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ABSTRACT
We report on the user requirements study and preliminary imple-
mentation phases in creating a digital library that indexes and re-
trieves educational materials on math. We first review the current
approaches and resources for math retrieval, then report on the in-
terviews of a small group of potential users to properly ascertain
their needs. While preliminary, the results suggest that meta-search
and resource categorization are two basic requirements for a math
search engine. In addition, we implement a prototype categoriza-
tion system and show that the generic features work well in identi-
fying the math contents from the webpage but perform less well at
categorizing them. We discuss our long term goals, where we plan
to investigate how math expressions and text search may be best
integrated.

Categories and Subject Descriptors
H.3.3 [Information Storage and Retrieval]: Information Search
and Retrieval; A.1 [General Literature]: Introductory and Sur-
vey; J.2 [Computer Applications]: Physical Science and Engi-
neering—Mathematics and statistics

General Terms
Algorithm, Performance

Keywords
Math Information Retrieval, Web Classification, Niche search en-
gines, User requirement analysis, Interaction histories

1. INTRODUCTION
While search engines help users support their general informa-

tion needs, finding information for many specialized subjects and
genres requires more careful attention. In this paper, we report on
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the user requirements study and preliminary implementation phases
in creating a digital library that indexes and retrieves educational
materials on math. Such a search engine would index only math
materials, but draw on a diversity of materials ranging from ele-
mentary topics to current topics in mathematical research and serve
an accordingly diverse range of users.

In specialized search, incorporating domain knowledge and un-
derstanding is critical in indexing, retrieving and presenting infor-
mation to users. Unlike humanistic disciplines such as history and
literature, mathematicians have a method of succinctly and pre-
cisely communicating findings and ideas among each other: math
expressions. Math expressions – as theorems, axioms and equa-
tions – create a dual form of communication that complements the
running text. To our knowledge, no studies have explored the ef-
fects of how such symbolic expressions can be exploited to address
users’ information needs. A motivation for exploring math search
is that lessons learned can be adapted and applied to other domains
that also have alternative representations than text, such as chem-
istry (molecular structures) and biology (DNA sequences).

The development of any digital library should be an iterative pro-
cess, where cycles of gathering user requirements, designing and
implementing the system, and testing are applied. In the first half
of the paper (Sections 2-3), we detail our preliminary user require-
ments study that uncovered two clear needs for any domain-specific
search: meta-search and resource categorization. A key finding
of our requirements analysis is that although expression retrieval
seems useful to users, simple keyword search must suffice to re-
trieve expressions accurately – users do not find specialized input
languages usable. In the second half of the paper (Section 4), we
report on the design, implementation and evaluation of the first-
cut towards building a Math Information Retrieval (MIR) search
engine that addresses these needs. We end by discussing the next
round of development and how math expressions and text may be
best handled in future work.

2. BACKGROUND
As digital libraries and resources proliferate, how scholars find,

access and use information changes. Researchers, teachers, stu-
dents and the general public turn to online sources for quick, indica-
tive searches and for longer sessions of information gathering. In
the current digital environment, such searches often begin as gen-
eral keyword searches to large, publicly-available search engines.

However, such a search strategy works poorly for domain-specific
information. Many scholarly disciplines now have a wide range of



resources on the web, in which topics can be explained at differ-
ent levels: from the neophyte to the research specialist. In math,
the topic of modular arithmetic serves as a case in point: simple
examples can be explained to children in the guise of clock arith-
metic, but specialists’ needs in ring theory might also start with a
similar search need. General search cannot – and probably should
not – cater to the specific needs of disciplines, motivating the need
for niche, domain-specific engines. Such search engines have al-
ready appeared for many media types and disciplines: for images
(Flickr), patents (Google Patents), books (A9) and even math func-
tions (Wolfram Functions Site).

Defining and characterizing such gaps between general search
engines and domain-specific ones is a focus of digital library (DL)
community. Such work has explored the needs of the communities
of computer and information sciences, but less for other sciences
and the humanities. The focus of this first half is to better define
and understand this gap for the domain of mathematics. To this end,
we now review how past information seeking studies inform us in
the case of math, survey the major math resources and examine the
current state of research in MIR.

2.1 Scholarly Information Seeking Studies
Studies of information seeking and requirements gathering are

so numerous that a focused review is difficult to compile (Case’s
monograph [8] surveyed thousands of articles), thus we limit our
review to recent studies of discipline-specific seeking.

The most closely related to our work is Brown’s 1999 study on
science and engineering information seeking [5]. This large-scale
study surveyed faculty from several different disciplines, includ-
ing math. Brown stated that mathematicians rely more heavily on
monographs and older work in comparison to other disciplines.
However, the study pre-dates the existence of many online inter-
faces to journals and databases, as well as the appearance of web-
based teaching and learning resources. To our knowledge, no work
since Brown’s has examined math information seeking.

An alternative is to try to extrapolate results from more recent
studies on other disciplines. Buchanan et al. observed the search-
ing sessions of humanities scholars [6]. A critical finding of their
work included the need for disambiguation and better refinement
of domain terminology (c.f., Bates’ “discipline term”), in which
searches for such terms yielded thousands of hits (information over-
load) in the local OPAC. Wiberley and Jones [25] also observed hu-
manists and concluded scholars (both junior and senior) “will not
adopt a technology that does not promise to save time or contains
no content relevant to their work”. Tibbo [24], in studying his-
torians, noted the growing influence of domain-specific websites,
but acknowledged usability and accessibility problems. She recom-
mended that such websites classify their resources and give usage
instructions with their resources.

Fewer studies have connected information seeking and require-
ments analysis with system design. Several large scale DLs have
incorporated citation linking, document chunking, authority con-
trol and discipline term / named entity linking, by both manual and
semi-automated means, where these features have been stipulated
by requirements analysis and/or created in response to feedback
from users. Examples of such systems include Tufts’ Perseus clas-
sical DL and UCSB’s Alexandria georeferenced DL.

2.2 Current Math Resources
During the course of our user requirements survey (detailed later

in Section 3), we collated a list of online resources that were men-
tioned by study participants (shown in Table 1). We characterize
these math resources by type, availability, access point(s), collec-
tion scope and whether any math-specific techniques are used.

Table 1 is only indicative, as it just lists the sites reported by
participants. In particular, we note that many resources on specific
math topics can be drawn from smaller websites if they can be ef-
ficiently mined. Such small sites represent a majority of freely-
available (i.e., subscription-free) materials largely encompassing
math help and tutorial sites. A search on modular arithmetic in
both Google and Yahoo! illustrates this point as many of the rele-
vant resources are not part of the websites listed above.

Several aspects of this table are worth calling attention to. First,
several of major databases require subscription. This hampers the
accessibility for most users and hence the usability of the resource.
Second, in catering for the math audience, we observe most sites do
so by collecting and organizing math resources but not all of them
are equally math-aware of the contents that they index. In particu-
lar, we have observed three different degrees of math-awareness:

Math-unaware: Examples include Google Books, Zentralblatt Math
[17], Web of Science and MathWorld. The indexing and re-
trieval modules ignore the mathematical nature of their con-
tent, discarding punctuation and treating math terminology
as simple tokens. For example, MathWorld can match La-
TeX expressions in documents, but it does so by simple token
matching, rather than recognizing LaTeX natively.

Syntactically Math-aware: Examples include Mathdex [22] and
LeActivemath [21]. Such systems parse the expression to re-
cover the syntactical structure of the math expression. There-
fore, they are capable of expression matching at syntactic
level and are more accurate.

Semantically Math-aware: Examples include MathWebSearch [16]
and Wolfram Functions Site. Systems in this category cap-
ture not only the syntactical structures but also the semantic
contents of the expressions. With this semantic knowledge,
they are capable of expression manipulation to resolve the
equivalence between expressions which are different in syn-
tax but are semantically identical.

2.3 Research in MIR
Groups fielding math-specific search engines are also engaged

in forward-looking research and development. From our studies of
current MIR, two major areas of concern emerge: 1) how to formu-
late math queries, and 2) how to index and search math materials.

Query Language: With the keyboard serving mainly a text input
device, how expressions can be efficiently entered as queries
is a basic question. One straightforward way is to directly
use math authoring languages like LaTeX or MathML. This
method saves a lot of trouble in the process of system devel-
opment since the tools for parsing expressions in such lan-
guages are readily available. In addition, it is also a favored
input method for math researchers because LaTeX is the lan-
guage they commonly use for paper writing. However, it still
requires some work to extend such languages to cater for the
specific needs of the search system. The difficulty in learn-
ing such languages may also discourage the less experienced
users from using it. Currently LaTeX is used by some math-
unaware search systems like MathWorld, while MathML is
used in MathWebSearch, which is math-aware.

In order to enhance the accessibility of the query language
to its users, math-aware search engines (e.g. Mathdex, Ac-
tiveMath and Wolfram Functions) often complement stan-
dard keyboard input with graphical, on-screen keyboards to
build equations. Other approaches without GUI also exist.



Table 1: Major Web-accessible Math Resources.
Resource Type Availability Access Point(s) Scope Math Techniques
Arxiv (http://www.arxiv.org/ ) Publication Open Keyword, Metadata, Subject Classification All Nil
Google (http://www.google.com/ ) Various Open Keyword All Nil
Google Books (http://books.google.com/ ) Book Open Keyword, Metadata All Nil
LeActiveMath (http://search.mathweb.org/ ) Various Subscription Keyword Math Expression Tree
MATHnetBase (http://www.mathnetbase.com/ ) Publication Open Keyword, Subject Classification Math Nil
Mathdex (http://www.mathdex.com/ ) Various Open Keyword, Expression Math Expression Indexing
MathSciNet (http://www.ams.org/mathscinet/ ) Publication Subscription Keyword, Metadata Math Nil
MathWebSearch (http://search.mathweb.org/ ) Various Open Expression Math Expression N-gram
Web of Science (http://scientific.thomson.com/products/wos/ ) Paper Subscription Keyword, Metadata Science Nil
Wikipedia (http://www.wikipedia.com/ ) Information Open Keyword, Subject Classification All Nil
Wolfram Functions Site (http://functions.wolfram.com/ ) Information Open Search Criteria Math Function Indexing
Wolfram MathWorld (http://mathworld.wolfram.com/ ) Information Open Keyword, Subject Classification Math Nil
Zentralblatt Math (http://zb.msri.org/ZMATH/ ) Publication Open Keyword, Metadata Math Nil

Figure 1: User Interface of (top) Mathdex, and (bottom) results
of a constrained search in Wolfram’s Functions Site.

For example, [12] attempts to approximate expressions using
ASCII letters while [13] examines the possibility of using a
controlled set of vocabulary to write expressions in natural
languages.

Indexing and Searching Techniques: The possible variations in
expressing formulas and quantities give rise to difficulty in
determining how to index expressions and perform matching.
Even when a suitable internal representation can be given,
handling search can be problematic due to variation in rep-
resentation. Common approaches can be broadly classified
into two groups based on whether they are text-based or not.
Text-based approaches treat the math expression as text and
apply standard IR techniques for both searching and index-
ing. Searching can be as simple as token matching (Math-
World) or pattern matching [15]. In more recent systems,
Lucene, a high-performance text retrieval library, is often de-

ployed for more sophisticated index and searching capability.
For example, Mathdex stores different parts of an expres-
sions as separate fields to allow parallel searching and flexi-
ble weighting of matches from different parts of the equation.
Mathdex also ports n-gram matching techniques to math ex-
pressions search for more accurate relevance ranking.

MathWebSearch is an example of a non-text approach, where
expressions are parsed into a substitution tree (more com-
monly used in symbolic math systems, such as theorem provers).
This representation abstracts away the surface symbol and
hence is able to overcome the notational variation problem
which is otherwise hard to address with text-based approaches.

2.4 Unanswered Issues in MIR
It is clear from our survey of existing resources that there is

a strong community interest in creating and interlinking math re-
sources. While such materials are available, it is unclear whether
the intended users are able to satisfy their math information needs
using such resources. Are they adequate? Are they discoverable?
It is also clear from examining current research trends that the
MIR community has focused on math expression indexing and re-
trieval. But again it is difficult to ascertain whether such facili-
ties are widely utilized by the community. Are such input modal-
ities useful, or is general keyword search sufficient? Is expression
matching and relevance a key factor in actual math search?

While the related information seeking literature does help us
build a hypothetical profile of math seekers, it is not clear whether
what the math information providers are doing actually satisfies
these needs.

3. USER STUDY
To answer the questions above, we carried out our own user re-

quirements study for MIR. Our requirements study thus had two
objectives: 1) to ascertain what aspects of a math search engine
are important and needed by users, as due diligence in the part of
system design, and 2) to answer the questions above to find out
whether the current work by the math providers really matches
what math searchers need.

3.1 Study Design
While the long-term goal of our work is to build a usable math

search engine with rigorous testing and a large user base, our ini-
tial user requirements study was deliberately small in scope. As
such, we have chosen to use a qualitative, semi-structured interview
rather than a quantitative survey instrument. We feel the interview
format allows for more exploratory and productive tangential dis-
cussions to take place immediately and allows us to observe users’



actual seeking process in situ. As such, the results we report here
are necessarily preliminary and indicative, but are descriptive and
allow us to posit and justify our system design. Similar study de-
sign have been used by [3], among others. Using this format, we
have interviewed thirteen volunteer participants centering on stu-
dents: two undergraduates (denoted as U1-2), seven graduate stu-
dents (G1-7), one professor (P1) and three librarians (L1-3), all
affiliated with the math department of NUS. The graduate students
were recruited by a mass email and the rest were recruited by per-
sonal contact. Subjects were given a token sum for their partic-
ipation. Note that the choice of population was deliberate. Our
population is different from Brown’s study (which surveyed only
faculty) due to reasons: first we intended to extend and complement
Brown’s work, and second we wanted to focus on the information
needs of non-experts (as Brown reported that non-search informa-
tion seeking methods like personal communications play a sizable
role in math research) and their providers (librarians). However, as
general reference resources might cover most needs from younger
students (secondary and below), we omitted them in our study.

Prior to the individual interviews, we prepared a checklist of top-
ics (and associated probe questions) for discussion. Except for the
ones on simple demographic particulars (e.g. their experience in
searching for math materials), our questions loosely corresponded
to the various stages of the Big6 Information Seeking Model [9].
These included what kind of materials they typically look for (Task
Definition), how they approach searching (Information Seeking Strate-
gies), what resources they use (Location and Access), as well as
their expectation for a math search system (Evaluation).

We interviewed the subjects in their typical working environment
so that we could observe their natural seeking behavior. After first
introducing the goals of our research and disclosing the interview
conditions, we conducted the interview according to our checklist.
Participants were encouraged to discuss other pertinent issues and
demonstrate their seeking behavior on a math topic of their choice.
On average the interviews lasted 30 minutes and were not recorded;
however summary notes were compiled during each interview. Af-
ter each interview, we open-coded the summary notes and consol-
idated our findings. We continued interviewing and recruiting new
participants while new findings were uncovered. Our findings sta-
bilized after ten interviews, so we concluded the study after a final
round of three more interviews.

To illustrate the richness of the interaction in our interview, we
give a sample of the interaction history of a subject. Such interac-
tion histories, together with the quotations from the subjects, served
as an invaluable foundation of the analysis phase of our study.

P1, a professor, was trying to learn more about a theorem he en-
countered while reading a scholarly paper. He started by search-
ing the web using the name of the theorem as separate words in
a keyword search. However, part of the theorem name was a sin-
gle letter which was discarded in the math search engine and the
matching results were poor. When he revised the query to a phrasal
search (using double quotes), the matched results were markedly
better but many results only matched tangentially and were not rel-
evant to the topic. Unsatisfied, P1 revised his query using more
general terms, semantically related using his domain knowledge.
The results were mixed, representing a diverse set of materials. Af-
ter sorting through these for a few minutes, P1 managed to locate
some relevant materials. Later, he also tried to search for relevant
materials in a database of math research papers he used to visit,
only to realize that it was no longer available as the library had
recently canceled the subscription.

3.2 Findings

3.2.1 Information Seeking Behaviors
In our post-analysis, we organized observations according to in-

terview topic. With regard to their own information seeking pro-
cess, participants reported three main approaches for finding math
materials: general keyword search, browsing math-specific resources
and personal contact.

Participants noted that they searched the web using a general
search engine querying for domain-specific math terminology (e.g.,
theorem or concept names such as Helmholtz’s theorem, differen-
tial geometry, etc.). This approach is very popular because of its
short response time and high availability, as well as the variety of
information and resources it provides (as we also noted earlier in
Section 2.2). On the other hand, the participants complained about
its inaccuracy and lack of organization in the results. Such prob-
lems often drove participants to switch from general search engines
to media-specific (Google Books) or domain-specific (MathWorld)
ones. Moreover, it is often difficult to come up with appropriate
search queries without deep math knowledge (“The more you know
the better [your query becomes].”, P1). These factors often result
in a time-consuming, trial-and-error process and frustration for the
novice users; corroborating the phenomenon of the anomalous state
of knowledge (ASK, [2]). When pressed about how organization
might be improved, it was clear that standard IR topical clustering
was not sought; but clustering by purpose, by resource type or by
audience level.

“It would be good if I can just see the results of a cer-
tain type.” (G2)

“Papers are often too difficult to understand.” (U2)

Besides searching, participants also browsed books, journals, pa-
per collections and encyclopedias to find relevant materials. As
expected, online versions of such materials were preferred as they
are more accessible. Participants felt that such secondary resources
were better curated and structured, collating information from mul-
tiple sources. Participants generally searched by metadata or browsed
materials classified by a standard ontology, such as the Mathe-
matics Subject Classification (MSC). After locating possibly rel-
evant materials, they scanned for relevant information. Participants
judged this means as more rewarding although it was less accessi-
ble than search, while librarians noted that these resources are often
expensive to compile, maintain or even simply subscribe to.

“I also go to MathWorld to look for general informa-
tion. It has a nice hierarchy for me to scan through.”
(G1)

“Sometimes I am just too lazy to walk to the library.”
(G1)

“We need to review our subscriptions to the journals
and databases from time to time due to budget con-
straints.” (L1)

Personal contact was also highly cited as a means to locate in-
formation. Students reported that they occasionally consult pro-
fessors, usually as part of regular advisory meetings or as part of
coursework consultation. Such sources may give explicit informa-
tion or be able to refer the seeker to relevant information sources.
This method was reported as highly effective but also subject to the
contact’s availability. It also required the student to put in effort in



expressing the problem clearly, which often meant some prelimi-
nary seeking means had been tried and their utility exhausted. This
finding corroborates Brown’s finding that mathematicians may rely
more heavily on their social network than in other disciplines.

“I always ask my advisor in our regular research meet-
ing. Usually he is able to tell the answer right away or
give me a list of references to refer to.” (G3)

These methods clearly exhibit three points along a cost/benefit
curve: searching by keyword is fast but inaccurate and disorga-
nized; browsing is comparatively easy yet less accessible and costly
to compile, maintain, and subscribe to; while personal contact re-
quires a stronger availability and query formulation commitment
but is most effective. Perhaps surprisingly, participants felt that
such methods acceptably satisfied their information need, but also
identified the weaknesses of general keyword search as an area for
improvement.

3.2.2 Mathematical Expression Input
From our discussion of current MIR research earlier, input and

retrieval of math expressions is a focal point of current efforts. Al-
though our participants expressed general interest in such facilities,
when probed for specific applications, surprisingly, most could not
picture a scenario where such an expression might be useful. The
one potential usage was mentioned by an undergraduate was to find
problem set solutions:

“Maybe I will use it to find solutions to the problem
set.” (U1)

All other participants had doubts in the value of such capabil-
ities, either due to the lack of mathematical expressions in their
research domain, the inconvenience of entering expressions, or the
high specificity of math expressions.

“There are very few equations in my research domain.”
(P1)

“It is rare for an important expression to be unnamed.
(U2)”

“I would prefer entering the name of the expression
instead of the expression itself since it is easier.” (G4)

“I think searching with the equations is just too spe-
cific.” (G5)

When asked to hypothesize about how they would prefer to input
math expressions, all participants stated that they would prefer to
input in LaTeX. This was tied to familiarity, as it was the math
expression authoring tool of choice.

“I think LaTeX would be a good choice since we all
use it to write papers. Sometimes I even use it to com-
municate with my friends through MSN.” (G5)

“It would be good if I can visually preview the expres-
sion I’ve written.” (P1)

It is worth noting that none were aware of the existence of MathML,
the W3C recommendation for describing mathematics. Post-interview
follow-up confirmed that this is largely due to the fact that MathML
targets webpage authoring (a less familiar task) and not paper au-
thoring (a more familiar task).

These negative findings in our survey suggests that the current
MIR research focus may not really address the basic problems en-
countered by users of math IR, and that a cognitive gap exists be-
tween users and providers. We will return to this key point later in
our discussion.

3.2.3 User Needs
What types of materials were our participants looking for? From

our post-analysis, we observed that all queries involved single math-
ematical entities (e.g., math terminology or expression), and re-
quirements on its content or style (i.e., format). We characterize
needs into two broad categories: information needs which center
on content (e.g., proof of Poincare conjecture), and resource needs
which seek out sources in a particular format (e.g., articles on set
theory). This distinction is similar to observations in web query
analysis [4]. Table 2 gives a complete list of the identified needs.

Table 2: Types of math user needs identified.
Informational name/alias, definition, derivation, explanation, example, prob-

lem/solution, graph/chart, algorithm, application and related
entity

Resource paper, tutorial, slides, course website, book, code, toolkit and
data

By factoring together commonalities in our participants’ com-
ments, two other (usually tacit and unstated) facets of user needs
also emerged in helping them to select relevant materials. Speci-
ficity measures how detailed the desired material is. Less specific
resources are sufficient for a general, indicative understanding of
the target entity while more specific ones give a thorough, informa-
tive understanding of the mathematical basis of the entity. Expe-
rience measures the amount of prerequisite knowledge required to
understand the material. If the material is too hard for the user to
understand, it is not helpful however relevant it is. These two facets
are often correlated but distinct.

To understand how such needs are generated, we need to broaden
our analysis to consider the context of the need, as described by the
user’s domain and intent.

• Domain refers to the (sub)discipline the user’s main area of
interest lies, which may be outside of mathematics. This can
change the relevance of particular types of information or re-
sources. For example, students majoring in finance may need
code for simulations rather than resources describing the un-
derlying theory; likewise, computational biologists are often
interested in knowing the alias of a term in other domains.

• Intent refers to what the users plan to achieve with the materi-
als. We observed the five categories of intent, each associated
with a distinct usage pattern:

Learning: Users who intend to learn generally consume both
information and resources, even though their ultimate
goal is the former. More importantly, such users usu-
ally have limited knowledge of the desired math entity
and how to approach searching. Matching the experi-
ence level is more relevant for these intents.

Teaching: Those teaching often already have a strong knowl-
edge of the target math entity but require math materi-
als such as slides or problem and solution sets to con-
struct their own teaching resources. Materials at the
right level of experience are important here too, but in
the sense that they help to transmit the mathematical
knowledge to target learners.

Research: Users with an intent for research often seek pri-
mary materials as part of their literature studies and
keeping updated. With a solid knowledge of the tar-
geted entity, they employ access points such as author
names and specific resource collections (e.g., Zentral-
blatt Math, MathWorld, Web of Science).



Collection Building: Although librarians need to collect proper
materials regularly, they do not directly utilize the ma-
terials in most cases. As a result, they often need ex-
pert opinions to judge on the appropriateness of the re-
sources collected. Despite the fact that their needs were
reported as being satisfied largely by recommendation,
resource categorization by type, experience and domain
is likely to uncover good sources for them.

Application: This intent is often correlated with users from
domains external to math. Here the user wants to find
how the targeted entity can be applied or locate resources
to facilitate application (e.g., toolkits, solver applet and
libraries). An example highlighted to us were engineers
who wished to apply results from high-level mathe-
matics. In such scenarios, specificity is not important,
but understanding how the entity can be transformed to
match a concrete problem is.

3.3 Desiderata in MIR
Given the current state of MIR research and the evidence from

our interviews, we feel that there is an unmet need for a math search
engine. Such a system needs to address user needs more directly,
catering to the intent and domain of how math materials are em-
ployed. In terms of the information seeking strategies we observed,
such an engine would fill the gap between general search engines
and targeted browsing of organized collections.

Will the current work in MIR be able to fill these gaps? Unfor-
tunately, we do not believe this to be the case. As we saw, current
research efforts center around expressions: their input (as queries),
indexing and retrieval. From our study, it is clear that users find
text input the most viable form of searching and that specialized
input modalities for equations are unwieldy. According to the par-
ticipants in our study, natural user-driven applications of the cur-
rent MIR work may be limited, even in cases where expert users
(professors and graduate students) are concerned. While it may be
desirable that such an engine to be math-aware, we believe math
search today has more fundamental problems that need to be ad-
dressed first.

With this in mind, we identify two immediate areas which we
feel an MIR search engine should address: meta-search and re-
source categorization.

3.3.1 Meta-Search
Being able to search through multiple collections for materials

is one of the most basic requirements for a successful math search
engine. This is essential for achieving good coverage of the vari-
ety of resource types and ensuring high coverage on type-specific
recall. Although there seem to be a number of different types of
user needs, there are already several online collections which ad-
dress certain types of needs. For example, MathWorld serves for
most of the general informational needs; Zentralblatt Math for the
academic articles; and other general web sites take care of some
resource needs, such as tutorials, slides, and course websites. For
sheer resource variety, the general web is by far the best; however,
its lack of organization makes it difficult to use. It is desirable to
consult specialized collections to cover materials for specific types.
This is reflected in our user study as a common search pattern which
a math search engine should provide support. Moreover, such spe-
cialized collections often exist with their own search engines as the
sole access point with very little inter-collection linkages. Con-
sequently users themselves have to remember the different sites
for different purposes, and switch between back-and-forth when
accessing them. This further adds to the burden on the users. A

meta-search system addresses this by simply indexing and retriev-
ing information across multiple collections on behalf of the users.
While it is a simple requirement to fulfill, we believe such a service
would be immediately beneficial to math users.

3.3.2 Resource Categorization
Our study found that the participants felt the general search en-

gine results were disorganized and that different types of informa-
tion and resources were presented together. As such, we believe
a key need in math search is automatic resource categorization.
A math search engine must classify materials by type automati-
cally, ensuring that different needs requiring different types of in-
formation or resources are satisfied, without distracting irrelevant
search results. From our study, we believe that orthogonal auto-
matic text classification by specificity and (prerequisite) experience
would also be helpful to narrow down relevant materials. We be-
lieve all three classifications are all feasible given the current state
of the art: works have been published on genre classification (e.g.,
[20]) for type classification, vocabulary shift (e.g., [14]) for speci-
ficity, and reading comprehension scores for experience. Such au-
tomatic faceted classification results would need to be integrated
using a suitable, faceted searching/browsing user interfaces (such
as Flamenco [11]). We note that some search engines have already
integrated such techniques (e.g., a search for modular arithmetic in
Yahoo! also pulls up Yahoo! Answers content).

4. PROTOTYPE IMPLEMENTATION
Based on the user requirements and analysis, we have begun to

work towards building an MIR system. From requirements inter-
views, the participants generally expressed that they were able to
find satisfactory materials on the web, but that the mechanisms for
finding or accessing them was difficult. Our plan is to index freely-
available websites into a single math IR portal, centralizing access
to many resources. These resources would further be categorized
by resource type; that is, whether the webpage addresses an infor-
mational need or a resource one (c.f., Table 2).

To solve the meta-search criterion, we decided to take the open-
source Lucene IR package as the IR framework underlying the
project. The Nutch crawling package that wraps the Lucene IR
library was then used to facilitate crawling steps. Sites (including
those listed in Table 1) allowing spiders to index are indexed into
the system. The portal itself thus provides a single point-of-access
to multiple math related websites. Rather than serving any content
directly, the site itself serves to drive traffic to indexed sites, only
featuring a minimal amount of content on its own for its front page.

To solve the resource categorization criterion is more tricky, and
is the subject of the discussion on our prototype. Manual catego-
rization, while accurate, is labor intensive and subject to change
(when the resources outdate themselves or when new materials
replace or outdate old ones). As such automatic classification is
preferable, and better aligned to the solution to meta-search (which
is also fully automated).

As a starting point, we can send spidered webpages to a web-
page classifier to categorize by resource type. The predicted re-
source type would be stored along with the index information and
presented in the query results display to aid the user in determining
relevance.

In this second half of the paper, we discuss how our system is
architected in the next subsections, followed by the system’s eval-
uation on a collected corpus of math related webpages.



4.1 Webpage Resource Segmentation
In practice however, the entire webpage is not the proper unit

of granularity for math topics. During our user requirements study,
we noted that many math webpages provide multiple resources. For
example, a math topic page from the Wikipedia might include the
topic’s definition, history, proof, and applications in the real-world.
While this makes the page (potentially) more useful when visited
by the user, indexing is more difficult, as several resources are co-
located on a single page. To deal with this problem most effectively,
our system needs to first segment the individual resources on a page
and then classify and index them individually.

Webpage segmentation is a problem that has many uses, and as
such, also has much prior work. Simple approaches use regular ex-
pression wrappers to delimit portions of the page as a segment, but
these approaches are website-specific and often break once a site
is updated. As such, automated solutions have been proposed and
dominate most fielded implementations. Some approaches view the
web page as an XML-compliant document object model (DOM)
tree (often by forcing the page through a XML validator and re-
pairer) and determine the salience of nodes in the tree [23]. How-
ever, DOM-based models are often inflexible and sometimes reflect
presentation structure rather than content structure [10]. Machine
learning frameworks are also common. Works on PARCELS [19,
18] examined the use of co-training methods between style and
content to better learn segment classes, and compared the differ-
ences between webpages from the same site to better differentiate
main content from static site content (e.g., navigation links, site
headers). For our work, we employ VIPS [7], which uses a vision-
based approach independent from the DOM tree to judge coherent
blocks of content. VIPS recursively divides the DOM tree of a
webpage into smaller blocks using visual cues until the measured
Degree of Coherence (DoC) on a block has reached a desired value
(set to ‘6’ in our current work, as it gives the fewest segmentation
errors).

4.2 Resource Categorization
Once segments are acquired, categorization is performed. We

treat this as a supervised machine learning task, in which each seg-
ment is distilled to a feature vector. Manually labeled segments are
then used in the training phase to generate a model, which can be
harnessed to predict labels of unseen segments from new webpages.

Segments are assigned one of the ten labels as given in Table
4. Note that the first six are derived directly from our user study,
while the last four are used to ensure that every segment can be
labeled (coverage) while also providing additional feedback for use
in classification and segmentation. We revisit this issue later in
Section 4.4.

We follow the general approach in webpage classification by
extracting generic features known to be successful at classifying
whole webpages, and applying these to segments, in the guise of
[1] which used content, hyperlink and layout features.

Table 3 gives a complete list of the features extracted. We in-
clude standard text categorization features such as n-grams, as well
as some web-specific ones – features reflecting embedded images,
hyperlinks as well as text formatting and layout.

Unlike webpages that have no natural sequential ordering among
each other, we have observed that segments that are present within
a single webpage often do follow a natural order (e.g., definitions
come first, related links and pointers often come last), implicitly
representing the logic of the designer. Thus we incorporate contex-
tual features to capture ordering among segments.

To determine which features are important to the categorization,
we have performed manual feature selection by adding features one

Table 3: Features extracted for segment classification. * de-
notes selected features, see Section 4.4 for more details.

Word Features
nGrams* Unigram, Bigram, Trigram.
WordCount* Number of words in the segment
Image Features
containsImage Whether a segment contains an image
imageFormat The formats (jpg, bmp, png, gif, etc.) of the images in

the segment.
isImage Whether the segment is an image by itself
containsExpressionImage* Whether this segment contains an image of a math ex-

pression
Formatting Features
containsBoldedWord* Whether the segment contains bolded words
containsItalicWord* Whether the segment contains italic words
containsHeading* Whether the segment contains headings
containsList* Whether the segment contains lists
containsTable Whether the segment contains tables
numberOfParagraphs* The number of paragraphs in the segment
fontType The names of the font types used in the segment
averageFontSize The average font size of the text in the segment.
averageFontWeight The average font weight of the text in the segment.
backgroundColor The background color of the segment.
Hyperlink Features
numberOfLinks The number of hyperlinks in the segment
linkFileType The types of the files (html, pdf, zip, etc.) pointed by the

hyperlinks in the segment
linkTokens* The tokens of the hyperlinks delimited by “.”,“\” and

“&” in the segment
Layout Features
heightToWidthRatio The height of the segment divided by its width
sizeInPercentage The area of the segment divided by that of the webpage
onUpperHalfOfPage* Whether the segment is on the upper half of the webpage
onLeftHalfOfPage* Whether the segment is on the left half of the webpage
Context Features
nGramsFromPreviousBlock The n-grams from the previous block
PositionInTheSequence The number of segments before/after this one

by one and retaining only those which improve the performance.
Due to the sparsity and high dimensionality of the feature vectors

generated by the n-gram features, as well as the limited number of
training data we have, we use a multiclass support vector machine
(SVM) learner. SVMs are well known for both their prediction
accuracy and efficiency in handling such feature classes.

4.3 Corpus Development
We constructed a corpus of mathematically related web pages for

development and testing of our segmentation and classification sys-
tem. We first chose the scope of the corpus by selecting five com-
mon math entities: two operations (“Fourier Transform” and “Ma-
trix Diagonalization”), two math systems (“Modular Arithmetic”
and “Linear Algebra”), and a theorem (“Pythagorean Theorem”).
Note that even though the aforementioned user requirements study
focused only on university-level users, we chose these topic to re-
flect the diversity of the materials we wanted to collect in terms of
type, specificity and experience. This kind of diversity is crucial to
the coverage and eventual robustness of the segment categorization.

For each chosen math entity, we performed a Google web search
and incorporated the first 100 results into our corpus. Out of the 500
downloaded results, 20% of them were not webpages while another
53% of them were mainly concerned with relevant resources, such
as books, tools and slides, without providing any information about
the math entity. We included the remaining 27%, which did con-
tain some useful information about the math entity, to be used for
annotation, development and evaluation.

To provide ground-truth for model learning and evaluation, we
then asked research group members to annotate the segments gen-
erated by passing the webpages through the VIPS segmentation
system. To do this, we first developed an annotation guide that



Table 4: Class labels in the system (c.f., Table 2).
Name Definition
1. Definition A definition of the given math entity.
2. Example An example illustrating the definition of the given math entity, how it can be applied and/or the effect of applying it.
3. Problem/Solution A problem which requires the knowledge of the given math entity to solve and/or the corresponding solution.
4. Proof A proof to the given math entity (usually a theorem).
5. Related Concept Information about the concepts which are related to the given math entity.
6. Resource Information about any other places where information/resources relevant to the given math entity can be found.
7. Other Information Information on the target math entity that does not belong to any of the previous classes. This is to ensure that all relevant information can be labeled.
8. Structural Elements Text or images which serve to organize or facilitate the navigation within the main content. This is to cover the structural elements in the main content

like section headings, content page, etc.
9. Non-main Contents Text or images which are not part of the main content.This is to cover anything else on the webpage like toolbars, advertisements, etc.
10. Mixed Contents Text or images which correspond to multiple labels and shall be further segmented. This is to provide information about the segmentation errors so

that measures can be taken to correct them.

gave the definition, examples and counter-examples for each class.
Four subjects (including the first two authors) were involved in the
annotation. Each subject was given a copy of the annotation guide-
line to read prior to starting annotation and to refer back to during
the annotation process. The annotation was done through a web
interface (shown in Fig.2) by clicking on each outlined webpage
segment and selecting the most appropriate class from the pop-up
window. In order to avoid sequential bias, the system randomizes
the presentation of pages to the subjects. No specific timeframe
nor time limit was set for the annotation, to ensure that subjects
had ample time to do the annotation carefully. In total, 1182 anno-
tations were done over the 135 webpages. 805 of them overlap and
are used to measure inter-judge agreement.

Figure 2: Annotation Interface

We first examined whether subjects could reliably distinguish be-
tween relevant topical content and text that belonged to the whole
website, or navigation. This was done by merging all annotations
from label classes 1-7 into one class (relevant materials) and 8-9
as another (irrelevant) and measuring the Kappa coefficient. Kappa
values range from 1.0 (complete correlation/agreement) to -1.0 (com-
plete disagreement/negative correlation), with 0.0 indicating no cor-
relation. The resulting average inter-judge agreement was 0.87,
which indicates a high level of agreement, making this a feasible,
replicable and reliable task. The Kappa coefficient remained high
(0.80) when we analyzed the resulting average inter-judge agree-
ment over all ten classes. We think this is quite satisfactory, given
the fact that there are ten classes in the scheme, and we take this
result as validating our coding scheme. These results show that our
subjects generally agreed on whether there is relevant information
in the webpage segments, although it was slightly more difficult to
figure out the exact class.

Where do the confusions between subjects lie? We have ob-
served two major confusion factors as we analyze the annotation
differences. First, the annotators sometimes confuse Definition with

Mixed Contents (classes 1 & 10). This happens when the definition
of a math entity is given together with bits of Other Information
such as historical background. Some then considered the segment
as Mixed Contents while others thought the presence of Other In-
formation was insignificant and labeled it as Definition. Second,
our subjects also tend to disagree Other Information (class 7) with
the previous six (class 1-6). We believe this acceptable due to the
imprecise nature of the definition of Other Information.

4.4 Evaluation
We use the standard information retrieval metrics: precision, re-

call and F1-measure to evaluate the classification performance and
perform feature selection. To avoid overfitting, we apply 5-fold
cross validation and take the average as the final result. Table 5
shows the classification performance as groups of selected features
are incrementally introduced. We present our analysis of the fea-
tures group by group:

Word. All the features in this group have contributed positively to
the performance: the n-grams by themselves serve well as a
competitive baseline for most classes, while the word count
feature helps to distinguish Structural Elements (commonly
short) and Mixed Contents (usually longer than normal).

Image. Different from the normal webpages, math webpages of-
ten contain a large number of math expressions as images
of different types and sizes. This renders most of common
image features such as containsImage, imageType and im-
ageSize less helpful. On the other hand, however, distin-
guishing whether an image specifically contains math ex-
pression works very well, improving the recall significantly
for Other Information. This is because it effectively sepa-
rates the math-related content from the rest of the page.

Formatting. More often than not, Structural Elements are format-
ted differently from the normal texts on a webpage. As a re-
sult, formatting features work very well in identifying them.
Nevertheless, not all the features in this group are selected.
For example, font related features are found to be ineffective.
This is probably due to the fact that using different font type
for different content is not a common practice while chang-
ing the font size and weight can be readily done with other
formatting tags.

Hyperlink. Similar to images, hyperlinks appear almost every-
where on a webpage. Therefore, the number of links in a seg-
ment is not really informative for classification. Moreover,
since most of them are pointing to webpages, the types of the
files pointed by the hyperlinks would not help either. There-
fore, the only selected feature in this group is tokenized ver-



Table 5: Evaluation Results. Keys for category labels (as
columns): D-Definition, E-Example, PS-Problem/Solution, P-
Proof, RC-Related Concept, R-Resource, OI-Other Informa-
tion, SE-Structural Elements, NC-Non-main Contents, MC-
Mixed Contents. Keys for feature groups (as rows): W-Word,
I-Image, F-Formatting, H-Hyperlink, L-Layout, C-Context.

Precision D E PS P RC R OI SE NC MC
W .05 .38 .20 .53 .4 1.0 .38 .64 .66 .33

W+I .04 .43 .33 .55 .50 1.0 .63 .66 .67 .34
W+I+F .05 .46 .33 .56 .18 .67 .65 .71 .73 .36

W+I+F+H .06 .52 .33 .58 .33 .40 .66 .75 .75 .38
W+I+F+H+L .60 .55 1.0 .62 1.0 .40 .59 .75 .63 .40

W+I+F+H+L+C .80 .57 1.0 .59 1.0 .40 .59 .75 .61 .40
Recall D E PS P RC R OI SE NC MC

W .40 .17 .06 .44 .04 .06 .11 .41 .63 .52
W+I .19 .18 .03 .44 .08 .11 .60 .41 .62 .51

W+I+F .17 .20 .03 .45 .04 .06 .59 .82 .64 .53
W+I+F+H .14 .20 .03 .36 .10 .08 .59 .81 .81 .52

W+I+F+H+L .05 .17 .03 .36 .06 .06 .58 .79 .96 .48
W+I+F+H+L+C .07 .18 .06 .36 .08 .06 .59 .77 .95 .47

F1 D E PS P RC R OI SE NC MC
W .09 .23 .06 .48 .08 .11 .17 .50 .65 .41

W+I .07 .26 .06 .49 .08 .11 .60 .51 .65 .41
W+I+F .07 .28 .06 .45 .07 .10 .62 .76 .68 .43

W+I+F+H .09 .29 .06 .44 .16 .10 .62 .78 .81 .44
W+I+F+H+L .09 .26 .07 .45 .12 .10 .59 .77 .76 .44

W+I+F+H+L+C .13 .28 .06 .45 .08 .10 .59 .76 .75 .43

sion of the hyperlink. This improves the classification per-
formance of Related Concept and Non-main Contents with
respect to F1.

Layout. Although the layout features are unable to improve the
performance for F1, they improve the precision dramatically
for Definition, Problem/Solution and Related Concepts at the
cost of recall. We think this is an advantage as precision is
commonly emphasized over recall for web tasks.

Context. Unfortunately, none of the context features we have im-
plemented are able to improve the performance significantly.
We are still studying the cause and possible ways to model
context appropriately.

In terms of overall performance, we can see that the current set
of features is able to identify the math contents from the webpages
(as indicated by the F1 for Structural Elements and Non-main Con-
tents) but is still very weak in categorizing them. We believe that
this is mainly due to the training data and the segmentation.

The training data. There are insufficient training data for the the
poorly categorized classes (F1 < 0.4) and the distribution of
positive examples for classes is skewed. Take the worst cate-
gorized class Problem/Solution as an example, there are only
30 positive examples in the corpus and most of them come
from the same two webpages. On the contrary, for Non-main
Content, whose best F1 obtained is 0.81, there are close to
400 positive examples coming from practically every sin-
gle page. This can be readily solved by incorporating more
positive training examples from different webpages for those
poorly categorized classes.

The segmentation. Webpages are often over- or under-segmented.
When a page is under-segmented, it can sometimes result
in the entire webpage being segmented as a single segment,
and being trivially annotated as Mixed Contents. These er-
rors cause noise in the training data that could be addressed
with better variable level segmentation. We may be able to

solve this problem if we can iteratively refine the segmen-
tation with the labels obtained from the previous round of
classification. We can merge sequences of segments which
share the same label, while breaking down those labeled as
Mixed Content.

Despite the shortcomings of this initial system, we have made
solid progress in constructing the framework for an MIR system.
We are currently extending our work to handle specificity and ex-
perience categorization as well. Once these aspects are finished, we
will have completed a system that fulfills both desiderata, and we
will be in a position to field the prototype. We plan to field it after
an expanded, second round of user testing and requirements anal-
ysis, as part of our cyclical development towards creating a usable
MIR system.

5. DISCUSSION
While our prototype fulfills both criteria of resource categoriza-

tion and meta-search, it does not yet take much advantage of the do-
main of the materials: math! Earlier we asserted that MIR search
engines would be more compelling if they were math-aware and
could leverage this in a useful way. However, through our user re-
quirements study, we concluded that the usability of such search
methods was a problem: general users found keyword search most
effective and did not feel that that inputting equations was easy.

While expert users might be satisfied with onscreen equation ed-
itors such as the ones provided in current state-of-the-art MIR en-
gines (c.f., Figure 1), the general audience of MIR engines will not
be interested in such interfaces. As the findings from our study sug-
gest, keyword search is preferred as the access method for search
due to its simplicity; however, we believe that this does not suggest
expression retrieval is irrelevant. How can we make expression
searching and relevance ranking relevant to users while maintain-
ing the usability of keyword search?

We believe a method to bridge this usability gap lies in auto-
matically correlating keywords to expressions. We propose that
Keyword-to-Expression Linking, i.e. the resolution of expres-
sions to terminology (e.g., a2 + b2 = c2 to Pythagorean theorem)
would work as a form to retrieve the dual expression form of a
mathematical key phrase. Developing such a model to link key-
words to expressions also helps to provide additional evidence in
solving the notational variance problem which plagues the index-
ing of math expressions. For example, we can safely ignore the
notational variance between (a2 + b2 = c2) and (x2 + y2 = z2),
so long as they resolve to the same terminology.

This linking fits nicely with meta-search and resource catego-
rization: the former provides abundant data for learning, while seg-
mentation and classification results provide the information about
which part of the text forms the context for a math expression and
how an expression relates to a math entity. When all three are com-
bined, we believe that math search would be improved both on the
surface (better support for user pattern) and at the core (deeper un-
derstanding and better indexing).

6. CONCLUSION
In this paper, we report on our preliminary work on developing

a search engine for Math Information Retrieval (MIR). In our first
cycle in our iterative development, we have completed a user re-
quirement study in MIR and identified two potential directions for
future research:

Meta-Search. Future math retrieval should be able to search through
isolated math collections for information and resources.



Resource Categorization. Automatic classification techniques should
be employed to categorize the materials collected as to their
type, specificity and prerequisite experience needed.

Between these two directions, we focus on the more difficult is-
sue of resource categorization. Our implemented prototype uses an
SVM-based classifier which extracts text, web and context features
to classify segmented webpages into ten classes based on our user
study. As the prototype currently yields an average F1 of 0.36, we
believe there is plenty of room for improvement. We noted the dif-
ficulties in classification were partially due to the insufficient and
skewed training data as well as the segmentation errors.

We noted from our user study that math awareness would as-
sist MIR systems in expert scenarios where notational variance and
precise expression search may be needed. However, users may be
unwilling to use expression input systems that are currently a focus
of MIR research. We believe that a more successful approach en-
tails building a keyword to expression linkage module that would
enable expressions to be input implicitly and automatically from
keyphrases.
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