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Abstract 

We review lexical Association Measures 

(AMs) that have been employed by past 

work in extracting multiword expressions. 

Our work contributes to the understanding 

of these AMs by categorizing them into 

two groups and suggesting the use of rank 

equivalence to group AMs with the same 

ranking performance. We also examine 

how existing AMs can be adapted to better 

rank English verb particle constructions 

and light verb constructions. Specifically, 

we suggest normalizing (Pointwise) Mu-

tual Information and using marginal fre-

quencies to construct penalization terms.  

We empirically validate the effectiveness 

of these modified AMs in detection tasks 

in English, performed on the Penn Tree-

bank, which shows significant improve-

ment over the original AMs. 

1 Introduction 

Recently, the NLP community has witnessed a 

renewed interest in the use of lexical association 

measures in extracting Multiword Expressions 

(MWEs). Lexical Association Measures (hereaf-

ter, AMs) are mathematical formulas which can 

be used to capture the degree of connection or 

association between constituents of a given 

phrase. Well-known AMs include Pointwise Mu-

tual Information (PMI), Pearson’s
2

 and the 

Odds Ratio. These AMs have been applied in 

many different fields of study, from information 

retrieval to hypothesis testing. In the context of 

MWE extraction, many published works have 

been devoted to comparing their effectiveness. 

Krenn and Evert (2001) evaluate Mutual Infor-

mation (MI), Dice, Pearson’s
2

 , log-likelihood  

ratio and the T score. In Pearce (2002), AMs 

such as Z score, Pointwise MI, cost reduction, 

left and right context entropy, odds ratio are eva-

luated. Evert (2004) discussed a wide range of 

AMs, including exact hypothesis tests such as the 

binomial test and Fisher’s exact tests, various 

coefficients such as Dice and Jaccard. Later, 

Ramisch et al. (2008) evaluated MI, Pear-

son’s
2

 and Permutation Entropy. Probably the 

most comprehensive evaluation of AMs was pre-

sented in Pecina and Schlesinger (2006), where 

82 AMs were assembled and evaluated over 

Czech collocations. These collocations contained 

a mix of idiomatic expressions, technical terms, 

light verb constructions and stock phrases. In 

their work, the best combination of AMs was 

selected using machine learning.  

While the previous works have evaluated 

AMs, there have been few details on why the 

AMs perform as they do.  A detailed analysis of 

why these AMs perform as they do is needed in 

order to explain their identification performance, 

and to help us recommend AMs for future tasks. 

This weakness of previous works motivated us to 

address this issue. In this work, we contribute to 

further understanding of association measures, 

using two different MWE extraction tasks to mo-

tivate and concretize our discussion. Our goal is 

to be able to predict, a priori, what types of AMs 

are likely to perform well for a particular MWE 

class. 

We focus on the extraction of two common 

types of English MWEs that can be captured by 

bigram model: Verb Particle Constructions 

(VPCs) and Light Verb Constructions (LVCs). 

VPCs consist of a verb and one or more particles, 

which can be prepositions (e.g. put on, bolster 

up), adjectives (cut short) or verbs (make do). 

For simplicity, we focus only on bigram VPCs 

that take prepositional particles, the most com-

mon class of VPCs. A special characteristic of 

VPCs that affects their extraction is the mobility 

of noun phrase complements in transitive VPCs. 

They can appear after the particle (Take off your 

hat) or between the verb and the particle (Take 
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your hat off). However, a pronominal comple-

ment can only appear in the latter configuration 

(Take it off).  

In comparison, LVCs comprise of a verb and a 

complement, which is usually a noun phrase 

(make a presentation, give a demonstration). 

Their meanings come mostly from their com-

plements and, as such, verbs in LVCs are termed 

semantically light, hence the name light verb. 

This explains why modifiers of LVCs modify the 

complement instead of the verb (make a serious 

mistake vs. *make a mistake seriously).  This 

phenomenon also shows that an LVC’s constitu-

ents may not occur contiguously. 

2 Classification of Association Measures 

Although different AMs have different ap-

proaches to measuring association, we observed 

that they can effectively be classified into two 

broad classes. Class I AMs look at the degree of 

institutionalization; i.e., the extent to which the 

phrase is a semantic unit rather than a free com-

bination of words. Some of the AMs in this class 

directly measure this association between consti-

tuents using various combinations of co-

occurrence and marginal frequencies. Examples 

include MI, PMI and their variants as well as 

most of the association coefficients such as Jac-

card, Hamann, Brawn-Blanquet, and others. 

Other Class I AMs estimate a phrase’s MWE-

hood by judging the significance of the differ-

ence between observed and expected frequen-

cies. These AMs include, among others, statistic-

al hypothesis tests such as T score, Z score and 

Pearson’s
2

 test.  

Class II AMs feature the use of context to 

measure non-compositionality, a peculiar charac-

teristic of many types of MWEs, including VPCs 

and idioms. This is commonly done in one of the 

following two ways. First, non-compositionality 

can be modeled through the diversity of contexts, 

measured using entropy. The underlying assump-

tion of this approach is that non-compositional 

phrases appear in a more restricted set of con-

texts than compositional ones. Second, non-

compositionality can also be measured through 

context similarity between the phrase and its 

constituents. The observation here is that non-

compositional phrases have different semantics 

from those of their constituents. It then follows 

that contexts in which the phrase and its consti-

tuents appear would be different (Zhai, 1997). 

Some VPC examples include carry out, give up. 

A close approximation stipulates that contexts of 

a non-compositional phrase’s constituents are 

also different. For instance, phrases such as hot 

dog and Dutch courage are comprised of consti-

tuents that have unrelated meanings. Metrics that 

are commonly used to compute context similarity 

include cosine and dice similarity; distance me-

trics such as Euclidean and Manhattan norm; 

and probability distribution measures such as 

Kullback-Leibler divergence and Jensen-

Shannon divergence.  

 

Table 1 lists all AMs used in our discussion. 

The lower left legend defines the variables a, b, 

c, and d with respect to the raw co-occurrence 

statistics observed in the corpus data.  When an 

AM is introduced, it is prefixed with its index 

given in Table 1(e.g., [M2] Mutual Information) 

for the reader’s convenience.  

3 Evaluation   

We will first present how VPC and LVC candi-

dates are extracted and used to form our evalua-

tion data set. Second, we will discuss how per-

formances of AMs are measured in our experi-

ments. 

3.1 Evaluation Data 

In this study, we employ the Wall Street Journal 

(WSJ) section of one million words in the Penn 

Tree Bank. To create the evaluation data set, we 

first extract the VPC and LVC candidates from 

our corpus as described below. We note here that 

the mobility property of both VPC and LVC con-

stituents have been used in the extraction 

process. 

For VPCs, we first identify particles using a 

pre-compiled set of 38 particles based on Bald-

win (2005) and Quirk et al. (1985) (Appendix 

A). Here we do not use the WSJ particle tag to 

avoid possible inconsistencies pointed out in 

Baldwin (2005). Next, we search to the left of 

the located particle for the nearest verb. As verbs 

and particles in transitive VPCs may not occur 

contiguously, we allow an intervening NP of up 

to 5 words, similar to Baldwin and Villavicencio 

(2002) and Smadja (1993), since longer NPs tend 

to be located after particles.  



Extraction of LVCs is carried out in a similar 

fashion. First, occurrences of light verbs are 

located based on the following set of seven fre-

quently used English light verbs: do, get, give, 

have, make, put and take. Next, we search to the      

right of the light verbs for the nearest noun, per-

AM Name Formula AM Name Formula 

M1. Joint Probability ( ) /f xy N  M2. Mutual  Information 

,

1
log

ˆ

ij

ij

i j ij

f
f

N f
  

M3. Log likelihood       

        ratio 
,

2 log
ˆ

ij

ij

i j ij

f
f

f
  

M4. Pointwise MI (PMI) ( )
log

( ) ( )

P xy

P x P y 
 

M5. Local-PMI ( ) PMIf xy   M6. PMI
k
 ( )

log
( ) ( )

k
Nf xy

f x f y 
 

M7. PMI
2
 2

( )
log

( ) ( )

Nf xy

f x f y 
 

M8. Mutual Dependency 2( )
log

( *) (* )

P xy

P x P y
 

M9. Driver-Kroeber  

( )( )

a

a b a c 
 

M10. Normalized   

          expectation 
2

2

a

a b c 
 

M11. Jaccard a

a b c 
 

M12. First Kulczynski a

b c
 

M13. Second  

         Sokal-Sneath 
2( )

a

a b c 
 

M14. Third  

          Sokal-Sneath 
a d

b c




 

M15. Sokal-Michiner a d

a b c d



  
 

M16. Rogers-Tanimoto 

2 2

a d

a b c d



  
 

M17. Hamann ( ) ( )a d b c

a b c d

  

  
 

M18. Odds ratio ad

bc
 

M19. Yule’s   ad bc

ad bc




 

M20. Yule’s Q ad bc

ad bc




 

M21. Brawn-     

          Blanquet 
max( , )

a

a b a c 
 

M22. Simpson 

min( , )

a

a b a c 
 

M23. S cost 1
 
2

min( , )
log(1 )

1

b c

a






 
M24*. Adjusted S Cost 1

2
max( , )

log(1 )
1

b c

a






 

M25. Laplace 1

 min( ,  ) 2

a

a b c



 
 

M26*. Adjusted Laplace 1

 max( ,  ) 2

a

a b c



 
 

M27. Fager  
[M9]

1
max( , )

2
b c  

M28*. Adjusted Fager 
[M9]

1
max( , )b c

aN
  

M29*. Normalized     

            PMIs  
PMI / NF( )  

PMI / NFMax 

M30*. Simplified norma-

lized PMI for VPCs 
log( )

(1 )

ad

b c    
 

M31*. Normalized  

           MIs 
MI / NF( )  

MI / NFMax 

NF( )  = ( )P x   + (1 ) ( )P y    [0,  1]   

NFMax = max( ( ),  ( ))P x P y   

 

11
( )a f f xy    

12
( )b f f xy     

21
( )c f f xy   

22
( )d f f xy   

( )f x  

( )f x  

            ( )f y               ( )f y  N 

 

Table 1. Association measures discussed in this paper. Starred AMs (*) are developed in this work. 

Contingency table of a bigram (x y), recording co-

occurrence and marginal frequencies; w  stands for all 

words except w; * stands for all words; N is total num-

ber of bigrams. The expected frequency under the inde-

pendence assumption is ˆ ( ) ( ) ( ) / .f xy f x f y N    

 

 



mitting a maximum of 4 intervening words to 

allow for quantifiers (a/an, the, many, etc.), ad-

jectival and adverbial modifiers, etc. If this 

search fails to find a noun, as when LVCs are 

used in the passive (e.g. the presentation was 

made), we search to the right of the light verb, 

also allowing a maximum of 4 intervening 

words. The above extraction process produced a 

total of 8,652 VPC and 11,465 LVC candidates 

when run on the corpus. We then filter out can-

didates with observed frequencies less than 6, as 

suggested in Pecina and Schlesinger (2006), to 

obtain a set of 1,629 VPCs and 1,254 LVCs.  

Separately, we use the following two available 

sources of annotations: 3,078 VPC candidates 

extracted and annotated in (Baldwin, 2005) and 

464 annotated LVC candidates used in (Tan et 

al., 2006). Both sets of annotations give both 

positive and negative examples. 

Our final VPC and LVC evaluation datasets 

were then constructed by intersecting the gold-

standard datasets with our corresponding sets of 

extracted candidates. We also concatenated both 

sets of evaluation data for composite evaluation.  

This set is referred to as “Mixed”. Statistics of 

our three evaluation datasets are summarized in 

Table 2.  

 

 VPC data LVC data Mixed 

Total  

(freq  ≥ 6) 

413 100 513 

Positive  

instances 

117 

(28.33%) 

28 

(28%) 

145 

(23.26%) 

Table 2. Evaluation data sizes (type count, not token). 

 

While these datasets are small, our primary 

goal in this work is to establish initial compara-

ble baselines and describe interesting phenomena 

that we plan to investigate over larger datasets in 

future work.  

3.2 Evaluation Metric  

To evaluate the performance of AMs, we can use 

the standard precision and recall measures, as in 

much past work.  We note that the ranked list of 

candidates generated by an AM is often used as a 

classifier by setting a threshold. However, setting 

a threshold is problematic and optimal threshold 

values vary for different AMs. Additionally, us-

ing the list of ranked candidates directly as a 

classifier does not consider the confidence indi-

cated by actual scores. Another way to avoid set-

ting threshold values is to measure precision and 

recall of only the n most likely candidates (the n-

best method). However, as discussed in Evert 

and Krenn (2001), this method depends heavily 

on the choice of n. In this paper, we opt for aver-

age precision (AP), which is the average of pre-

cisions at all possible recall values. This choice 

also makes our results comparable to those of 

Pecina and Schlesinger (2006).  

3.3 Evaluation Results 

Figure 1(a, b) gives the two average precision 

profiles of the 82 AMs presented in Pecina and 

Schlesinger (2006) when we replicated their ex-

periments over our English VPC and LVC data-

sets. We observe that the average precision pro-

file for VPCs is slightly concave while the one 

for LVCs is more convex. This can be inter-

preted as VPCs being more sensitive to the 

choice of AM than LVCs. Another point we ob-

served is that a vast majority of Class I AMs, 

including PMI, its variants and association coef-

ficients (excluding hypothesis tests), perform 

reasonably well in our application. In contrast, 

the performances of most of context-based and 

hypothesis test AMs are very modest. Their me-

diocre performance indicates their inapplicability 

to our VPC and LVC tasks. In particular, the 

high frequencies of particles in VPCs and light 

verbs in LVCs both undermine their contexts’ 

discriminative power and skew the difference 

between observed and expected frequencies that 

are relied on in hypothesis tests.  

4 Rank Equivalence 

We note that some AMs, although not mathemat-

ically equivalent (i.e., assigning identical scores 

to input candidates) produce the same lists of 

ranked candidates on our datasets. Hence, they 

achieve the same average precision. The ability 

to identify such groups of AMs is helpful in sim-

plifying their formulas, which in turn assisting in 

analyzing their meanings. 

 

Definition: Association measures M1 and M2 are 

rank equivalent over a set C, denoted by M1 
r

C
  

M2, if and only if M1(cj) > M1(ck)  M2(cj) > 

M2(ck) and M1(cj) = M1(ck)  M2(cj) = M2(ck) for 

all cj, ck belongs to C where Mk(ci) denotes the 

score assigned to ci by the measure Mk.  

 

As a corollary, the following also holds for rank 

equivalent AMs:  



Corollary: If M1 
r

C
  M2 then APC(M1) = APC(M2) 

where APC(Mi) stands for the average precision 

of the AM Mi over the data set C.  

 

Essentially, M1 and M2 are rank equivalent over 

a set C if their ranked lists of all candidates taken 

from C are the same, ignoring the actual calcu-

lated scores
1
. As an example, the following 3 

AMs: Odds ratio, Yule’s ω and Yule’s Q (Table 

3, row 5), though not mathematically equivalent, 

can be shown to be rank equivalent. Five groups 

of rank equivalent AMs that we have found are 

listed in Table 3.  This allows us to replace the 

below 15 AMs with their (most simple) repre-

sentatives from each rank equivalent group. 

 

 

 

                                                 
1
 Two AMs may be rank equivalent with the exception of 

some candidates where one AM is undefined due to a zero 

in the denominator while the other AM is still well-defined. 

We call these cases weakly rank equivalent. With a reason-

ably large corpus, such candidates are rare for our VPC and 

LVC types. Hence, we still consider such AM pairs to be 

rank equivalent. 

1) [M2] Mutual Information,  

    [M3] Log likelihood ratio 

2) [M7] PMI
2
, [M8] Mutual Dependency,  

    [M9] Driver-Kroeber (a.k.a. Ochiai) 

3) [M10] Normalized expectation,  

    [M11] Jaccard, [M12] First Kulczynski,  

[M13]Second Sokal-Sneath  

          (a.k.a. Anderberg) 

4) [M14] Third Sokal-Sneath,  

    [M15] Sokal-Michiner, 

    [M16] Rogers-Tanimoto, [M17] Hamann 

5) [M18] Odds ratio, [M19] Yule’s ,       

    [M20] Yule’s Q 

Table 3. Five groups of rank equivalent AMs. 

5 Examination of Association Measures 

We highlight two important findings in our anal-

ysis of the AMs over our English datasets. Sec-

tion 5.1 focuses on MI and PMI and Section 5.2 

discusses penalization terms.   

5.1 Mutual Information and Pointwise Mu-

tual Information 

In Figure 1, over 82 AMs, PMI ranks 11
th
 in 

identifying VPCs while MI ranks 35
th
 in identify-
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Figure 1a. AP profile of AMs examined over our VPC data set. 
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Figure 1b. AP profile of AMs examined over our LVC data set. 

 
Figure 1. Average precision (AP) performance of the 82 AMs from Pecina and Schlesinger (2006), on our 

English VPC and LVC datasets. Bold points indicate AMs discussed in this paper.  

□ Hypothesis test AMs     ◊ Class I AMs, excluding hypothesis test AMs     + Context-based AMs. 

 

 



ing LVCs. In this section, we show how their 

performances can be improved significantly.  

Mutual Information (MI) measures the com-

mon information between two variables or the 

reduction in uncertainty of one variable given 

knowledge of the oth-

er.
,

( )
MI( ; ) ( )log

( ) ( )u v

p uv
U V p uv

p u p v


  . In the con-

text of bigrams, the above formula can be simpli-

fied to [M2] MI =
,

1
log

ˆN

ij

ij
i j

ij

f
f

f
 . While MI holds 

between random variables, [M4] Pointwise MI 

(PMI) holds between specific values: PMI(x, y) 

=
( )

log
( ) ( )

P xy

P x P y 

( )
log

( ) ( )

Nf xy

f x f y


 
. It has long 

been pointed out that PMI favors bigrams with 

low-frequency constituents, as evidenced by the 

product of two marginal frequencies in its deno-

minator. To reduce this bias, a common solution 

is to assign more weight to the co-occurrence 

frequency ( )f xy in the numerator by either rais-

ing it to some power k (Daille, 1994) or multiply-

ing PMI with ( )f xy . Table 4 lists these adjusted 

versions of PMI and their performance over our 

datasets. We can see from Table 4 that the best 

performance of PMI
k
 is obtained at k values less 

than one, indicating that it is better to rely less 

on ( )f xy . Similarly, multiplying ( )f xy directly to 

PMI reduces the performance of PMI. As such, 

assigning more weight to ( )f xy  does not im-

prove the AP performance of PMI.  

 

AM VPCs LVCs Mixed 

Best [M6] PMI
k
 .547 

(k = .13) 
.573 

(k = .85) 
.544 

(k = .32) 

[M4] PMI .510 .566 .515 

[M5] Local-PMI  .259 .393 .272 

[M1] Joint Prob. .170 .28 .175 

Table 4. AP performance of PMI and its variants. Best 

alpha settings shown in parentheses. 

 

Another shortcoming of (P)MI is that both 

grow not only with the degree of dependence but 

also with frequency (Manning and 

Schutze, 1999, p. 66). In particular, we can show 

that MI(X; Y) ≤ min(H(X), H(Y)), where H(.) de-

notes entropy, and PMI(x,y) ≤ min( log ( ),P x   

log ( )P y  ). 

These two inequalities suggest that the al-

lowed score ranges of different candidates vary 

and consequently, MI and PMI scores are not 

directly comparable. Furthermore, in the case of 

VPCs and LVCs, the differences among score 

ranges of different candidates are large, due to 

high frequencies of particles and light verbs. This 

has motivated us to normalize these scores be-

fore using them for comparison. We suggest MI 

and PMI be divided by one of the following two 

normalization factors: NF( ) = ( )P x   + 

(1 ) ( )P y  with [0,  1]  and NFmax 

= max( ( ), ( ))P x P y  . NF( ) , being dependent on 

alpha, can be optimized by setting an appropriate 

alpha value, which is inevitably affected by the 

MWE type and the corpus statistics. On the other 

hand, NFmax is independent of alpha and is rec-

ommended when one needs to apply normalized 

(P)MI to a mixed set of different MWE types or 

when sufficient data for parameter tuning is un-

available. As shown in Table 5, normalized MI 

and PMI show considerable improvements of up 

to 80%. Also, PMI and MI, after being norma-

lized with NFmax, rank number one in VPC and 

LVC task, respectively. If one re-writes MI as = 

(1/ N)
ij ij

i, j

PMIf  , it is easy to see the heavy de-

pendence of MI on direct frequencies compared 

with PMI and this explains why normalization is 

a pressing need for MI.  

 

AM VPCs LVCs Mixed 

MI / NF( )  .508 
( = .48)  

.583 
( = .47) 

.516 
( = .5) 

MI / NFmax .508 .584 .518 

[M2] MI .273 .435 .289 

    
PMI / NF( )  .592 

( = .8)  
.554 

( = .48)  
.588 

( = .77) 

PMI / NFmax .565 .517 .556 

[M4] PMI .510 .566 .515 

Table 5. AP performance of normalized (P)MI versus 

standard (P)MI. Best alpha settings shown in paren-

theses. 

5.2 Penalization Terms  

It can be seen that given equal co-occurrence 

frequencies, higher marginal frequencies reduce 

the likelihood of being MWEs. This motivates us 

to use marginal frequencies to synthesize penali-

zation terms which are formulae whose values 

are inversely proportional to the likelihood of 

being MWEs. We hypothesize that incorporating 

such penalization terms can improve the respec-

tive AMs detection AP.  

Take as an example, the AMs [M21] Brawn-

Blanquet (a.k.a. Minimum Sensitivity) and [M22] 

Simpson. These two AMs are identical, except 



for one difference in the denominator: Brawn-

Blanquet uses max(b, c); Simpson uses min(b, c). 

It is intuitive and confirmed by our experiments 

that penalizing against the more frequent consti-

tuent by choosing max(b, c) is more effective. 

This is further attested in AMs [M23] S Cost and 

[M25] Laplace, where we tried to replace the 

min(b, c) term with max(b, c). Table 6 shows the 

average precision on our datasets for all these 

AMs.   

 

AM VPCs LVCs Mixed 

[M21]Brawn-    

          Blanquet 

.478 .578 .486 

[M22] Simpson .249 .382 .260 

    [M24] Adjusted  

            S Cost 

.485 .577 .492 

[M23] S cost .249 .388 .260 

    [M26] Adjusted  

           Laplace 

.486 .577 .493 

[M25] Laplace .241 .388 .254 

Table 6. Replacing min() with max() in selected AMs. 

 

In the [M27] Fager AM, the penalization term 

max(b, c) is subtracted from the first term, which 

is no stranger but rank equivalent to [M7] PMI
2
. 

In our application, this AM is not good since the 

second term is far larger than the first term, 

which is less than 1. As such, Fager is largely 

equivalent to just –½ max(b, c). In order to make 

use of the first term, we need to replace the con-

stant ½ by a scaled down version of max(b, c). 

We have approximately derived 1/ aN as a 

lower bound estimate of max(b, c) using the in-

dependence assumption, producing [M28] Ad-

justed Fager. We can see from Table 7 that this 

adjustment improves Fager on both datasets. 

 

AM VPCs LVCs Mixed 

[M28] Adjusted       

           Fager 

.564 .543 .554 

[M27] Fager .552 .439 .525 

Table 7. Performance of Fager and its adjusted ver-

sion. 

 

The next experiment involves [M14] Third 

Sokal Sneath, which can be shown to be rank 

equivalent to –b –c. We further notice that fre-

quencies c of particles are normally much larger 

than frequencies b of verbs. Thus, this AM runs 

the risk of ranking VPC candidates based on only 

frequencies of particles. So, it is necessary that 

we scale b and c properly as in [M14'] b  –

(1 ) c  . Having scaled the constituents prop-

erly, we still see that [M14'] by itself is not a 

good measure as it uses only constituent fre-

quencies and does not take into consideration the 

co-occurrence frequency of the two constituents. 

This has led us to experiment with 

[MR14'']
PMI

(1 )b c    
. The denominator of 

[MR14''] is obtained by removing the minus sign 

from [MR14'] so that it can be used as a penali-

zation term. The choice of PMI in the numerator 

is due to the fact that the denominator of 

[MR14''] is in essence similar to 

NF( ) = ( )P x   + (1 ) ( )P y  , which has 

been successfully used to divide PMI in the nor-

malized PMI experiment. We heuristically tried 

to simplify [MR14''] to the following AM 

[M30]
log( )

(1 )

ad

b c    
. The setting of alpha in 

Table 8 below is taken from the best alpha set-

ting obtained the experiment on the normalized 

PMI (Table 5). It can be observed from Table 8 

that [MR14'''], being computationally simpler 

than normalized PMI, performs as well as nor-

malized PMI and better than Third Sokal-Sneath 

over the VPC data set. 

 

AM VPCs LVCs Mixed 

PMI / NF( )  .592 

( =.8) 

.554 

( =.48) 

.588 

( =.77) 

[M30]
log( )

(1 )

ad

b c    
  

.600 

( =.8) 

.484 

( =.48) 

.588 

( =.77) 

[M14] Third  

            Sokal Sneath  

.565 .453 .546 

Table 8. AP performance of suggested VPCs’  

penalization terms and AMs.  

 

With the same intention and method, we have 

found that while addition of marginal frequencies 

is a good penalization term for VPCs, the prod-

uct of marginal frequencies is more suitable for 

LVCs (rows 1 and 2, Table 9). As with the linear 

combination, the product bc should also be 

weighted accordingly as 
(1 )

b c
 

. The best alpha 

value is also taken from the normalized PMI ex-

periments (Table 5), which is nearly .5. Under 

this setting, this penalization term is exactly the 

denominator of the [M18] Odds Ratio. Table 9 

below show our experiment results in deriving 

the penalization term for LVCs.  

 



AM VPCs LVCs Mixed 

–b –c .565 .453 .546 

1/bc .502 .532 .502 

[M18] Odds ratio  .443 .567 .456 

Table 9. AP performance of suggested LVCs’  

penalization terms and AMs.  

6 Conclusions 

We have conducted an analysis of the 82 AMs 

assembled in Pecina and Schlesinger (2006) for 

the tasks of English VPC and LVC extraction 

over the Wall Street Journal Penn Treebank data.  

In our work, we have observed that AMs can be 

divided into two classes: ones that do not use 

context (Class I) and ones that do (Class II), and 

find that the latter is not suitable for our VPC and 

LVC detection tasks as the size of our corpus is 

too small to rely on the frequency of candidates’ 

contexts. This phenomenon also revealed the 

inappropriateness of hypothesis tests for our de-

tection task. We have also introduced the novel 

notion of rank equivalence to MWE detection, in 

which we show that complex AMs may be re-

placed by simpler AMs that yield the same aver-

age precision performance. 

We further observed that certain modifications 

to some AMs are necessary. First, in the context 

of ranking, we have proposed normalizing scores 

produced by MI and PMI in cases where the dis-

tributions of the two events are markedly differ-

ent, as is the case for light verbs and particles. 

While our claims are limited to the datasets ana-

lyzed, they show clear improvements: norma-

lized PMI produces better performance over our 

mixed MWE dataset, yielding an average preci-

sion of 58.8% compared to 51.5% when using 

standard PMI, a significant improvement as 

judged by paired T test.  Normalized MI also 

yields the best performance over our LVC data-

set with a significantly improved AP of 58.3%. 

We also show that marginal frequencies can 

be used to form effective penalization terms. In 

particular, we find that (1 )b c     is a good 

penalization term for VPCs, while 
(1 )

b c
 

is suit-

able for LVCs. Our introduced alpha tuning pa-

rameter should be set to properly scale the values 

b and c, and should be optimized per MWE type. 

In cases where a common factor is applied to 

different MWE types, max(b, c) is a better choice 

than min(b, c).  In future work, we plan to ex-

pand our investigations over larger, web-based 

datasets of English, to verify the performance 

gains of our modified AMs. 
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Appendix A. List of particles used in iden-

tifying verb particle constructions. 

about,  aback,  aboard,  above,  abroad,  across,  adrift,  

ahead,  along,  apart,  around,  aside,  astray,  away,  

back,  backward,  backwards,  behind, by, down,  

forth,  forward, forwards, in,  into,  off,  on,  out,  

over,   past,  round,  through, to, together, under, up,  

upon,  without. 

 


