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1 Introduction. 

In the past two years in our participation in 
TREC, our efforts (Yang et al., 2002, 2003) have 
been focused on incorporating external knowledge 
for boosting document and passage retrieval 
performance in event-based open domain question 
answering (QA). Despite our previous successes, 
we have identified three weaknesses of our system 
with respect to this year’s task guidelines. First, 
our system works at the surface level to extract 
answers, by picking the first occurrence of a string 
that matches the question target type from the 
highest-ranked passage. As such, our answer 
extraction relies heavily on the results of passage 
retrieval and named entity tagging. However, a 
passage that contains the correct answer may 
contain other strings of the same target type (Light 
et al., 2001) which can lead to an incorrect string 
being extracted. A technique to select the answer 
string that has the correct relationships with respect 
to the other words in the question is needed. 
Second, our definitional QA system utilizes 
manually-constructed definition patterns. While 
these patterns are precise in selecting definition 
sentences, they are strict in matching (slot-by-slot 
matching using regular expressions), failing to 
match correct sentences with minor variations. 
Third, this year’s guidelines state that factoid and 
list questions are not independent; instead, they are 
all related to given topics. Under such contextual 
QA scenario, we need to revise our framework to 
exploit existing topic-relevant knowledge in 
answering such questions. 

Accordingly, we focus on the following three 
features in this year’s TREC:  
(1) To give appropriate evidence to answer 

extraction, we use grammatical dependency 
relations among question terms to reinforce 
answer selection. In contrast to previous work 
in matching dependency relations, we propose 
to measure the similarity between relations to 
rank answer strings. 

                                                                                                           
* These two authors are ordered in the alphabetical 

order of their last names. 

(2) To obtain higher recall in definition sentence 
retrieval, we adopt soft matching patterns (Cui et 
al., 2004a). Different from conventional lexico-
syntactic patterns matched by regular expressions 
(i.e., hard-matching patterns), soft patterns 
represent each slot as a vector of words and 
syntactic classes with their distributions, rather 
than generalizing specific instances. This allows us 
to probabilistically match test instances against the 
training data. 
(3) To answer topically-related factoid and list 
questions, we first combine sentences from our 
definition sentence retrieval module with 
downloaded definitions from external resources. 
This sentence base is used to answer factoid and 
list questions. Although using such a definition 
sentence base restricts recall in passage retrieval, it 
improves the efficiency and effectiveness in 
answering common questions about people and 
organizations.  

This paper is organized as follows: In next 
section, we present the overall architecture of our 
system. In Sections 3, 4 and 5, we give the details 
of the above three features. In Section 6, we 
conclude the paper with future directions. 

2 System Overview 

In Figure 1, we illustrate the architecture of our 
QA system. We leverage our prior work in 
question analysis, document retrieval, query 
expansion and passage retrieval. In our 
comprehensive pre-processing step, we store a 
named entity profile and a full parse of each article 
in the TREC corpus. The offline processing greatly 
accelerates answer extraction.  

Our framework works as follows:  
• Target analysis and document retrieval: 
First, the user submits a topic, e.g. “Aaron 
Copland”, to the system. Lucene1 is used to index 
the documents. In dealing with topics with 
qualifiers, for instance, “skier Alberto Tomba”, we 
resort to the Web to separate the qualifiers from 
the main topic words, e.g. “Alberto Tomba” in the  

 
1 http://jakarta.apache.org/lucene/docs/index.html.  

Lucene performs Boolean search. 

http://jakarta.apache.org/lucene/docs/index.html


 
 

Figure 1. The illustration of the TREC QA system architecture  
 
above example. Specifically, we calculate the 
pointwise mutual information (PMI)2 between each 
pair of topic terms based on the hits returned by 
Google when using the topic terms as query. 
Terms with PMI values beyond a pre-defined 
threshold are grouped together. To construct a 
suitable Lucene query, terms in the same group are 
first connected by “AND”, and then different 
groups are connected by “OR”. To combat errors 
or infrequent expressions in the given topics, we 
replace our original query by any query suggestion 
from Google 3 . For instance, our system 
automatically changes “Harlem Globe Trotters” to 
“Harlem GlobeTrotters” according to Google’s 
result. After document retrieval on the NE pre-
tagged corpus, we get a set of NE tagged relevant 
documents related to the given topic. 
• Definition generation: The relevant 
document set for the given topic is the basis for 
generating the definition for that topic. The 
definition generation module first extracts 
definition sentences from the document set. It 
identifies definition sentences using centroid based 
weighting and definition pattern matching. It also 
leverages existing definitions from external 
resources. We discuss definition sentence 
extraction in Section 4. After redundancy removal, 
the module produces the definition for the topic.  
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3 defined as when Google returns “Did you mean: 
XXX” 

• Passage retrieval and query expansion 
for factoid and list questions: To answer 
topically related factoid and list questions, we 
perform passage retrieval on two sources: the 
topic’s relevant document set and the definition 
sentence set produced by the definition generation 
module. Our first and second runs for factoid 
questions use the whole relevant document set for 
passage retrieval while we experiment on using 
only definition sentences to find answers for 
factoid questions in the third run.  

We use a simple linear expansion strategy for 
query expansion. It picks expansion terms from 
Google snippets according to the terms’ co-
occurrences with the question terms in the 
snippets. The passage retrieval module has 
expanded queries as input and performs density-
based lexical matching to rank passages, which 
consist of a window of 3 sentences.  
• Answer extraction: We perform rule-
based question analysis to assign question target 
type to each question. Before performing question 
typing, we substitute the topics for all pronouns in 
the questions. For example, given the question 
“what is their gang color” for the topic “Crips”, it 
is transformed to “what is Crips’ gang color”. This 
step facilitates dependency relation parsing in later 
steps. Highly ranked passages are fed into the 
answer extraction module. Both the question and 
candidate answer passages are parsed by MiniPar 
(Lin, 1998), a robust parser for grammatical 
dependency relations. The module ranks all 
possible strings of the appropriate type by how 
closely they model relations to other question 
terms as seen in training. We will discuss the 



ranking of answer strings using approximate 
dependency relation matching in the next section.  

3 Approximate Dependency Relation 
Matching for Answer Extraction 

By analyzing a subset of TREC-9 questions, 
Light et al. (2001) estimated the upper bound of 
70% on the performance of a question answering 
system under the condition of perfect passage 
retrieval, named entity detection and question 
typing. Given the fact that there is always error in 
syntactic parsing and passage retrieval, the actual 
performance of answer extraction is even worse. 
The ceiling is caused when many named entities of 
the same type appear close to each other, confusing 
answer selection. Without any knowledge of 
syntactic relations between the entities, a system 
might select the named entity nearest to the 
question terms. In addition, some questions, such 
as “what does AARP stand for,” have no known 
named entity types to represent the question target. 
We believe the key to overcome such linguistic 
ambiguity is to use deep syntactic analysis on both 
the question and answer text. To this end, we 
extract grammatical dependency relations between 
entities and use approximate matching of such 
relations in answer evaluation. 

3.1 Extracting Dependency Relation Triples 

Combining dependency relations in question 
answering is not a new idea. PIQASso (Attardi et 
al., 2001) tested usage of syntactic relations 
generated by Minipar, a free robust dependency 
parser, in their QA system. However, their 
system’s low recall on the TREC data set is due to 
their use of keyword-based document retrieval 
(Katz and Lin, 2003). In contrast, Katz and Lin 
(2003) implemented a system to index and match 
all syntactic relations on the whole corpus. The 
weakness of existing systems that try to 
incorporate dependency parsing is in that they are 
using exact match of relations to locate answers. 
Although such exact indexing and match of 
relations result in high precision, they fare poorly 
in recall due to variations in both lexical tokens 
and syntactic trees.  

Following the approaches given by existing 
work, we extract all relation path triples generated 
by the Minipar dependency parser from a given 
question and a candidate answer sentence. A 
relation triple is the smallest representation of a 
dependency path embedded in the parsing tree of a 
sentence. Each triple consists of two slots and one 
path of relations between them: 

<Slot1,  Path,  Slot2> 
where slots are either open-class words, like nouns 
and verbs, or named entities. A path represents the 

relation path, consisting of a series of relations 
without taking their slots, extracted from the 
parsing tree. For example, given a question “what 
American revolutionary general turned over West 
Point to the British?” and answer sentence “…… 
Benedict Arnold’s plot to surrender West Point to 
the British”, we get the following triples 4 : 
 
q1) General                sub       obj                            West Point 
q2) West Point           mod      pcomp-n  British 
 
s1) Benedict Arnold   poss     s sobj West Point 
s2) West Point    mod      pcomp-n  British  

 
It is difficult to find the identical relation 

structures in both questions and answers. This is 
seen in the case above, which a correct answer is 
given but in which the relation structures differ.  
Although the triple (s2) matches the triple (q2) 
from the question, the string “Benedict Arnold” 
would not be selected as answer according to 
existing techniques because there is no match for 
the triple (q1). Approximate matching is needed to 
evaluate candidate answers.  Clearly, we need a 
similarity measurement to represent how likely the 
two paths, namely “sub obj” and “poss s sobj”, 
refer to the same relation chain.  

3.2 Learning Relation Similarity 

Common dependency relations are used 
interchangeably. Due to the variation of natural 
language text, the same relation may be phrased 
differently for questions and answer sentences. For 
instance, the appositive relation that appears 
frequently in news text could correspond to other 
relations in a question. To obtain similarity 
measures among paths, we adopt a statistical 
method to learn the relatedness of relations from 
training data.  

We accumulate around 1,000 factoid 
question-answer pairs from the past two years’ 
TREC QA task to build our statistical model. We 
use Minipar to parse all the questions and their 
correspondent answer sentences. For each 
question-answer pair, relation paths from the 
question triples are aligned with those from the 
answer sentence if their slot fillers are the same 
after stemming. In order to get relations between 
answers and other question terms, we substitute a 
general tag for those question targets in questions 
and those answer strings in answer sentences. This 
results in 2,557 relation path pairs for model 
construction. The relatedness of two relations is 

                                                      
4 We list only part of the extracted triples for the sake 

of the space. There is a path between any pair of two 
open class words or named entities. We also restrict the 
length of the path to 7 relations between the two slots. 



measured by their co-occurrences in both question 
relation paths and answer relation paths 
respectively. We employ a variation of mutual 
information to represent relation co-occurrences. 
Different from normal mutual information, we 
account for path length in our calculation. 
Specifically, we discount the co-occurrence of two 
relations when appearing in long paths. The mutual 
information is presented as: 
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where Rel0 and Rel1 are two relations extracted 
from question paths and answer paths respectively. 
fQ(Rel) and fA(Rel) represents the number of 
occurrences of Rel in question paths and answer 
paths. )Re,(Re 10 llδ  is 1 when the relations Rel0 
and Rel1 occurring in a question path and its 
corresponding answer path respectively, and 
otherwise 0. α  is the inverse proportion of the 
lengths of the question path and the answer path.  

We calculate pairwise similarity for all 
dependency relations based on this equation. These 
relation similarities form the basis for calculating 
relation path similarity in evaluation answer 
strings. Figure 2 shows an excerpt of the similarity 
measures between different relations. 
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Here P refers to all paths in the question or a 
candidate sentence with one slot being the question 
target or a candidate answer.  

Recall that a relation path consists of several 
relations along the path in the parsing tree. To 
measure the similarity of two relation paths, we 
combine the similarities between their relations. In 
our submissions, we experimented with two 
different methods in aligning relations when 
calculating path similarities.  

First, we treat relations along a path as a 
sequence of tokens and consider all possible 
alignments of relations between two paths without 
really aligning any relations. We term this total 
path matching which is similar to IBM’s Model 1 
statistical translation model (Brown et al. 1993).  
In our case, we substitute simple mutual 
information to represent their “translation 
probability”. The path similarity is calculated 
by
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In the second configuration, which is called 

relation triple matching, we count only similarities 
of individual relations that have the same slot 
fillers. In other words, only the relations between 
adjacent nodes that contain the question terms in 
the parsing tree are considered in the path 
similarity calculation. In this case, the alignments 
of relations are judged by their two end slot fillers. 
We combine all similarities of matched triples to 
rank candidate answers. 

 
Relation-1 Relation-2 Similarity
whn  pcomp-n  0.43 
whn  i   0.42 
i  pcomp-n  0.39 
i  s   0.37 
pred  mod  0.37 
appo  vrel   0.35 
whn  nn   0.34 
s  num   0.33 
 
igure 2. Excerpt of similarity measures between 

elations 

.3 Evaluating Answer Strings 

To ensure high recall, we feed the top 50 ranked 
entences from the passage retrieval module into 
he answer evaluation module. We consider two 
ssues to select the correct answer: the correct 
amed entity type as determined by question 
yping, and the similarity of paths between 
andidate answers and question terms in the 
uestion and the candidate answer sentence. For 
uestions with an unknown target type, we 
xamine all noun and/or verb phrases in the given 
entences. We first align the relation paths 
nchored by matched question terms from the 
uestion and the answer sentence. We then 
ombine the similarities of all relation paths. We 
ank the candidate answers by: 
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where M represents the set which contains all 
matched triples. 

After ranking candidate answers by Equation 2, 
we select the highest ranked answer string, which 
has the appropriate target type and also falls into 
the verification list, as the final answer.  

3.4 Evaluation Results and Discussions 

We submitted three runs for factoid questions, 
all of which employ approximate dependency 
relation matching in answer extraction. The highest 
average accuracy of 0.625 is achieved by the 
configuration that uses total path matching. The 
performance obtained by relation triple matching 
(average accuracy of 0.600) is close to it. We 
conjecture that using triple matching to align  



Analysis of Question Distributions
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Figure 3. Illustration of distribution of questions 
 

relations deliberately ignores the long dependency 
relationship between entities. However, it does not 
significantly degrade performance because 
dependency parsers may not resolve long distance 
dependency relations well.  

Further examination reveals that measuring 
dependency relation path similarity in answer 
extraction outperforms our previous system, in 
which the first occurrence of a named entity with 
the correct type is returned for questions with a 
known answer type. 

For all non-NE questions (in which the system is 
unsure of the question target type), the module 
picks the most probable noun phrase which is 
nearest to all question terms in the top ranked 
passage. These non-NE questions account for 69 
out of the total 230 factoid questions according to 
our question typing module. We use our previous 
system as the baseline and compare it with the new 
answer extraction module in our first submitted 
two runs. We list the results in Table 1. The table 
shows that leveraging more syntactic relations 
boosts the performance of selecting answer strings, 
especially those non-NE answers.  

 
Table 1. Performance comparison of two 
submitted runs 

 Baseline  NUSCHUA1 NUSCHUA2 
Overall 
average 
accuracy 

0.51 0.62 0.60 

For 
questions 
with NE 
typed 
targets 

0.68 0.78 0.75 

For 
questions 
without 
NE typed 
targets 

0.29 0.42 0.41 

We have also analyzed the distribution of this 
year’s factoid questions. We illustrate the 
distribution of questions according to the number 
of runs that give the correct answers in Figure 3. 
We include the number of questions that are 
answered correctly by NUSCHUA1 in the figure 
as well. The X axis in Figure 3 stands for the 
number of runs with correct answers for 
corresponding number of questions (as showed by 
axis Y) in all submitted runs to TREC. The leftist 
end of the X axis represents that no runs gave 
correct answers to these questions. As illustrated in 
Figure 3, our system does not perform well in 
answering those difficult questions. As illustrated 
in the figure, we miss all questions that are 
correctly answered by one and two runs. It shows 
that although we have improved our previous 
system by incorporating more complicated relation  
matching techniques, the system still has much 
room for improvement. One serious problem is the 
lexical gap, i.e. the difference in vocabulary used 
to express the questions and those used in the 
passages. Our relation matching is conducted only 
when some question words are matched in the 
candidate passages. In the future work, we may 
incorporate approximate matching of question 
terms in the relation matching.  

4 Definition Generation for Topics 

To facilitate answering topic-related factoid and 
list questions as well as provide sentences for 
answering “Other” questions, we deem it important 
to identify precise and complete definition 
sentences for the given topics. In last year’s TREC 
definitional QA task, top ranked groups utilized a 
relatively uniform architecture for extracting 
definition sentences: (1) finding additional 



information for the topics from external web sites 
or thesauri; and (2) employing manually 
constructed definition patterns to identify 
sentences. Enlightened by our previous 
experimental results (Cui et al., 2004b), we tried to 
improve our previous system by using (1) existing 
definitions from specific web sites, rather than 
generic web search; and (2) machine learned soft 
matching definition patterns, instead of manually 
constructed hard-matching patterns represented in 
regular expressions. We combine the use of these 
two techniques to identify precise definition 
sentences. 

4.1 Statistical Ranking of Definition 
Sentences with External Knowledge 

In order to ensure recall, for each topic, we 
constructed two data sets as the basis for selecting 
definition sentences: one based on TREC corpus 
and the other from external knowledge. The TREC 
set is constructed by relevant documents 
determined by the document retrieval module 
using the topic as the query. We retrieve up to 800 
documents for each topic. These documents are 
split into sentences. To construct the external 
knowledge set, we accumulate existing definitions 
for the topics from six specific web sites and 
glossaries. The external resources and their 
coverage of topics are listed in Table 2. The 
definitions are downloaded through pre-written 
wrappers for these sources. As Biography.com and 
S9 are dedicated for people, we do not search for 
definitions for organizations and other objects in 
these two sites. 
 
Table 2. List of external resources for definitions 
and their coverage of topics. 

External Resource Names 
Coverage of 

Topics (out of 65 
topics) 

Biography.com (http://www.biography.com/) 
 19 

S9 (http://s9.com/biography/index.html) 
 15 

Wikipedia 
(http://en.wikipedia.org/wiki/Main_Page) 

 
63 

Bartleby.com (http://www.bartleby.com/) 
 37 

Google Glossary (search by “define: <term>” 
in Google) 

 
25 

WordNet Glossary 
 13 

 
We first perform statistical weighting of 

sentences on both of these two data sets to find 
those relevant sentences to the given topics.  When 
ranking sentences with corpus word statistics, we 
employ the centroid-based ranking method, which 
has been used in other definitional QA systems 
(e.g., Xu et al., 2003). We select a set of centroid 

words (excluding stop words) which co-occur 
frequently with the search target in the input 
sentences. To select centroid words, we use mutual 
information to measure the centroid weight of a 
word w as follows: 

)(
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                (5) 
where Co(w, sch_term) denotes the number of 
sentences where w co-occurs with the search term 
sch_term, and sf(w) gives the number of sentences 
containing the word w. We also use the inverse 
document frequency of w, idf(w) 5 , as a 
measurement of the global importance of the word. 
Words whose centroid weights exceed the average 
plus a standard deviation are selected as centroid 
words.  

The weighting of centroid words can be 
improved by using external knowledge. We 
augment the weight of the centroid words which 
also appear in the definitions from the external 
knowledge data set. We form centroid words into a 
centroid vector, which is then used to rank input 
sentences by their cosine similarity with the vector. 

4.2 Soft Matching Definition Patterns 

By doing statistical ranking, we obtain a list of 
highly ranked sentences that are potentially 
definition sentences. These sentences are closely 
relevant to the given topic but may not be 
necessarily definition sentences. Definition 
sentences, such as “Gunter Blobel, a molecular 
biologist ……,” are often written in a certain style 
or pattern.  

Definition patterns in most of TREC systems are 
manually constructed, which is labor intensive. 
These patterns are usually represented and matched 
using regular expressions. We consider these 
techniques hard matching because they require 
definition sentences to match exactly. The use of 
hard pattern rules fails to capture the variations in 
vocabulary and syntax that are often exhibited in 
definitions sentences and cannot recognize 
definition patterns which are not explicitly seen in 
training. To overcome this problem, we proposed a 
probabilistic soft matching technique which 
computes the degree of match between test 
sentences and training instances (Cui et al., 2004a). 
Given a set of training instances, a virtual vector 
representing the soft definition pattern Pa is 
generated by aligning the training instances 
according to the positions of <SCH_TERM>:  

                                                      
5 We use the statistics from Web Term Document 

Frequency and Rank site 
(http://elib.cs.berkeley.edu/docfreq/) to approximate 
words’ IDF.  

http://www.biography.com/
http://s9.com/biography/index.html
http://en.wikipedia.org/wiki/Main_Page
http://www.bartleby.com/


<Slot-w, … Slot-2, Slot-1, SCH_TERM , Slot1, Slot2, … Slotw : 
Pa> 
 
where Sloti contains a vector of tokens with their 
probabilities of occurrence derived from the 
training instances. 

The test sentences are first preprocessed in a 
manner similar to the preprocessing of labeled 
definition sentences. Using the same window size 
w, the token fragment S surrounding the 
<SCH_TERM> is retrieved: 

 
<token-w, …, token-2, token-1, SCH_TERM, token1, token2, … 
tokenw : S> 

 
The matching degree of the test sentence to the 

generalized definition patterns is measured by the 
similarity between the vector S and the virtual soft 
pattern vector Pa, accounting for similarity of 
individual slots as well as the sequence of slots. 
Our soft matching technique is described in detail 
in (Cui et al., 2004a). 

4.3 Manually Constructed Patterns 
In addition to centroid-based weighting and soft 

pattern matching, we also used a set of manually 
constructed definition patterns, which is a subset of 
patterns we used for last year’s TREC definitional 
QA task. These patterns, mainly consisting of 
appositives and copulas, are high-precision 
patterns represented in regular expressions, for 
instance “<SEARCH_TERM> is DT$ NNP”. The 
purpose of using such hard matching patterns in 
addition to soft matching patterns is to capture 
those well-formed definition sentences that are 
missed due to the imposed cut-off of ranking 
scores by soft pattern matching and centroid-based 
weighting.  

Therefore, the system works in stages: it ranks 
all sentences using centroid-based ranking and soft 
pattern matching, and takes the top-ranked 
sentences as candidate definition sentences. It then 
examines those lower-ranked sentences which are 
not included in the candidate definition sentences 
and adds in those sentences matched by any of the 
manually constructed patterns. In this way, we 
boost the recall of definition sentences identified 
by the sentence extraction module.  

4.4 Redundancy Removal and Answer 
String Extraction 

As the TREC QA guideline suggests, to answer 
Other questions, the nuggets that have been 
covered by those topic-related factoid/list 
questions are to be removed. Our system performs 
a two-stage redundancy checking when selecting 
definition sentences into the final answer. Suppose 

we are to select N sentences for the final answer, 
the selection process works as: 

 
Here answer_stc refers to those sentences that 

have been previously selected as part of the answer 
for Other questions. Factoid_stc refers to those 
sentences that produce the answers for those 
factoid or list questions. We measure the similarity 
between two sentences using the simple cosine 
similarity which weights unigrams by their inverse 
document frequency (IDF). We apply a stricter 
similarity threshold for sentences used to answer 
factoid/list question as the answers to such 
questions tend to be amount for a very small 
portion of the sentences.  

In addition to full definition sentences, we also 
develop a set of heuristic rules to extract fragments 
from sentences in order to shorten the final 
answers. These heuristic rules are adopted from 
our last year’s system. For instance, for a definition 
sentence that has appositive of the topic, only the 
appositive part is extracted. Without introducing 
any confuse, all starting topic words of each 
sentence are also removed. For example, “TB, also 
known as tuberculosis ……” is transformed to 
“also known as tuberculosis ……”  

a) Add the first sentence into the answer. 
b) Examine the next sentence next_stc 

if max  continue; 

if max  

continue; 
else add next_stc into the answer; 

7.0))_,_(( <istcanswerstcnextsim

85.0))_,_(( <jj
stcfactoidstcnextsim

i

c) Go to step (b) until N sentences have been selected. 

4.5 Evaluation Results 
We submitted three runs for Other questions. 

They differ only in the length of the cut-off 
criterion applied. The summary of the three runs is 
listed in Table 3. 

Our second run achieves the highest score in the 
“Other” task. Due to the change of F5 measure to 
F3 measure, the length of the answers plays a more 
important role in the evaluations.  It is crucial for 
us to develop a systematic method for selecting 
definition answers than the current heuristics that 
we employ.  

This year’s “Other” task cannot be considered 
identical to last year’s definitional QA task 
because it requires us to exclude all nuggets that 
have been covered by those topic-related 
factoid/list questions. This makes the evaluation of 
the “Other” task more difficult. Based on our 
observation, the essential aspects about a topic 
have been covered by the factoid/list questions. For 
instance, given a query on a singer, questions about 



standard topics of interest (such as his/her birthday, 
songs and band) are already posed through specific 
factoid or list questions. Thus, it is very difficult 
for a system to determine what “other” information 
is most important about the topic. We believe that 
this is the main reason that causes the overall 
scores of this task to decline. 
 
Table 3. Summary of submitted runs for Other 
questions. 

Runs 
Answer string 
extraction 
applied 

Average 
length (in 
bytes) 

Final F3 
score  

NUSCHUA1 No 2079 0.448 

NUSCHUA2 Yes 1973 0.460 

NUSCHUA3 Yes 2505 0.379 

 

5 Exploiting Definitions to Answer 
Factoid/List Questions 

We also experimented with using definition 
sentences to answer topic-related factoid/list 
questions. The third run for factoid question 
answering illustrates such an idea. In this run the 
definition sentence extraction module sends its top-
ranked sentences to the passage retrieval module. 
The passage retrieval module ranks these definition 
sentences according to specific factoid/list 
questions. This approach, while efficient and 
effective in extracting answers to common 
questions about persons and organizations, tends to 
miss peripherally relevant passages. This run 
achieves an average precision of 0.50, which is 
lower than the runs that use the whole relevant 
document for passage retrieval. We conjecture that 
the cut-off threshold of selecting definition 
sentences leads to lower recall that affects the 
passage retrieval.  

We also incorporate existing definitions from 
external web sites and thesauri in answering 
certain types of list questions. Specifically, we 
utilize a set of manually constructed wrappers to 
acquire certain aspects of a person or a 
corporation. One of the wrappers is to extract the 
names of a person’s works, including his/her 
songs, movies, books and plays, which are often 
listed in a specific format in websites. In this way, 
we can obtain a list of names or works directly 
from these sites. In addition, such lists of works are 
often presented in a uniform manner: they are often 
enclosed by quotation marks and consist of several 
capitalized words.  Although these extracted lists 
may contain noise, false matches can be discarded 
by validating the list against existing definitions. 
As such, we achieve high precision and recall for 
the eight list questions on people’s songs, albums 

and books, with an average F measure of 0.81 and 
0.73 respectively for the two runs. In addition to 
works, we also pre-compiled a list of structured 
patterns for extracting product names of a 
company and working positions for a person. In 
the future work, we plan to extend our soft 
matching patterns to accomplish this task to 
combat variations in news articles.  

In addition, we found many fields of simple facts 
about a person can be extracted directly from 
existing definitions, such as the birth/death date, 
birthplace and career. We believe that developing 
such a set of wrappers to mine such simple facts 
would improve both the effectiveness and 
efficiency of the QA system. 

6 Conclusion 

We have reviewed the newly-adopted techniques 
in our QA system. They include measuring relation 
path similarity in answer extraction, soft matching 
patterns for identifying definition sentences, and 
using definitions about topics to answer topic-
related factoid/list questions. While these 
techniques have improved over our previous QA 
system, we identify several directions in future 
work. First, the mismatch of question terms is still 
a serious problem. It is crucial to devise a 
framework that can align semantically related 
words and calculate relation path similarities. 
Second, a generic method for selecting appropriate 
text fragments from definition sentences is 
necessary. The main challenge here is to identify 
relevant part of the definition sentence when only 
partially matched. Third, the performance gain by 
using definitions to answer common questions 
about a person or an organization still remains to 
explore. More experiments should be conducted to 
figure out what kind of specific questions can be 
correctly answered by automatically generated and 
manually constructed definitions. 
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