using JNCTR as shown in Figure 1.

Figure 3 shows the plate model for each individual instance of
JNCTR. Here, we use the notations θu , θv , ϕ, and R without the
interest-speci�c superscript k . I and J denote the set of users and
threads within this sub-space, respectively. Note that we omit
the plate for word generation as we do not assume any particular
generative process for them. As in CTR, we introduce a latent
variable ϵiu that o�sets the topic proportions θ iu for ith user when
modeling the user’s ratings. JNCTR assumes that there are Z topics
both in user content and thread content β = β1:Z . �e generative
process of JNCTR consists of the following steps:

(Step 1) For each user i , draw user latent o�set ϵiu ∼ N(0, λ−1u IZ )
and set the user latent vector as: ui = ϵiu + θ iu ,

(Step 2) For each thread j, draw thread latent o�set
ϵ
j
v ∼ N(0, λ−1v IZ ) and set the thread latent vector as: vj =
ϵ
j
v + θ

j
v ,

(Step 3) For each user–thread pair (i, j), draw the rating as:
ri j ∼ N(uTi vj , c

−1
i j ).

where IZ is Z -dimensional identity matrix; λu and λv are the reg-
ularization parameters; ci j is the precision parameter for ri j , a
con�dence parameter for rating ri j , where larger values denote
higher trustworthiness. �is is important in the case of implicit
feedback-based systems like ours (note that ri j = 0 denotes either
that the ith user is not interested in the jth thread or the user is
unaware of it). We set ci j = a, if ri j = 1, otherwise we set it to
b, where a and b are tuning parameters satisfying a > b > 0. We
discuss parameter tuning in Section 4.

Learning the Parameters for JNCTR. Given topic parameter β ,
computing the full posterior of ui , vj , θu , θv is intractable. We
need to develop an EM-style algorithm to learn these parameters.
Extending the posterior mentioned in [32], given λu , λv , and β , the
complete log likelihood L of U , V , θ1:Iu , θ1:Jv , and R is de�ned as
5We omit the word plates, as CTR does not re-sample topics once θv is obtained from
the topic model as discussed in [32].

(a) In-matrix (b) Out-of-matrix (for thread) (c) Out-of-matrix (for user)

Figure 4: Illustration of three prediction tasks for our thread
recommendation system. “X,” “× ,” and “?” denote “like,”
“dislike,” and “unknown,” respectively.

follows:

L = −λu2
∑
i
(ui − θu i )T (ui − θu i )−

λv
2

∑
j
(vj − θv j )T (vj − θv j )

+
∑
i

∑
m

log(
∑
k

θu ik βk,wim ) +
∑
j

∑
n

log(
∑
k

θv jk βk,w jn )

−
∑
i, j

ci, j

2 (ri j − u
T
i vj )

2. (5)

We optimize this likelihood function by coordinate ascent, optimiz-
ing the CF variables ui ,vj iteratively. To update ui and vj , we take
the gradient of L with respect to ui and vj and set it to zero. �is
yields:

ui ← (VCiVT + λu IK )−1(VCiRi + λuθ iuRi ), (6)

vj ← (UCjU
T + λv IK )−1(UCjRj + λvθ

j
vRj ), (7)

where U = (ui )Ii=1, V = (vj )
J
j=1, Ci is a diagonal matrix with ci j

(j = 1, . . . , J ) as its diagonal elements and Ri = (ri j )Jj=1 for user i .
Cj and Rj are similarly de�ned for thread j.

Prediction. Once the locally optimal parametersU ∗,V ∗,θ∗u ,θ∗v are
learned, JNCTR can predict ratings. Given that D is the observed
data, the prediction is estimated as:

E[ri j |D] ≈ (E[θUi |D] + E[ϵui |D])
T · (E[θVj |D] + E[ϵvj |D]). (8)

As shown in Figure 4, we address the prediction of ratings as fol-
lows:
(Fig. 4a) In-matrix prediction: All the users and threads have at least

one interaction. We use the point estimate of θu i ,θv j , ϵiu ,
and ϵ jv to approximate the expectations:

r∗i j ≈ (θ
i∗
u + ϵ

i∗
u )T (θ

j∗
v + ϵ

j∗
v ) = (u∗i )

Tv∗j . (9)

(Fig. 4b) Out-of-matrix prediction (for a thread): Some threads do
not have interaction history; i.e.,

r∗i j ≈ (θ
i∗
u + ϵ

i∗
u )T (θ

j∗
v ) = (u∗i )

T θ
j∗
v . (10)

(Fig. 4c) Out-of-matrix prediction (for a user): Some users do not
have interaction history; i.e.,

r∗i j ≈ (θ
i∗
u )T (θ

j∗
v + ϵ

j∗
v ) = (θ i∗u )Tv∗j , (11)

substituting ui and vj from Steps 1 and 2 in the JNCTR
generative process. We thus obtain a ranked list of interest-
speci�c threads that is recommended to a user.



E�ciency. Note that in Figure 1, multiple instances of JNCTR are
run, but each instance is run on a partition of the full matrix. �e
computational complexity of JNCTR is comparable to the original
CTR algorithm; the number of updates in both are identical.

3.3 Fusing the Final Ranked List
Once we obtain the condition–speci�c optimized user- and thread-
topic distributions, we combine them into a single ranking using
the γ distribution de�ned by Equation (4). We explore three meth-
ods to fuse the individual, interest-speci�c lists:

1. Proportional Selection. For every interest that user i is in-
terested in, we prepare a list of threads (in descending order of
predicted score) that the user might �nd interesting. We select the
top-M threads from each condition sub-space according to user
i’s γ distribution. For illustration, say John has a γ distribution of
{Multiple Sclerosis : 0.8,Asthma : 0.2}. �en when recommend-
ing threads to John, 80% are chosen from the top threads in Multiple
Sclerosis, and the remaining 20% come from Asthma.
2. Combined Score-Based Selection. Here, we obtain a single
ordered list of threads from their combined score for each user. First,
we normalize scores in each interest sub-space between [0, 1]. For
user i , the combined score of a thread j is de�ned by Equation (12)
which ranks the items in descending order of their total score:

R∗i j =
∑
y
γ iy × r i jy , (y ∈ Yi ). (12)

3. Maximum Split Preference-Based Selection. �is is similar
to the binary preference based merging in [36]. For each user i , we
only consider the condition with the highest preference γ score.

We note that although the proportional selection strategymakes the
recommended list of threads more diverse in nature, the combina-
tion score-based selection obtains superior results on our datasets.

4 EXPERIMENTS
To answer important questions about our model, we consider spe-
ci�c experimental se�ings. In the following, we describe the main
results of our study a�er detailing the datasets, evaluation metrics,
and baselines.

Datasets. We constructed the following two large real-world con-
sumer health forum datasets to validate our model:

PatientsLikeMe (PLM)1: We crawled PLM in July 20156. Along
with the threads, we also crawled user pro�le pages. User pro�le
pages contain a text section called “About Me”. We concatenated
this with a particular user’s past posts and consider for use as a
user document as described in Section 3. �ere is also a section
called “Conditions” — we use it during the �rst stage of our pipeline
as described in Section 3. We �lter out all the threads that belong
to a category not speci�c to any condition, e.g., ‘Technical Help’,
‘Member Feedback Forum’ and ‘Research Forum’.

HealthBoards (HBD)2: We use the publicly available Health-
Boards dataset7. Unlike the PLM dataset, HBD has no “About Me”
6�e anonymized dataset is available at h�ps://github.com/WING-NUS/health-reco
7h�p://resources.mpi-inf.mpg.de/impact/peopleondrugs

Table 2: Statistics on our health forum datasets. “Avg P:T”
and “Avg C:U” denote the average number of posts in a
thread and conditions reported by a user, respectively.

Dataset # Users # �reads # Posts Avg
P:T

# Distinct
Conditions

Avg
C:U

PLM 3,385 51,172 182,019 3.6 1,115 4.82
HBD 127,903 155,863 716,744 4.6 235 4.01

section. We collate all the posts made by a user and treat them as
the user document. As in PLM, we ignore generic categories of
threads such as ‘Family’, ‘Support’, ‘Healthcare’ and ‘General’.

We remove all stop words and select the top 8,000 words based
on TF-IDF scores. �e TF-IDF computation was done only on the
training data for all the experiments. Similar to other recommenda-
tion works, we remove users with few interactions, namely, with
less than three thread interactions. Table 2 shows some statistics
on our datasets and their user reported conditions.

Metrics. Similar to [32], we do not rely on precision, as our ground
truth is only implicit feedback. Samples with negative values could
be threads that the user had not seen (but would have been inter-
ested in), as well as those where the user explicitly did not interact
with. As such, we use three metrics to assess recommendation
quality:

Recall@M considers how many top-M threads were actually
interacted by the user (higher is be�er). �e recall for the entire
system can be summarized as the average recall value for all users.

Mean Reciprocal Rank (MRR) indicates where in the ranking
the �rst relevant thread is returned by the system, averaged over all
users. �is measures the ability of the system to return a relevant
thread at the top of the ranking. Let ri be the rank of the highest
ranking relevant thread for a target user i , then MRR is just the
reciprocal rank, averaged over all target users, NU :

MRR =
1
NU

NU∑
i=1

1
ri
.

Normalized Discounted Cumulative Gain (nDCG) is well
suited for evaluation of recommendation system, as it rewards
relevant threads in the top ranked results more heavily than those
ranked lower. nDCG is computed as:

nDCGi = Zi

M∑
j=1

2r (j) − 1
loд(1 + j) ,

where Zi is a normalization constant calculated so that a perfect or-
dering would obtain nDCG of 1; and each r (j) is an integer relevance
level (for our case, r (j) = 1 and r (j) = 0 for relevant and irrelevant
recommendations, respectively) of result returned at the rank j
(j = 1, · · · ,M). �en, nDCGi is averaged over all our target users.
in this work, we use nDCG@M (M = 5, 10) for evaluation where
M is the number of top-M threads recommended by our approaches.

Baselines. We compare our instantiated IATM+JNCTR with six
baselines. Our complete model uses four signals overall: the user–
thread interaction history, textual content of threads, user pro�les,
and the user–reported conditions. We chose baselines for their
competitiveness, recency, and use of particular signals common to
our model. Comparing among the various models can also be seen

h


Table 3: Signals considered by comparative methods.

Method User-�read
Interaction User Docs �read Docs User Reported

Conditions
1. CF (NMF) [13] X
2. AT [28] X X
3. CTR [32] X X
4. IATM X X X
5. CAR [27] X X
6. AT + JNCTR X X X
7. IATM + JNCTR X X X X

as assessing how important each form of evidence is in achieving
quality recommendation. Table 3 summarizes how the baselines
account for some subsets of the evidence in our model.

1. Collaborative Filtering (CF): �is is the non-negative matrix
factorization-based (NMF) method for collaborative �ltering of [13].

2. �e Author-Topic Model (AT) learns the author–topic dis-
tributions [28]. We estimate the thread–topic distributions from
the learned word–topic distributions. �ese can be interpreted as
the user and thread latent topic matrices for our task, respectively.
We empirically set the hyperparameters α = 0.1, β = 0.01, and the
number of iterations and latent topics to 2,000 and 50, respectively.

3. Collaborative Topic Regression (CTR) [32] is the basis for
JNCTR, but without the individual interest- (condition-) speci�c
instances, and with LDA (instead of IATM) as the input. We tune
the parameter se�ings, b = 0.01, λu = 0.01, λv = 0.1 to yield its
optimal results.

4. IATM alone can also generate recommendations. Unlike the
con�guration described in Section 3.1, we consider the entire user-
and thread-topic matrices obtained from IATM, and use them for
the recommendation task. We empirically set the hyperparameters
β=0.1, and αu=αv=5, and set the number of topics for each medical
condition to 3 and the number of iterations to 2,000.

5. Context Aware Recommendation (CAR) uses Factorization
Machines for the recommendation [27]. We use the libFM pack-
age (h�p://www.libfm.org). We create the test set following the
sampling policy described in [19]. �is models user–reported con-
ditions as the context for each interaction.

6. AT + JNCTR: In this experiment, we replace the �rst stage
of our pipeline with Author–Topic model (AT) [28]. �is model
directly contrasts with our full model to see the comparative di�er-
ence when using IATM over AT.

For our IATM+JNCTR model, we obtain the optimized matrices
from the second stage of the pipeline and obtain the �nal prediction
a�er combining the ratings as described in Section 3.3. We keep
the optimal se�ings for IATM. For JNCTR, we empirically optimize
the hyperparameters, λu = 0.01, λv = 0.1, and b = 0.1 which are
estimated from grid search.
In-Matrix Setting: We report results using 5-fold cross validation.
We split users with 5+ threads into a training set (80%) and a test
set (the remaining 20%). Users with fewer than �ve interactions
always appear in the training set. For these main results, we use
a warm-start (i.e., in-matrix) se�ing, ensuring that each user or
thread in the test set has been observed at least once in the training
set.

Table 4: MRR and nDCG scores obtained by in-matrix pre-
diction. “*” denotes the di�erence between the best base-
line (“3. CTR”) and our methods (“6. AT+JNCTR”) and (“7.
IATM+JNCTR”) is signi�cant for p < 0.005.

PatientsLikeMe (PLM) HealthBoards (HBD)
Method MRR nDCG MRR nDCG

@5 @10 @5 @10
1. CF (NMF) [13] 0.171 0.071 0.091 0.179 0.180 0.194
2. AT [28] 0.051 0.019 0.025 0.023 0.033 0.036
3. CTR [32] 0.175 0.075 0.096 0.186 0.178 0.193
4. IATM 0.101 0.039 0.050 0.113 0.059 0.064
5. CAR [27] 0.151 0.065 0.084 0.092 0.081 0.087
6. AT+JNCTR 0.176 0.082 0.103 0.213* 0.221* 0.254*
7. IATM+JNCTR 0.183 0.083 0.107* 0.327* 0.329* 0.361*

Figure 5: Recall scores at various M top ranks, across the a)
PLM and b) HBD datasets.

Temporal Setting: Apart from the 5-fold cross validation, where
a randomly selected 20% split is used as test, we also report results
for a temporal experiment. In this se�ing, for each user, the last 20%
of her interacted threads are kept for test. Similar to the in-matrix
se�ing, we make sure that all the user and threads appear at least
once in the training data.

Results. Figure 5 shows the recall@M (M = 10, 20, . . . , 60) for
comparative methods for the in-matrix se�ing. In both datasets,
the IATM+JNCTR pairing achieves the highest recall. CTR and CF
(NMF) give comparable performance, which is consistent with [32].
We observe that, in the HBD dataset, while the recall scores con-
verge when M ≥ 60, our IATM+JNCTR method outperforms the
others with a signi�cant margin for lower values ofM (i.e., more
important ranks). �is indicates that our pipeline can rank relevant
items high in the recommendation list. �is phenomena is also
depicted in Table 4 where we present the MRR, nDCG@{5, 10}
scores for all methods. �e AT model alone works poorly in both
datasets, indicating that it is insu�cient to consider only user and
thread documents. However, when paired with JNCTR (namely,
AT+JNCTR), AT signi�cantly improves recommendation accuracy,
which factors in the user–item interaction. With IATM+JNCTR per-
forming best, we conclude that considering the user documents and
the user reported interests enhances the user–item interaction his-
tory for best recommendation accuracy. We perform a paired t-test
to verify whether the obtained results are statistically signi�cant or
not. As shown in Table 4, we observe that, in the HBD dataset, our



Table 5: Recall@60, MRR, and nDCG@{5, 10} scores for
temporal prediction. “*” denotes the di�erence between the
best baseline (Row 3) and ourmethods (Rows 6–7) are signif-
icant for p < 0.005.

PatientsLikeMe (PLM) HealthBoards (HBD)
Method Recall MRR nDCG Recall MRR nDCG

@60 @5 @10 @60 @5 @10
1. CF (NMF) [13] 0.261 0.105 0.067 0.080 0.483 0.166 0.136 0.160
2. AT [28] 0.092 0.043 0.014 0.018 0.114 0.021 0.027 0.032
3. CTR [28] 0.303 0.110 0.066 0.085 0.517 0.211 0.178 0.205
4. IATM 0.183 0.062 0.035 0.044 0.286 0.142 0.055 0.064
5. CAR [27] 0.287 0.087 0.056 0.072 0.348 0.183 0.132 0.152
6. AT+JNCTR 0.326 0.115 0.069 0.088 0.549* 0.256* 0.176 0.202
7. IATM+JNCTR 0.363* 0.134* 0.073* 0.095* 0.674* 0.340* 0.289* 0.318*

full IATM+JNCTR outperforms all the other baselines in both MRR
and nDCG@{5, 10}. In PLM, our pipeline outperforms all others
except CTR, and AT+JNCTR as they are statistically comparable in
MRR.

Table 5 shows the recall@60, MRR, and nDCG@{5, 10} scores in
the temporal se�ing. We �nd a similar trend in recall scores at var-
ious top ranks compared to the in-matrix se�ing. We observe that
IATM+JNCTR outperforms the others with statistical signi�cance
in this se�ing. Unlike the in-matrix se�ing, AT+JNCTR achieves
statistically signi�cant improvement only in the HBD dataset in
MRR and recall@60. �is indicates the robustness of our model in
both of the randomized 5-fold and temporal se�ings.

5 DISCUSSION
Aside from the main in-matrix results, there are several important
research questions that merit deeper investigation. As shown in
Figure 4, our IATM+JNCTR pipeline handles cold start by incorpo-
rating prior knowledge. Our research questions (RQ) are:

RQ1: How does it perform with cold-start documents (i.e., newly-
introduced threads)?

RQ2: What about cold-start users (i.e., newly-joined members)?
RQ3: How well can the IATM+JNCTR pairing explain its recom-

mendations?
RQ4: How well does the IATM+JNCTR pairing capture users’

interests for speci�c symptoms and treatments?
RQ5: Does it actually recover the users’ implicit interest in spe-

ci�c conditions?

In the following, we answer each of these RQs.

RQ1: Out-of-matrix �read Recommendation. It is impor-
tant for a newly-posted thread (usually some form of question) to
receive quality answers. To simulate this, we partition all threads
evenly among �ve folds. For each fold, we form a submatrix from
the threads which are not within this fold and the corresponding
users. We treat this submatrix as training data and learn user–topic
and thread-topic distributions from the same. We ensure that none
of the in-fold threads occurs in the training data. In the test phase,
for all the in-fold threads, we consider the textual content of the
query and user pro�le (i.e., “About Me” text and user-reported con-
ditions) of the user to estimate the topic distributions from the
model learned during training. �e task is to correctly predict the
set of in-fold threads each user will actually interact with.

Table 6: MRR and nDCG scores obtained for out-of-matrix
(thread) recommendation. “*” denotes statistical sign�cance
between the best baseline (Row 3) and our methods (Rows 6
and 7) at p < 0.005. CF and CAR do not work in this setting.

PatientsLikeMe (PLM) HealthBoards (HBD)
Method MRR nDCG MRR nDCG

@5 @10 @5 @10
2. AT [28] 0.021 0.022 0.027 0.025 0.029 0.036
3. CTR [32] 0.112 0.058 0.074 0.131 0.098 0.114
4. IATM 0.086 0.057 0.073 0.094 0.068 0.081
6. AT+JNCTR 0.113 0.078* 0.101* 0.164* 0.146* 0.172*
7. IATM+JNCTR 0.135* 0.085* 0.112* 0.221* 0.234* 0.263*

Table 7: MRR and nDCG scores for out-of-matrix (user)
thread recommendation for the PLM dataset. “*” denotes
statistical signi�cance between the best baseline (Row4) and
ourmethods (Rows 6–7) at p < 0.005. Note that CF, CAR, and
CTR do not work in this setting.

Method Recall@60 MRR nDCG
@5 @10

2. AT [28] 0.062 0.101 0.015 0.020
4. IATM 0.109 0.199 0.036 0.045
6. AT + JNCTR 0.110 0.157 0.047* 0.059*
7. IATM+JNCTR 0.146* 0.297* 0.062* 0.080*

Table 6 shows the MRR and nDCG@{5, 10} obtained by the
relevant comparative methods for this out-of-matrix thread rec-
ommendation task. IATM+JNCTR again achieves the best scores.
In general, performance degrades compared to the in-matrix set-
ting shown in Table 4, due to the harder nature of the task. It is
interesting that prior evidence in the form of user pro�les and the
user-reported conditions signi�cantly help, in the absence of ob-
served user–item interactions. Examining the relative performance
of IATM, CTR, and AT+JNCTR, we argue that the user-reported
conditions further improve recommendation accuracy, compared
against the evidence from user pro�les.

RQ2: �read Recommendation for Out-of-matrix Users.
We consider the scenario when a new user joins the forum. �e
aim is to recommend relevant threads to her based on her user
pro�le and reported condition. We simulate this by grouping all
the users with “About Me” text, and at least one reported condition
among �ve folds. For fair assessment in each fold, we ensure that no
users in the test appear in the training sub-matrix. Other se�ings
are similar to the previous case. Note that there is no user–thread
interaction history for the users under test, rendering the CF, CAR,
and CTR methods unable to provide recommendation. We perform
this experiment only on PLM, as HBD’s user pro�les do not contain
“About Me” text.

We present the relative performance of all the applicable meth-
ods in Table 7. Along with MRR, and nDCG@{5, 10}, we also show
the recall@60 in this case. We �nd that the overall recall is lower
(0.146) compared to that of in-matrix se�ing (0.368) – a similar
trend is observed in the case of nDCG as well. Interestingly, the
MRR scores are improved. We analyzed the recommended threads
and observed that our model can correctly guess the �rst relevant
thread within the top 5 ranks for 60% of the test users. From the rel-
ative performances of IATM, and IATM+JNCTR across Tables 4 and



Table 8: Recommended threads for sample users. �e ex-
plaining condition chosen by IATM+JNCTR is bolded.

Recommended�read Candidate Conditions
I have known I have lupus for a .. ge�ing
red dots over my face..Any tips..?

1. Systemic Lupus Erythematosus
2. Spinal Stenosis

I have degenerative spine, spinal
stenosis, severe scoliosis,..

1. Spinal Stenosis
2. Systemic Lupus Erythematosus

Are there more people with ALS
who don’t get colds anymore?

1. ALS
2. Dysautonomia

anybody stop rytary and go back
to stalevo or another med?

1. Parkinson’s Disease
2. Vitamin B12 De�ciency

7, we argue that IATM plays an important role in the recommenda-
tion process in the absence of user–thread interaction history by
e�ectively capturing the additional user-provided context.

RQ3: Transparency of Recommended �reads. While CF-
based recommendation algorithms work well in terms of prediction
accuracy, their latent factors make it di�cult to justify the rec-
ommendation to the user [8, 38]. User participation (measured
through metrics like clickthrough rate) alleviates this di�culty if
items are recommended to a user with semantic explanation. Our
IATM+JNCTR adds transparency by providing users with the con-
text when recommending a thread. We learn the user–condition
distribution (γ ) in the �rst phase of our model, which is used down-
stream to combine recommended threads from di�erent condition-
speci�c sub-spaces. While presenting the combined list of threads to
the user, the recommendation system can disclose which sub-space
a particular thread belongs to. When a thread exists in multiple
sub-spaces, we can select condition c = argmaxc γic and present
it as the context recommending it to a user i , as “recommended
due to your interests in c”. Table 8 presents sample threads recom-
mended by our pipeline. Note that it can identify the context (i.e.,
the condition) for recommending the threads.

RQ4: Signi�cance ofDiscovered Symptoms andTreatments.
A challenge in achieving quality recommendation is to appropri-
ately learn the topics even when overlapping words appear among
several conditions. Our IATM+JNCTR leverages the user-reported
conditions and learns the appropriate word distribution. Table 9
shows the top words discovered by our model for several conditions.
Note that, while there are few common words across conditions, —
ALS, Epilepsy, and Multiple Sclerosis all list brain among top key-
words — our method can distinguish among these conditions.

It is important to analyze the condition-speci�c topics learned
by our approach. Since di�erent users express various levels of
interest towards particular aspects (symptoms or treatments) of a
condition, it is necessary to capture these aspects to achieve quality
recommendation. Table 10 presents some condition-speci�c topics
discovered by our pipeline. From simple observation, one can see
correspondences for Diabetes, Topic 0 lists a�ected body parts and
associated di�culties, Topic 1 discusses diets, and Topic 2 relates
to human physiology — having words such as blood, insulin. In the
scenario where a user has Diabetes and is interested in managing
the condition through her diet, our model can recommend threads
that would match her interests at this topical level.

In the case of serious terminal diseases, such as cancer, psycho-
logical and spiritual words, such as god and luck, appear in the top
words as topics. Consider the following posts by cancer patients:

Table 9: Example of the top words for certain medical con-
ditions learned by our IATM+JNCTR model.

Eye &
Vision ALS Parkinson’s

Disease Diabetes Cancer Epilepsy Multiple
Sclerosis

eye
vision
drops

cataracts
red

reduce
laser

opthalmologist
omeprazole

als
re�exes
muscle

amyotrophic
nervous
irregular
brain
feel

weight

neurologist
pd

nervous
tremors
scan

shaking
facial
control
tissue

carb
sugar
insulin
glucose
levels
eat
diet

exercise
test

cancer
chemo
radiation
cells
kidney
scan

prayers
god
luck

seizure
seizures
keppra
hope
meds
brain
care
pain

alcohol

copaxone
lesions
mri

immune
brain
help

celebrex
scoliosis
breathing

(a)

# held-out
conditions Perfect recall

1 0.64
2 0.45
3 0.39

(b)

Figure 6: (a) Distribution of user reported medical condi-
tions in PLM. About 13% users report 0 condition. (b) Un-
reported conditions recovered by the IATM. Perfect recall
denotes to the fraction of cases where it can recover all the
held-out conditions.

“Would like to connect with anyone who has ovarian cancer…truly think faith
plays a major part in healing and also a positive outlook…I wouldn’t wish this
disease on anyone”
“I will pray for you…I’m here for you to reach out to if you need support”.

Users with similar conditions o�en participate in health forums
for such emotional support rather than informational need [21, 29,
34]. Our model can capture this phenomenon as a topic for certain
conditions.

RQ5: Predicting Implicit Conditions. In IATM, recall that we
sample both interest (condition) and topic (symptom or treatment)
for each word as described in Section 3.1. As a result, along with
word- and thread-topic distribution, the model also learns the user–
condition distribution γ . Although it is used later on for recommen-
dation in our pipeline, it can also serve to predict implicit conditions.
For an example culled from our dataset, a user reportsMultiple Scle-
rosis as a condition he is a�icted with in his pro�le. However, from
all of the posts that he interacts with, our model estimates the γ
distribution to be {Multiple Sclerosis : 0.8,Asthma : 0.2}. In this
case, the unreported, implicit condition “Asthma” is predicted by
our model. We argue that this is a desirable nature of our model.
In the PatientsLikeMe dataset, as shown in Figure 6a, we found 430
users (13% of all users) do not report any condition.

To quantitatively evaluate the capability of our model to predict
the missing condition, in a separate experiment, we omit 1 to 3
conditions for each user for 1/5 of the users during training. We
train our model and obtain the γ distribution for all users. We then
evaluate how many cases our model can recover all of the missing
conditions, i.e., whether it achieves perfect recall. Figure 6b reports
our �ndings, indicating that our model can correctly predict over
60% of the cases in the single missing conditions. Unsurprisingly,
performance degrades as the number of missing condition increases.
However, gradually, even in the three missing conditions, our model
can predict 39% of the cases.



Table 10: Example of condition-speci�c topics (i.e., symptoms and treatments) discovered by our IATM+JNCTR model.

Diabetes Parkinson’s Disease ALS Multiple Sclerosis Cancer
Topic 0 Topic 1 Topic 2 Topic 0 Topic 1 Topic 2 Topic 0 Topic 1 Topic 2 Topic 0 Topic 1 Topic 2 Topic 0 Topic 1 Topic 2
legs
shake
feet

walking

carbs
sugar
eat
diet

blood
insulin
high

glucose

neurologist
brain
mri

disorders

feel
help
hope
people

shaking
cold

tension
dizziness

leg
heart

muscles
body

pain
feel
issues
help

disc
cervical
spine
brain

brain
feeling
painful
walker

warm
burning
lesions
harder

instruction
breathing

remembering
recall

cancer
lump
lymph
growth

treatment
chemo
radiation
stage

prayer
god
afraid
doctor

6 CONCLUSION
We have systematically investigated how to best utilize each user’s
participation in online health forums to recommend relevant threads.
Our IATM+JNCTRmodel leverages the user-reported clinical condi-
tions to distinguish lexically similar yet di�erent threads, addition-
ally accounting for each user’s speci�c, latent preferences for partic-
ular treatments and symptoms. In our experiments on warm- and
cold-start scenarios, involving both users and threads, our frame-
work demonstrated signi�cant improvements over the current state-
of-the-art methods. Deeper analysis reveals that IATM+JNCTR’s
modeling of latent conditions and user pro�les are key to achieve
competitive performance.

As our framework is general and language independent, we be-
lieve that it could be useful in other domains, including community
question answering and scholarly paper recommendation. We hope
the research community will apply our model to other scenarios to
validate its modeling capabilities.
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