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ABSTRACT
We address the tasks of recovering bibliographic and doc-
ument structure metadata from scholarly documents. We
leverage higher order semi-Markov conditional random fields
to model long-distance label sequences, improving upon the
performance of the linear-chain conditional random field model.
We introduce the notion of extensible features, which al-
lows the expensive inference process to be simplified through
memoization, resulting in lower computational complexity.
Our method significantly betters the state-of-the-art on three
related scholarly document extraction tasks.

Categories and Subject Descriptors
H.3.7 [Information Storage and Retrieval]: Digital Li-
braries

General Terms
Algorithms, Experimentation

Keywords
Metadata Extraction, Logical Structure Discovery, Condi-
tional Random Fields

1. INTRODUCTION
The publication metadata of a scholarly work and those

of its referenced publications form the foundation of citation
indices, which enable a variety of digital library services.
Accurate extraction, parsing and matching of bibliographic
reference strings is needed to properly attribute a work and
its components: author, institution and publication venue.
The full text also enables extraction of citation context and
document structure used in literature review generation, ci-
tation function and keyphrase extraction. However, a work’s
metadata and those of its cited works – along with its logical
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document structure – remain largely machine-inaccessible as
the ubiquitous PDF document format often does not expose
this information. Automated extraction is needed to ad-
dress this class of scholarly document information extraction
needs.

Extraction from PDF typically employs optical charac-
ter recognition to first recover the text and its formatting
and layout characteristics. In digital libraries, this input is
passed to other systems, such as a conditional random field
(CRF), to extract or infer the document metadata. CRF-
based systems for such tasks are common in the literature,
and fielded in both academic and industrial circles. Mende-
ley1, Citeseerχ [1] and ParsCit [2] are notable systems that
address reference string parsing using standard linear-chain
CRFs. Similar works have also applied them to the logical
document extraction task [3, 4, 5]. While it works well, a
linear model is limited: it cannot capture non-adjacent de-
pendencies common in such tasks. Stacked linear-chain CRF
models have been proposed for the task of reference string
parsing [6], in response to this shortcoming. This solution
has a cheaper inference cost, but still lacks the expressive-
ness needed to model long-range dependencies.

To address this shortcoming, we focus on two improve-
ments to CRFs that have been proposed to increase their
modeling sophistication and performance. Higher order CRFs
capture long-range label patterns, while semi-Markov CRFs
(semi-CRFs) model successive labels of the same type as co-
hesive segments. Both methods individually improve model
fidelity, and hence prediction accuracy, but are often compu-
tationally expensive, increasing running time (both training
and testing) and memory requirements. Our work applies
both advances to document information extraction tasks.
With such higher order semi-Markov CRFs (HO-SCRFs),
we capture long-range dependencies between segments of
labels which often occur in scholarly data: e.g., patterns
such as author+ date+ title+2 in reference string parsing
and abstract+ introduction+ method+ in document struc-
ture labeling.

Our key contribution is to make HO-SCRFs more tractable
for practical use. By introducing the notion of extensible fea-
tures, we can distinguish features that can benefit from re-
using prior computations (memoization) in the calculation of
the potential functions Ψ. Using our technique, we demon-
strate overall inference improvements HO-SCRFs make over

1http://www.mendeley.com/
2The symbol ‘+’ denotes a segment with one or more con-
secutive labels of the same class.



Definitions: Let x = (x1, . . . , x|x|) be an input sequence and
Y be a set of labels.
· A segment of x is a triplet (u, v, y) where 1 ≤ u ≤ v ≤ |x|
and y ∈ Y is the common label of the subsequence xu:v =
(xu, . . . , xv).
· A segmentation for x is a sequence of consecutive segments
s = (s1, . . . , sp), where st = (ut, vt, yt) with u1 = 1, vp = |x|,
and ut+1 = vt + 1 for all t (i.e., the segments are juxtaposed
and cover the whole input).

Figure 1: Segment and segmentation definitions
drawn from the semi-CRF literature.

the standard, state-of-the-art linear-chain CRFs on three
public scholarly document information extraction tasks.

2. METHOD
We describe the higher order semi-CRFs (HO-SCRFs)

with extensible features that are used in our paper. A linear-
chain CRF (L-CRF) models the probability of a label se-
quence for an input sequence. Semi-CRFs [7] extend the
L-CRF to model the probability of a sequence of variable-
length segments, each of which consists of consecutive to-
kens with the same label, for an input sequence. This model
additionally allows features over segments (as opposed to
just tokens), such as aggregate properties of segments like
length of fields. For example, in reference string parsing,
transitions between two fields such as author → title can be
explicitly specified. HO-SCRFs allow features to be specified
over more than two consecutive segments. For example, a
2nd-order semi-CRF can model the transition between three
consecutive fields such as author → date → title.

Formally, a semi-CRF [7] models the conditional distribu-
tion over all segmentations s of an input sequence x by:

P (s|x) =
1

Zx
exp

 m∑
i=1

|s|∑
t=1

λifi(x, s, t)

 ,

where F = {fi(x, s, t) : 1 ≤ i ≤ m} is a set of semi-Markov
features, each of which has a corresponding weight λi, and
Zx is the partition function to normalize P (s|x) to a proper
probability. An HO-SCRF [8] allows the semi-Markov fea-
tures to have the following form:

fi(x, s, t) =

{
gi(x, ut, vt) if yt−|zi|+1 . . . yt = zi

0 otherwise
,

where zi is the segment label pattern associated with feature
fi, and s is a segmentation of x. I.e., at segment t, if the
label pattern of the segmentation s matches the segment
label pattern zi, then fi has the value gi that depends only
on the observation sequence. The feature fi is said to be
a kth-order semi-Markov feature, if the length of the label
pattern zi is k + 1.

We use an example drawn from our digital library datasets
to explain the modeling power of such features. In the task
of reference string parsing, we can specify a 2nd-order semi-
Markov feature which returns the number of times a specific
word Scholarly appears in a title field, when the previous two
fields are author and date, respectively. The segment label
pattern zi associated with this feature is author+ date+ ti-
tle+. Such bag-of-words features can be further generalized
as bag features that count the number of times a certain
property appears in a field rather than simply counting spe-
cific word occurrences.

2.1 Extensible Semi-Markov Features
To enable faster inference, we make the key observation

that certain higher order features can be incrementally com-
puted – such features can reuse computations made previ-
ously for inferring the label of a previous token. We thus
partition the feature set into two disjoint sets: the extensi-
ble features and the non-extensible ones. Extensible features
are such features; those whose values can be aggregated over
tokens within a segment, e.g. the bag features above.

Formally, a feature fi ∈ F is called extensible if for any
1 ≤ u < v ≤ |x|, we have:

gi(x, u, v) = gi(x, u, v−1)+hi(x, v) = hi(x, u)+gi(x, u+1, v),

where hi(x, u) := gi(x, u, u) for all u. In other words, a fea-
ture is extensible if its value on a segment can be computed
from the value at either of the segment’s boundary plus the
value on the remaining segment. In many cases, hi is an
easy-to-compute function.

Unigram L-CRF features (those depending only on the
label of the current token) can often be encoded as bag fea-
tures in semi-CRFs. Thus, we can include many L-CRF
features into HO-SCRFs as extensible features. Examples
of extensible features include word counts within segments
and lengths of segments.

2.2 Inference Algorithms
Inference algorithms for HO-SCRFs with extensible fea-

tures are essentially similar to the original algorithms for
HO-SCRFs in [8], except for modifications to re-use the com-
putations for extensible features which we detail next.

Recall that inferences for HO-SCRFs require the compu-
tation of both forward and backward variables. These vari-
ables will be used to compute the partition function Zx, the
expected feature sum, and the marginal probabilities. Dur-
ing testing, the most likely segmentation for a given input
sequence is computed using the Viterbi algorithm.

A key step in the inferences is to compute the factor
Ψx(u, v,p) = exp(

∑
i:zi≤sp λigi(x, u, v)), where p is a se-

quence of segment labels and ≤s is the suffix relation. This
factor gives the total contribution within the subsequence
xu:v of all the activated features that match the segment la-
bel sequence p. We can factorize Ψx(u, v,p) into Ψe

x(u, v,p)×
Ψn

x(u, v,p) such that:

Ψe
x(u, v,p) = exp(

∑
i:fi∈Fe ∧ zi≤sp λigi(x, u, v)), and

Ψn
x(u, v,p) = exp(

∑
i:fi∈Fn ∧ zi≤sp λigi(x, u, v)),

where Ψe
x only aggregates over extensible features while Ψn

x

aggregates over non-extensible features.
If fi is an extensible feature, we can decompose gi into

gi(x, u, v) = hi(x, u) + gi(x, u + 1, v). With such decompo-
sition and the above factorization, we can write:

Ψx(u, v,p) = exp(
∑

i:fi∈Fe

zi≤sp

λihi(x, u))Ψe
x(u+ 1, v,p)Ψn

x(u, v,p).

Here, Ψe
x(u + 1, v,p) is the computation that is memoized

previously. We then only need to calculate the incremental
value of Ψn

x(u, v,p) and the exponential factor to get the new
value of Ψx(u, v,p). Hence, using this formula and a simple
rearrangement for the recurrence to compute the forward
variable (in Section 2.3.1 of [8]), we can achieve a speedup
in the forward inference as the value of Ψe

x(u + 1, v,p) is



memoized when we compute Ψx(u, v,p) (i.e., dynamic pro-
gramming can be used to compute the values of Ψx).

This memoization based speed-up is applicable to many
parts of the inference pipeline. Aside from the forward vari-
able computation, the speedup also applies to the backward
variables (by decomposing gi similarly into gi(x, u, v) =
hi(x, v) + gi(x, u, v − 1)), computation of marginal proba-
bilities, and for the Viterbi algorithm during testing. To
be clear, this computational shortcut applies to both HO-
SCRFs and normal semi-CRFs.

2.3 Computational Complexity
The complexity analysis for the original inferences in [8]

assumed that the features gi(x, u, v) can be computed in
O(1), an unrealistic assumption since the computation of
such segment features depends on the length of the segment.
In this paper, we assume the computation of hi(x, v) is O(1)
instead, thus making the computation of gi linear in the
segment length, which we feel is more realistic.

For simplicity, we also assume that all the values of Ψx

(equivalently, Ψe
x and Ψn

x) are pre-computed before we com-
pute the forward and backward variables. In practice, Ψx is
computed on-the-fly using memoization. Note that comput-
ing Ψx’s is the computational bottleneck in CRF inference,
and that our strategy directly decreases its computational
complexity.

Indeed, if we do not leverage extensibility, the worst-case
time complexity to pre-compute Ψx’s is O(T 3|F||P||Y|2) =
O(T 3(|Fe| + |Fn|)|P||Y|2), where T is the maximal input
sequence length and P is the forward-state set [8]. In con-
trast, when we use extensibility, this worst-case complexity
is O((|Fn|T 3 + |Fe|T 2)|P||Y|2). Since most ordinary fea-
tures are extensible, the bulk of the inference changes from
cubic to quadratic complexity in T , a large savings. Once
we have all the values of Ψx, the time complexity for other
inference steps remain identical.

3. EVALUATION
To validate the performance of HO-SCRFs, we re-use three

scholarly extraction tasks which have previously been for-
mally defined and which have freely-available datasets.3

· Reference String Parsing is the task of tokenizing
and labeling individuals fields of reference strings (i.e., the
bibiography) of a scholarly work. Given a reference string
as input, the models should appropriately label its tokens.
The set of labels are listed in Column 1 of Table 2. We re-
use the exact features and values described in [2] for direct
comparison.
· Generic Section Labeling seeks to recover the logical

structure of the main sections of a scholarly work. Models
are tasked to label the section sequence of an input work,
picking labels from Column 1 of Table 3. We re-use the
exact features and their values as described in [4].

3We note that the reference string parsing dataset is a
compendium of Cora, FLUX-CiM, ICONIP and humanities
datasets. Section labeling is evaluated on the generic section
labeling dataset used in [4]. Author and Affiliation extrac-
tion is evaluated on the compendium of works published by
the ACL and from a cross-domain dataset reported in [5].
All datasets are publicly available at https://github.com/
knmnyn/ParsCit/tree/master/crfpp/traindata.

Table 1: Statistics of the datasets used.

Task [Citation] Train Validation Test

Reference string parsing [2] 883 – 501
Generic section labeling [4] 102 44 65

Author extraction [5] 13 10 144
Affiliation extraction [5] 6 10 145

Table 2: F1 (%) for HO-SCRFs on the reference
string parsing task.

Label (Size) L-CRF 1SCRF 2SCRF 3SCRF

author (2085) 99.00 98.97 99.02 98.78
booktitle (3116) 93.60 93.67 94.15 93.71

date (671) 93.61 92.98 93.26 93.11
editor (207) 75.33 71.54 75.60 75.60

institution (27) 79.17 79.17 79.17 96.43
journal (451) 89.31 89.60 90.12 88.22

location (408) 89.20 89.18 89.91 90.68
note (69) 57.14 57.14 57.53 60.00

pages (580) 95.91 95.59 94.56 95.49
publisher (125) 83.33 83.68 83.33 84.39

tech (5) 46.15 46.15 46.15 62.50
title (4086) 94.53 94.74 95.35 95.22

volume (154) 91.28 92.20 87.74 90.00

Micro-average 94.01 94.01 94.35** 94.26**

· Author and Affiliation Extraction is to extract au-
thor (affiliation) occurrences from the author (affiliation)
lines in the header section of a paper [5]. These lines also
contain other markers (symbols) and other separators to de-
limit multiple authors (affiliations). Models are to assign
labels from the inventory of author (affiliation), symbol, and
separator.

For ease of reference, we restate the demographics of the
public datasets we used in Table 1. Except for reference
string parsing, we use a validation set to select the best regu-
larization parameter σ among the values 0.1, 1, 10, 100. The
models with the best parameter settings are then trained on
the union of the train and validation sets, and then tested
on the test set. For reference string parsing, we only use the
default σ = 1 without applying validation, due to the long
training time.

Results. In what follows, L-CRF, 1SCRF, 2SCRF and
3SCRF denote the linear-chain CRF (our baseline), 1st-,
2nd- and 3rd-order semi-CRF models, respectively. In the
prior literature, only L-CRFs were used to address these
tasks. As input for 1SCRF, we use all the features of the
L-CRF together with all 1st-order semi-Markov transition
features. For both the 2SCRF and 3SCRF models, we re-use
all features for the k−1th model and in addition incorporate
the kth-order semi-Markov transition features.

For the reference string parsing task, from Table 2, 2SCRF
and 3SCRF perform significantly better than L-CRF (p <
0.01) in aggregate. Overall, 2SCRF achieves the best score
(94.35%), and it performs equally or better than L-CRF on
10 out of 13 labels, including some dominant labels such as
title, booktitle, and author. Many errors for this task come
from the humanities datasets, which contain non-English
references. Other errors come from the ambiguity of the
labels, some of which even confused human annotators. For
instance, the token 16(3):52-55 was labeled as volume by
2SCRF but its true label is pages (the token contains both
the volume and page information).



Training 1SCRF 2SCRF 3SCRF
Extensible 777.34 3360.54 7471.08
Normal 3446.67 14771.98 31965.4

Testing 1SCRF 2SCRF 3SCRF
Extensible 20.278 105.524 261.879
Normal 82.32 377.238 855.751

0

5000

10000

15000

20000

25000

30000

35000

1SCRF 2SCRF 3SCRF

Ti
m

e 
(s

) 

Training time 

Extensible Semi-CRF Normal Semi-CRF

0
200
400
600
800

1000

1SCRF 2SCRF 3SCRF

Ti
m

e 
(s

) 

(a) 

Extensible Semi-CRF
Normal Semi-CRF

Training 1SCRF 2SCRF 3SCRF
Extensible 6.31 34.32 81.61
Normal 8.18 40.62 99.33

Testing 1SCRF 2SCRF 3SCRF
Extensible 0.358 0.919 1.812
Normal 0.352 0.763 1.771

0

20

40

60

80

100

120

1SCRF 2SCRF 3SCRF

Ti
m

e 
(s

) 

Training time 

Extensible Semi-CRF Normal Semi-CRF

0
0.4
0.8
1.2
1.6

2

1SCRF 2SCRF 3SCRF

Ti
m

e 
(s

) 

(b) 

Extensible Semi-CRF
Normal Semi-CRF

Training 1SCRF 2SCRF 3SCRF
Extensible 3.38 6.38 10.14
Normal 25.33 51.21 85.87

Testing 1SCRF 2SCRF 3SCRF
Extensible 0.576 0.877 1.001
Normal 3.59 5.123 6.879

0
10
20
30
40
50
60
70
80
90

100

1SCRF 2SCRF 3SCRF

Ti
m

e 
(s

) 

Training time 

Extensible Semi-CRF Normal Semi-CRF

0

2

4

6

8

1SCRF 2SCRF 3SCRF

Ti
m

e 
(s

) 

(c) 

Extensible Semi-CRF
Normal Semi-CRF

Training 1SCRF 2SCRF 3SCRF
Extensible 12.56 46.24 141.2
Normal 86.56 329.55 1014.41

Testing 1SCRF 2SCRF 3SCRF
Extensible 0.768 1.745 4.07
Normal 4.291 10.041 21.402

0

200

400

600

800

1000

1200

1SCRF 2SCRF 3SCRF

Ti
m

e 
(s

) 

Training time 

Extensible Semi-CRF Normal Semi-CRF

0

5

10

15

20

25

1SCRF 2SCRF 3SCRF

Ti
m

e 
(s

) 

(d) 

Extensible Semi-CRF
Normal Semi-CRF

Figure 2: Elapsed running time of the standard and our extensible higher order semi-CRFs for the (a)
reference string parsing, (b) generic section labeling, (c) affiliation extraction, and (d) author extraction
tasks on their respective test sets (or 25% of the test set for reference string parsing).

Table 3: F1 (%) for HO-SCRFs on the generic sec-
tion labeling task.

Label (Size) L-CRF 1SCRF 2SCRF 3SCRF

abstract (65) 100 100 100 100
acknowledgement (29) 100 94.92 94.92 93.10

background (8) 80.00 85.71 94.12 100
categories (50) 99.01 99.01 99.01 99.01

conclusions (55) 92.98 92.31 94.74 92.17
discussions (15) 72.00 50.00 80.00 50.00
evaluation (42) 89.74 81.08 92.31 83.95

general terms (46) 100 100 100 100
introduction (64) 97.67 97.67 97.67 97.67

methodology (183) 96.24 93.96 97.56 95.70
references (65) 100 100 100 100

related works (30) 100 94.74 100 100

Micro-average 96.63 94.79 97.39* 95.71

Table 4: F1 (%) for HO-SCRFs on the author and
affiliation extraction tasks.

Problem L-CRF 1SCRF 2SCRF 3SCRF

Author 93.64 93.53 94.06* 93.21
Affiliation 98.33 98.50 98.50 98.50

For generic section labeling, Table 3 shows that 2SCRF
performs significantly better than L-CRF (p < 0.05) in ag-
gregate. 2SCRF achieves the best score overall (97.39%),
performing equally or better than L-CRF on 11 of 12 cate-
gories, inclusive of dominant categories such as methodology
and conclusions. Errors for this task include confusion be-
tween the conclusions section and the evaluation or discus-
sion sections in the data. For example, 2SCRF may predict
that there is a conclusions section before the references sec-
tion in a paper, while the correct label is discussion.

On the author extraction task, Table 4 shows that 2SCRF
performs significantly better than L-CRF in aggregate (p <
0.05) and achieves the best F1 score (94.06%). For the af-
filiation extraction task, all of the semi-CRF configurations
perform better than L-CRF with p < 0.057. Many errors
for these tasks, especially the author extraction task, come
from the separator class.

Running Time. For all tasks, we measured the testing
time on the test data sets4 using a 24-core machine (800 MHz
per core; Figure 2). Similar trends also occurred in training
times. For the reference string parsing and author–affiliation
extraction tasks, Figure 2a,c,d shows that leveraging the ex-
tensible property of the semi-Markov features improves the
running time significantly. Generic section labeling task is
the exception (Figure 2b). One possible explanation is that
the test set for this task is small (65 instances), and the

4We used 25% of the test set for reference string parsing.

running time is dominated by the parallel communication
between the threads (which is non-deterministic).

4. CONCLUSION
We have demonstrated the feasibility of using higher order

semi-CRFs (here, HO-SCRFs) to improve performance on
scholarly document extraction tasks. By noting that many
semi-CRF features are extensible (amenable to incremental
calculation and hence memoization), we can also efficiently
train and test such models.

We note that learning solutions are not the only solution
to scholarly document information extraction tasks. For ref-
erence string parsing, sourcing scholarly metadata through
external sources (i.e., the Web) is a promising avenue [9,
10]. In future work, we plan to integrate both learning and
Web lookup (when appropriate) to solve such tasks.
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