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Abstract 

This paper describes a question answering system and its various models handling the definition, factoid and list questions 
defined in the TREC12 Main task. Specially, we model the factoid QA task as QA entities or Events. Each QA event 
comprises of elements describing different facets of the event like time, location, object, action etc. By analyzing the 
external knowledge to discover the QA event structure, we take the advantage of the inherent associations among QA 
elements to find the answers. Modules shared by all the subsystems, like fine-grained named entity recognition, anaphora 
resolution and canonicalization co-reference resolution are highlighted.   

 

1 Introduction 

Open domain Question Answering (QA) is a complex and attractive research area as a distinctive combination of the whole 
bunch of techniques like Information Retrieval (IR), Information Extraction (IE), and Natural Language Processing (NLP). 
The basic problem that QA poses is: given a question and a large text corpus, return an “answer” rather than relevant 
“documents”. QA has received tremendous interest during recent years in the research papers, commercial products, and 
various communities (SIGIR 2003, ACL 2003, ACMMM 2003).  In TREC-11 (Voorhees 2002), we explored the use of 
external resources like the Web and WordNet to extract terms that are highly correlated with the query, and use them to 
perform linear query expansion. While the technique has been found to be effective, we found that there is a need to 
perform structured analysis on the knowledge obtained from the Web/WordNet to further improve the performance.  

This year, we model the factoid QA task as QA entities or Events and consider questions as “enquiries about either entities 
or events”. Questions often show great interests in several aspects/elements of the events, such as Location, Time, Subject, 
Object, Quantity, Description and Action, etc. For most QA events, there are inherent associations among their elements. In 
this paper, aiming to incorporate the knowledge of event and to use event structure systematically for more effective QA, 
we perform Event Mining to discover the right answers. Event Mining is the process of extracting relationships among 
event elements by the data mining approach.  

Our system, named QUALIFIER (QUestion Answering by LexIcal FabrIc and External Resources), adopts the by now 
more or less standard QA system architecture. It includes modules to perform detailed question analysis, QA event 
construction (by study TREC pre-retrieved documents, Web documents, WordNet and Ontology), answer justification, 
fine-grained named entity recognition, anaphora resolution, canonicalization co-reference, and successive constraint 
relaxation.   

During question parsing, the detailed question classes, answer types, original content query terms and NLP roles of the 
query terms are analyzed. We derive detailed question class ontology that corresponds to fine-grained named entities. This 
enables us to extract exact answer from the candidate sentences more accurately. All the questions are treated the same 
during the stage of detailed question analysis, and then passed to three different subsystems to handle definition, factoid and 
list questions separately.   

The original query terms can be used as the basis to locate potential answer candidates in the corpus. However, one major 
problem of doing this is that the query terms do not have sufficient coverage to locate most answer candidates. This is 
known as the semantic gap between the query space and document space. In order to bridge this gap, we use the knowledge 
of both the Web and lexical resources to expand the original query. The new query therefore contains terms that are related 
to the local context in the Web and the lexical context through WordNet. Finally, we use the structured query to search for 
answer candidates through the MG system (Witten et al. 1999). Answer candidate sentences are selected from the top 
returned documents and are ranked based on association rules obtained from QA Event analysis.   Named entity recognition, 
answer justification, canonicalization resolution and answer selection are done to extract the final answer while successive 
constraint relaxation is used as an auto-feedback loop to boost the answer coverage rate. 

We will describe the three subsystems one by one in the later sections. For factoid and list questions, they are solved 
similarly and Figure 1 illustrates the flow of the main system. Definition questions are handled differently in answer 
extraction and figure 2 shows an overview of the definition question subsystem.  
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Figure 1: Overview of QUALIFIER 

2  Definition Questions  

Due to the characteristics of definitional questions, i.e. informative and stress on completeness, we treat answering 
definitional questions as an integrated process of information retrieval and summarization. We utilize techniques from 
information retrieval as anti-noise mechanism and make use of summarization techniques to avoid redundancy in the results. 
The pipeline system can be divided into 3 modules: pre-processing, sentence ranking, and sentence selection plus summary 
generation.  

I n p u t :
Re l e v a n t

S e n t e n c e s

De f i n i t i o n a l
P a t t e r n

Re p o s i t o r y

S e n t e n c e
Ra n k i n g

*  - - - - - - - -
- - - - - - - -

*  - - - - - - -
- - - - - - - - - -

… …
- - - - - - - - -

*  - - - - - - - -
- - - - - - - - - - -

*  - - - - - - -

De f  P a t t e r n s

S t a t i s t i c s
f o r  wo r d s  i n

t h e  s e n t e n c e s

Co n s t r u c t
q u e r i e s

Qu e r i e s
We b

We b
S n i p p e t s

Mo s t  c o - o c c u r r i n g
wo r d s  i n  We b

s n i p p e t s .

S e n t e n c e  S e l e c t i o n
( P r o g r e s s i v e  MMR) De f i n i t i o n

 

Figure 2: Illustration of Definition Subsystem 

In the preprocess module, the system input – relevant documents for the search target retrieved by the document retrieval 
system – is fed into a sentence splitting module and all documents are segmented into sentences. Due to the heterogeneity 



of the news articles, many of the input documents are actually not related to the search target. We applied a document filter 
to the retrieved documents – that is, only those documents containing all bigrams of the search target are labeled as 
“relevant”. We then applied anaphora resolution to sentences from all “relevant” documents to replace appropriate 
pronouns with the search target. Finally, those sentences containing any part of the search target and their contextual 
sentences (one sentence proceeding and following them respectively) are sifted as “positive set”. All other sentences in the 
input documents are “negative set”.  

As for sentence ranking, we utilized evidence from two sources, namely the input documents and the Web. Basically, we 
use sentence frequency (the number of sentences containing the word) as the main metric to measure the importance of 
each word. The sentences in “negative set” are used to provide “negative examples”. In other words, a word is considered 
important if it appears often in the sentences of “positive set” while occurs rarely in the “negative set”. This can be done in 
a TFIDF-like fashion: 
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In order to tradeoff the diversity of the news articles, we use the Web as a supplementary source. The Web evidence is 
obtained from the snippets got using the queries constructed from the sentences of the “positive set” containing any part of 
the search target. Specifically, the expansion terms are selected by: 
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The weight of the sentence for Web evidence can be expressed as: 
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These two weight values are linearly combined to represent the sentence weight for the search target. 
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After sentence ranking, we have a list of ordered sentences with the most relevant sentences to the search target being 
placed in the top of the list. We made use of summarization techniques to accomplish sentence selection because sentences 
from news articles are likely to contain duplicated content. We did not cluster the sentences in the summarization step 
because even after sentence filtering, we cannot guarantee all sentences in the “positive set” are desirable sentences 
describing the target. Thus, if clustering is applied here, “non-desirable” sentences in the rear of the list will also be 
included in the final summary. We employed a variation of the MMR (Maximal Margin Relevance) to select sentences 
from the list while avoiding redundancy between the summary sentences: 

a) All sentences are ordered in descending order by weights. 
b) Add the first sentence to the summary. 
c) Examine the following sentences.  

If Weight(stc)- β avg_sim(stc)<Weight(next_stc)   continue;  

        else  Add stc to summary;  

        where 
sum

stcsSim
stcsimavg Sums

#

),(
)(_

∑ ∈=          (5) 

        avg_sim(stc) is the average similarity of the sentence stc and the sentences already in the summary. The similarity is 
defined as the measure of their word overlapping as:   
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d) Go to Step c) till the length limit of the target summary is satisfied.  

In general, our method is more data-driven because we aim it to be domain independent. However, we still utilized some 
heuristics to enhance the process. For example, if a sentence containing “<Target>, a ……” or “<Target>, which is 
the ……”, it is likely to be a good definitional sentence for the target. Thus in the sentence ranking and content selection 
processes, we employed a set of heuristic rules. In the former process, we augment the weight values of the sentences 
matching some heuristics by a certain factor. In content selection process, also the last process of the pipeline system, we 
applied heuristics to selecting meaningful fragments of the summary sentences to construct the final answers for the search 
target. 



3 Factoid Questions 

Our system performs event-based question answering for factoid questions in a few steps: external knowledge acquisition, 
QA event construction, query formulation, element association mining and answer processing. First, it extracts several sets 
of words (known elements) from the original question and employs a rule-based question classifier to identify the answer 
target (unknown element type). During the knowledge acquisition stage, it integrates the knowledge of the pre-retrieved 
TREC documents, Web, WordNet, and our manually constructed Ontology to extract additional evidences for the query. 
Second, it performs event construction to discover different facets or elements of events and employs the knowledge of 
events to perform query formulation. Third, given the newly formulated query, it employs the MG tool to search for top 
ranked documents in the corpus. Fourth, for the top ranked documents, it identifies the relevant passages by exploiting the 
associations among event elements. After performing element association mining, it computes the Answer Event Score 
(AES) and uses it to rank the passages from the relevant documents in the corpus. Answer justification module reinforces 
the confidence of the returned correct answers and filters out some unreasonable ones.  

3.1  QA Event Mining 

In our previous work (Yang et al. 2003), we modeled the world and lexical knowledge from the Web and WordNet to 
support effective QA. Basically, we performed the structured analysis of the external knowledge to extract the QA event 
structure. First, we used the original query terms in the questions to retrieve the top Nw documents by using the Web search 
engine and then extracted the terms that are highly correlated to the original query terms. Second, we used WordNet to 
adjust the term weights as well as to introduce new lexical related terms. Third, we computed the lexical, co-occurrence, 
and distance correlations between terms and used these as the basis to induce event elements by unsupervised semantic 
grouping. For example, given the question, “What Spanish explorer discovered the Mississippi River?”, we could get the 
event structure as shown in  Figure 3. Finally, we use this event structure to formulate boolean query to retrieve relevant 
documents from the QA corpus, and employed a featured-based approach to perform answer selection and extraction.  

 

Figure 3: Example for QA Event Structure 

After extracting the event structure, we employ Event Mining to study the relationships among the event elements. In this 
approach, we extract important association rules among the elements by using data mining techniques. Given a QA event Ei, 
we define X, Y as two sets of event elements. Event mining studies the rules of the form X → Y, where “→” means 
“implies”, and Y is the possible answer candidate set. In order to avoid too many misleading rules, we restrict the 
relationships before generating the rules:  

if X ⊆ Y , ignore X → Y.  
if cardinality(Y) > 1, ignore X → Y. 
if Y∩ {elementoriginal }≠∅, ignore X → Y. 

 

Also, we define Event Mining as follows: 

Event mining studies the association rules of the form X → Y, where X, Y are QA event element  
sets, X ∩ Y =∅, and Y∩ {elementoriginal }=∅. 

There are 4 major steps in the event-based QA approach and we are going to elaborate the details in the following 
subsections.  

a) Extract the QA event from the Web and WordNet for a question.  
b) Mine the event in a) to generate the useful association rules among the event elements.  
c) Rank the passages in the relevant documents from the QA corpus by matching them with the association rules.  
d) Extract the answer phrase from the top passages.  



3.2 QA Event Generation 

We explore the use of semantic grouping to structurally utilize the external knowledge extracted from the Web, WordNet, 
Ontology and pre-retrieved documents from TREC.  The terms extracted from the relevant web snippets, WordNet, pre-
retrieved TREC documents are put into a vector called Kq, the basis for this semantic grouping since they are most likely to 
contain the facts about the QA entity or QA event. Given any two distinct terms ti, tj, among the Kq , we compute: 

1) Lexical correlation:  

1, if ti and ti ∈ same synset; 
Rl(ti, ti)  = {  

0, otherwise. 
        (7) 

2) Co-occurrence correlation: 
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where ds() is the number of document instances contains both/either two terms. κj gives the number of other terms in Kq that 
co-occur with tj. Thus the max{} expression indicates that only those terms whose normalized co-occurrence probability is 
above 1/κj (or average) will have a positive co-occurrence correlation value. 

3) Distance correlation: 
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where Pos(ti) (or Pos(tj)) denotes the position of term ti (or tj) in a snippet or sentence. |Pos(ti) - Pos(tj)| gives the term 
distance. 

With the term association measures Rl, Rco, and Rd, we employ an unsupervised clustering algorithm (yang et al. 2003).to 
derive the semantic groups of the terms in Kq, which are expected to match with the event structure. Figure 3 shows the 
obtained QA event structure after performing the knowledge modeling.  

3.3 Association Rule Mining and Answer Extraction 

After constructing the events from the textual data, event-mining techniques are applied to discover association rules within 
the QA events. We perform the rule mining in two steps: association rule generation and selection. Association rules are in 
the form of X → Y as we mentioned earlier. Basically, we need to find all the combinations of the event elements to form 
the sets X and Y. To do this, we need to assign Y to contain only one of the QA event elements. For the rest of the elements, 
we use them to form different X in various sizes and combinations. We then store all of the X → Y rules in an association 
rule bank Bi for QA event Ei. The association rule generation algorithm is given as follows. 

 

 

 

 

 

 

 

 

 

 

Usually for a QA event with n elements, the number of association rules  ℵrules  is: 

Algorithm Association_Rule_Mining (Ei) 
Input: QA event Ei and event element set Si 
Output: Association rule bank Bi of QA event Ei 
1. for each element ej in Si 
2.   Y = { ej }  
3.   Gj= Si - Y 
4.   for (k=1; k=cardinality(Gj); k++)  
5.     select k elements from Gj to form a  
           collection of size-k element sets R(k); 
6.     for each size-k element set rm

(k) in R(k) 
7.         X = rm

(k)  
8.         add X→Y into rule bank Bi 
9. Return Bi = {X→Y|X ∈∪kR

(k)}; 
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The number of these rules is potentially large and hence it is necessary to prune away some rules that do not have 
“interesting” information. Note that not all the rules are reliable. This is because: 

• Some association rules are not complete. For example, above algorithm will discover both rule X → Y and 
rule Z → Y, where X ⊆ Z. Then X → Y is not as complete as Z → Y. Thus we have to decide which one should 
be preserved to extract more accurate answers. 

• The rules appear fewer times may not be so significant for a certain QA event. The more often a rule appears 
in the document collection, the more important it might be. 

In order to identify the interesting association rules among the event elements, we need to measure the “usefulness” of the 
rules. The rules containing more information and involving more event elements are considered to be more important. We 
consider the typical Support measure in data mining (KDD) literature (Dörre et al. 1999) and the reliability of the event 
elements in X. Therefore, the first measure Support (X → Y) is given as: 
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where α + β =1, ( )Xoriginalℵ  is the number of elements containing the original question terms in X, ( )Xandedexpℵ  is the 

number of elements containing the expanded query terms in X, )( YXdw ∧  is the number of passages containing both X and 

Y, and windowℵ  is the total number of passages in the documents. 

Another measure is Confidence, which helps to filter out both false information introduced by unreliable data source and 
the conflicting rules. Confidence (X → Y) as defined in data mining: 
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where )( YXdw ∧  is same as in Eqn 2, )(Xdw  is the number of passages containing X. 

We select the best association rules for each event element based on these two measures, which indicates the “usefulness” 
of the event element relationships.  These association rules are combined with event element matching to rank the passages. 
We compute the Answer Event Score (AES) for each passage from the relevant documents in the QA corpus. It is defined 
as: 
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where eleM is the number of matched event elements; )( iruleSupport ( )( iruleConfidence ) is the support (confidence) for the 

matched rule i; Mi is set to 1 when rule i is present in this passage, otherwise it is set to 0; Nr is the total number of 
association rules, and Nele is the total number of event elements for the question. 

The good passages we have now describe the same event as the question does. Hence, once we have these passages, we can 
either use the event element in Y as the answer or extract the answer from the passages.  In order to extract the exact 
answers from the passages, we first apply named entity tagging on the top ranked passages and the event association rules.  
All the named entities whose type match with answer target are selected as answer candidates and ranked based on AES 
score of the passage where they extracted from, number and significance of the association rules that they match.  The 
ranking formula for answers candidate j is defined as:  
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Where  Yj is the number of  top association rules whose Y is matched with j; )( iruleSupport  is the support for the rule i;  

AES(Pj) is the AES score of the passage where answer candidate j extracted from.  

3.4 Answer Justification 

Answer Justification attempts to establish lexico-semantic paths between the questions and candidate long answers, and 
derive logical proofs along those paths to justify whether the answer is correct. In FALCON (Harabagiu et al. 2001) and 



PowerAnswer (Moldovan et al. 2002) built by LCC-SMU, both the questions and answers are represented in first order 
logic and the representation is derived through the use of deterministic and propagation rules to detect relations among 
words in the parse-tree. It uses resolution refutation to prove whether the answer is correct. If no refutation is found, the 
answer is judged as incorrect. The prover uses two types of axioms. The first type is used to guide the proof and includes 
axioms derived from facts in the textual answers. The other type of axioms is used to infer new clauses and includes world 
knowledge axioms (Moldovan & Rus 2002). 

We did not perform gloss axiom generation. Instead, we generate axioms based on our manually constructed ontology. For 
example,  

q1425: What is the population of Maryland?  
Sentence: “Maryland 's population is 50,000 and growing rapidly.” 
Ontology Axiom (OA): Maryland (c1) & population (c1, c2) -> 5000000(c2) 

In this way, we could identify the wrong answer “50000”, which is the surface text shown.  Only when we know certain 
constraint to indicate the actual range of Maryland’s population, we know that the surface answer is wrong.  

3.5 Fine-grained Named Entity Recognition  

With the set of the top passages obtained after document retrieval and sentence ranking, QUALIFIER performs fine-grained 
named entity tagging before extracting the string that matches the question class (or answer target or unknown element) as 
the answer.  The system adopts a rule-based algorithm to detect the named entities by utilizing the lexical and semantic 
features such as capitalization, punctuation, context, part-of-speech tagging and phrase chunking.   

The input text is going through the preprocessing stage. We split sentences and remove all characters, which potentially 
cannot be seen or may risk the following process (mainly, those are non-ascii characters). In addition, we extract some 
simple types on this stage, like NUM_PERCENT or COD_URL. In order to avoid the problems with calculations, the 
program may transfer the text presentation of numbers to numerical. For example, it will convert “one hundred eleven” to 
111. The output is represented in the XML format, which contains some marked named entities. We then use the shallow 
parser by the company Infogistics1. The program performs part-of-speech tagging and extracts noun groups and verb groups.   

The named entity extraction module is the core for the whole system. The heuristic rules allow creating user-defined types. 
Also, they support the regular expression style for features of words. Example of the possible rule: 

person_title_np = listi_personWord src_, hum_Cap2+ src_, $set(HUM_PERSON/2) 

This rule sets the type for each noun phrase, which contains some known person title (academic, academician etc.). The 
assigned type is person_title_np for this particular phrase. $set(HUM_PERSON/2) means, that the second position 
(positions are started from 0) should be settled to HUM_PERSON.  

Interpretation of those rules starts from the lists initialization. Each document is parsed sentence by sentence. During the 
parsing stage, each word is represented in the form of token with several features. The output of the interpreter may involve 
several competing types for some named entity. We also use the following heuristics to choose the rule in such situation:  

1) Longer length. We preferred to extracted longer named entities 
2) Ontology. If the rule is found in some resource (e.g., confirmed list of persons), then we assigned this type of rule; 
3) Handcrafted priorities, which disambiguates the named entities correctly in most of the cases. 

Our NE recognizer supports 51 types of NEs, which support 2 levels of granularity. Top levels of classification are human 
(HUM), location (LOC), number (NUM), object (OBJ), time (TME) and code (COD). The module extracts named entities 
based on the set of heuristic rules and lists for the semantic categories. We added some new types of fine-grained NE into 
our old system.  QUALIFIER detects fine-grained named entities using a two-tiered hierarchy as shown in Table 1. 

Table 1: Partial List of Fine-Grained Named Entities 

HUMAN: Basic, Organization, Person 
TIME:  Basic, Day, Month, Year 
LOCATION: Basic, Body, City, Continent, Country, County, Island, Lake, Mountain, Ocean, Planet, Province, River,   

Town 
NUMBER:  Basic, Age, Area, Count, Degree, Distance, Frequency, Money, Percent, Period, Range, Size, Speed 
CODE             URL, Telephone, Post code, email address,  Product index 
OBJECT:
     

Basic, Animal, Breed, Color, Currency, Entertainment, Game, Language, Music, Plant, Profession, 
Religion, War, Works 

                                                           
1 The demo version of program is available at http://www.infogistics.com/posdemo.htm 



Last year TREC NUM questions, we got the NE tagging for NUMBER only 17 correct out of 29 = 58.6%, which is the 
lowest rate among all the question types. In order to improve QUALIFIER’s ability to recognize NUMBER, we added a 
range converter module into NE recognizer. We unify numbers close to each other into ranges other than the absolute 
surface numeric value appearing in the corpus. E.g. “500000” should be the same range as “5.1 million”. 

3.6 Anaphora Resolution 

In order to maximize recall of the system, which is crucial for list questions, we perform anaphora resolution for the 
retrieved document by MG system before we proceed to passage selection.  

Firstly, we make use of Charniak’s parser (Charniak. 2000) to generate the parse tree for each sentence. The Parse Tree 
Walker extracts two lists. One list contains all the NPs in the text and the other contains all the anaphors. Their agreement 
features, head-argument/head-adjunct information and all the salience factors except sentence recency are annotated. All 
the pleonastic pronouns are filtered out. Their antecedent is assigned as null.  

For each lexical anaphor, it forms a pair with each item in a subset of the NPs (currently the implementation only considers 
NPs contained within three sentences proceeding the anaphor and those in the sentence where the anaphor resides). These 
antecedent candidate-anaphor pairs are examined by the Anaphora Binding Algorithm. For third person pronouns, 
similarly, the syntactic filter is applied on the candidate pairs consisting one pronoun and one NP from the set satisfying the 
same positional criteria. In both cases a morphological filter is applied, checking the agreement features compatibility.  

For the candidates identified earlier, their salience weights are computed and they are ranked by an arbitrator accordingly. 
The candidate with the highest weight is proposed as the actual antecedent. In case of tie, the one closer to the anaphor is 
favored.  Figure 4 shows the structure of the anaphora resolution process. 

 

Figure 4: Flow of Anaphora Resolution 

4  List Questions 

List question answering is quite similar to what we did for factoid questions. However, we allow the answer extraction 
module to return multiple answers and remove duplicated answer candidates with the help of abbreviation co-reference. 
The exact answers are exacted based on patterns and its ranking. Each of these answers is passed to answer justification 
module for confirmation.  

List questions are processed similarly to factoid questions. However, we allow the answer extraction module to return 
multiple answers and remove duplicated answer candidates with the help of abbreviation co-reference. In general, our 
method is more data-driven because we want it to be domain independent. However, we still utilized some heuristics to 
enhance the process.  

From a list question, we obtain the same or less amount information comparing to factoid questions since the constraint 
from the list question itself will be more relax.  Under this situation, possible answers for a list question could be in any 
amount. It’s hard for us to decide when is the suitable time to stop searching. The only way to abase this uncertainty is to 



perform exhaustive search or nearly exhaustive search.  These patterns could mean surface text patterns, commonly used 
cue words.  There are some examples: 

• <same_type_NE>, <same_type_NE> and <same_type_NE> + verb … 
• …  include: <same_type_NE>, <same_type_NE>, <same_type_NE> … 
• “list of …” 
• “top” + number + adj-superlative 
• “alphabetical list” of … 
• “following list…” 
 
5 Results 

We submitted 3 runs for TREC 2003 QA main task. They are mmlnus03r1 (definition run 1 + factoid run 1 + list run 1), 
mmlnus03r2 (definition run 2 + factoid run 1 + list run 1) and mmlnus03r3 (definition run 3 + factoid run 2 + list run 1). 
The first run mmlnus03r1 emphasized more on recall (answer coverage) while the third run mmlnus03r3 more on precision 
(answer accuracy). The second run was a hybrid to test the balance point of recall and precision.   

The 3 definition runs that we submitted to TREC balanced precision and recall. We empirically set the length of the 
summary for people and objects. Our first run maximizes recall by using full sentences. We have the same length limit for 
summary in run 2, while text fragments are extracted by heuristics instead of using the full sentences. In the third run (to 
maximize precision), fewer sentences were extracted for summary and text fragments extraction was also applied. 

Table 2: Performance over 50 Definition Questions in TREC-12 

nusmmlr1 0.471 
nusmmlr2 0.479 Average F score 

nusmmlr3 0.460 
The 2 factoid runs focus on precision and recall each. Our first run maximizes recall (answer coverage) by using anaphora 
resolution, abbreviation co-reference, and successive constraint relaxation to find as many answers as possible without 
answer justification. In the second run, however, we focused on precision (answer correctness), answer justification plays a 
rather important role and successive constraint relaxation keeps the recall in a satisfactory level.   

Table 3: Performance over 413 Factoid Questions in TREC-12 

# correct 232 Accuracy  0.562 
# unsupported 24 Precision of recognizing NIL 0.160 
# inexact 13 Recall of recognizing NIL 0.400 

 
 
nusmmlr1 
nusmmlr2 # wrong 144   

# correct 225 Accuracy  0.545 
# unsupported 20 Precision of recognizing NIL 0.158 
# inexact 12 Recall of recognizing NIL 0.767 

 
 
nusmmlr3 

# wrong 156   

Only one run of list questions is submitted.  Its average precision over 37 questions is:  

Table 4: Performance over 37 List Questions in TREC-12 

Average precision 0.568 
Average recall 0.264 

nusmmlr1 
nusmmlr2 
nusmmlr3 Average F1 0.317 

 Final full mark for the three submitted runs shows that nulmmlr2 gives the best performance, which uses strict constraints 
and focuses on answer accuracy. 

Table 5: Overall Performance of 3 Submitted Runs in TREC-12 

nusmmlr1 0.471 
nusmmlr2 0.479 
nusmmlr3 0.460 

6 Conclusion  

We develop three subsystems for this year’s TREC. Definition questions answering combines techniques from information 
retrieval as anti-noise mechanism and make use of summarization techniques to avoid redundancy in the results. Factoid 
question and list questions take the advantage of Event-based QA, which employs the intuition that there exists implicit 
knowledge that connects an answer to a question, to extract the correct answer. Association rules are mined to get the 



relationship among the QA event elements. The whole system consists many modules, including detailed question analysis, 
QA event construction, event mining, document retrieval, passage retrieval, answer extraction, answer justification, fine-
grained named entity recognition, anaphora resolution, canonicalization co-reference, and successive constraint relaxation.  
We also manually constructed Ontology to lever the performance of our NE and answer justification modules. 

We are currently refining our approach in several directions. First, we are trying to give a formal proof of our QA event 
hypothesis. Second, we are working towards an online question answering system. Our longer-term research plan includes 
Interactive QA, and the handling of more difficult analysis and opinion question types.  
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