
National University of Singapore at the TREC-13 Question Answering
Main Task

Hang Cui Keya Li* Renxu Sun* Tat-Seng Chua Min-Yen Kan
 Department of Computer Science

School of Computing
National University of Singapore

{cuihang, likeya, sunrenxu, chuats, kanmy}@comp.nus.edu.sg

1 Introduction.

In the past two years in our participation in
TREC, our efforts (Yang et al., 2002, 2003) have
been focused on incorporating external knowledge
for boosting document and passage retrieval
performance in event-based open domain question
answering (QA). Despite our previous successes,
we have identified three weaknesses of our system
with respect to this year’s task guidelines. First,
our system works at the surface level to extract
answers, by picking the first occurrence of a string
that matches the question target type from the
highest-ranked passage. As such, our answer
extraction relies heavily on the results of passage
retrieval and named entity tagging. However, a
passage that contains the correct answer may
contain other strings of the same target type (Light
et al., 2001) which can lead to an incorrect string
being extracted. A technique to select the answer
string that has the correct relationships with respect
to the other words in the question is needed.
Second, our definitional QA system utilizes
manually-constructed definition patterns. While
these patterns are precise in selecting definition
sentences, they are strict in matching (slot-by-slot
matching using regular expressions), failing to
match correct sentences with minor variations.
Third, this year’s guidelines state that factoid and
list questions are not independent; instead, they are
all related to given topics. Under such contextual
QA scenario, we need to revise our framework to
exploit existing topic-relevant knowledge in
answering such questions.

Accordingly, we focus on the following three
features in this year’s TREC:
(1) To give appropriate evidence to answer

extraction, we use grammatical dependency
relations among question terms to reinforce
answer selection. In contrast to previous work
in matching dependency relations, we propose
to measure the similarity between relations to
rank answer strings.

* These two authors are ordered in the alphabetical

order of their last names.

(2) To obtain higher recall in definition sentence
retrieval, we adopt soft matching patterns (Cui et
al., 2004a). Different from conventional lexico-
syntactic patterns matched by regular expressions
(i.e., hard-matching patterns), soft patterns
represent each slot as a vector of words and
syntactic classes with their distributions, rather
than generalizing specific instances. This allows us
to probabilistically match test instances against the
training data.
(3) To answer topically-related factoid and list
questions, we first combine sentences from our
definition sentence retrieval module with
downloaded definitions from external resources.
This sentence base is used to answer factoid and
list questions. Although using such a definition
sentence base restricts recall in passage retrieval, it
improves the efficiency and effectiveness in
answering common questions about people and
organizations.

This paper is organized as follows: In next
section, we present the overall architecture of our
system. In Sections 3, 4 and 5, we give the details
of the above three features. In Section 6, we
conclude the paper with future directions.

2 System Overview

In Figure 1, we illustrate the architecture of our
QA system. We leverage our prior work in
question analysis, document retrieval, query
expansion and passage retrieval. In our
comprehensive pre-processing step, we store a
named entity profile and a full parse of each article
in the TREC corpus. The offline processing greatly
accelerates answer extraction.

Our framework works as follows:
• Target analysis and document retrieval:
First, the user submits a topic, e.g. “Aaron
Copland”, to the system. Lucene1 is used to index
the documents. In dealing with topics with
qualifiers, for instance, “skier Alberto Tomba”, we
resort to the Web to separate the qualifiers from
the main topic words, e.g. “Alberto Tomba” in the

1 http://jakarta.apache.org/lucene/docs/index.html.

Lucene performs Boolean search.

http://jakarta.apache.org/lucene/docs/index.html

Figure 1. The illustration of the TREC QA system architecture

above example. Specifically, we calculate the
pointwise mutual information (PMI)2 between each
pair of topic terms based on the hits returned by
Google when using the topic terms as query.
Terms with PMI values beyond a pre-defined
threshold are grouped together. To construct a
suitable Lucene query, terms in the same group are
first connected by “AND”, and then different
groups are connected by “OR”. To combat errors
or infrequent expressions in the given topics, we
replace our original query by any query suggestion
from Google 3 . For instance, our system
automatically changes “Harlem Globe Trotters” to
“Harlem GlobeTrotters” according to Google’s
result. After document retrieval on the NE pre-
tagged corpus, we get a set of NE tagged relevant
documents related to the given topic.
• Definition generation: The relevant
document set for the given topic is the basis for
generating the definition for that topic. The
definition generation module first extracts
definition sentences from the document set. It
identifies definition sentences using centroid based
weighting and definition pattern matching. It also
leverages existing definitions from external
resources. We discuss definition sentence
extraction in Section 4. After redundancy removal,
the module produces the definition for the topic.

2

)(
),(

XP
YXPPMI =

3 defined as when Google returns “Did you mean:
XXX”

• Passage retrieval and query expansion
for factoid and list questions: To answer
topically related factoid and list questions, we
perform passage retrieval on two sources: the
topic’s relevant document set and the definition
sentence set produced by the definition generation
module. Our first and second runs for factoid
questions use the whole relevant document set for
passage retrieval while we experiment on using
only definition sentences to find answers for
factoid questions in the third run.

We use a simple linear expansion strategy for
query expansion. It picks expansion terms from
Google snippets according to the terms’ co-
occurrences with the question terms in the
snippets. The passage retrieval module has
expanded queries as input and performs density-
based lexical matching to rank passages, which
consist of a window of 3 sentences.
• Answer extraction: We perform rule-
based question analysis to assign question target
type to each question. Before performing question
typing, we substitute the topics for all pronouns in
the questions. For example, given the question
“what is their gang color” for the topic “Crips”, it
is transformed to “what is Crips’ gang color”. This
step facilitates dependency relation parsing in later
steps. Highly ranked passages are fed into the
answer extraction module. Both the question and
candidate answer passages are parsed by MiniPar
(Lin, 1998), a robust parser for grammatical
dependency relations. The module ranks all
possible strings of the appropriate type by how
closely they model relations to other question
terms as seen in training. We will discuss the

ranking of answer strings using approximate
dependency relation matching in the next section.

3 Approximate Dependency Relation
Matching for Answer Extraction

By analyzing a subset of TREC-9 questions,
Light et al. (2001) estimated the upper bound of
70% on the performance of a question answering
system under the condition of perfect passage
retrieval, named entity detection and question
typing. Given the fact that there is always error in
syntactic parsing and passage retrieval, the actual
performance of answer extraction is even worse.
The ceiling is caused when many named entities of
the same type appear close to each other, confusing
answer selection. Without any knowledge of
syntactic relations between the entities, a system
might select the named entity nearest to the
question terms. In addition, some questions, such
as “what does AARP stand for,” have no known
named entity types to represent the question target.
We believe the key to overcome such linguistic
ambiguity is to use deep syntactic analysis on both
the question and answer text. To this end, we
extract grammatical dependency relations between
entities and use approximate matching of such
relations in answer evaluation.

3.1 Extracting Dependency Relation Triples

Combining dependency relations in question
answering is not a new idea. PIQASso (Attardi et
al., 2001) tested usage of syntactic relations
generated by Minipar, a free robust dependency
parser, in their QA system. However, their
system’s low recall on the TREC data set is due to
their use of keyword-based document retrieval
(Katz and Lin, 2003). In contrast, Katz and Lin
(2003) implemented a system to index and match
all syntactic relations on the whole corpus. The
weakness of existing systems that try to
incorporate dependency parsing is in that they are
using exact match of relations to locate answers.
Although such exact indexing and match of
relations result in high precision, they fare poorly
in recall due to variations in both lexical tokens
and syntactic trees.

Following the approaches given by existing
work, we extract all relation path triples generated
by the Minipar dependency parser from a given
question and a candidate answer sentence. A
relation triple is the smallest representation of a
dependency path embedded in the parsing tree of a
sentence. Each triple consists of two slots and one
path of relations between them:

<Slot1, Path, Slot2>
where slots are either open-class words, like nouns
and verbs, or named entities. A path represents the

relation path, consisting of a series of relations
without taking their slots, extracted from the
parsing tree. For example, given a question “what
American revolutionary general turned over West
Point to the British?” and answer sentence “……
Benedict Arnold’s plot to surrender West Point to
the British”, we get the following triples 4 :

q1) General sub obj West Point
q2) West Point mod pcomp-n British

s1) Benedict Arnold poss s sobj West Point
s2) West Point mod pcomp-n British

It is difficult to find the identical relation

structures in both questions and answers. This is
seen in the case above, which a correct answer is
given but in which the relation structures differ.
Although the triple (s2) matches the triple (q2)
from the question, the string “Benedict Arnold”
would not be selected as answer according to
existing techniques because there is no match for
the triple (q1). Approximate matching is needed to
evaluate candidate answers. Clearly, we need a
similarity measurement to represent how likely the
two paths, namely “sub obj” and “poss s sobj”,
refer to the same relation chain.

3.2 Learning Relation Similarity

Common dependency relations are used
interchangeably. Due to the variation of natural
language text, the same relation may be phrased
differently for questions and answer sentences. For
instance, the appositive relation that appears
frequently in news text could correspond to other
relations in a question. To obtain similarity
measures among paths, we adopt a statistical
method to learn the relatedness of relations from
training data.

We accumulate around 1,000 factoid
question-answer pairs from the past two years’
TREC QA task to build our statistical model. We
use Minipar to parse all the questions and their
correspondent answer sentences. For each
question-answer pair, relation paths from the
question triples are aligned with those from the
answer sentence if their slot fillers are the same
after stemming. In order to get relations between
answers and other question terms, we substitute a
general tag for those question targets in questions
and those answer strings in answer sentences. This
results in 2,557 relation path pairs for model
construction. The relatedness of two relations is

4 We list only part of the extracted triples for the sake

of the space. There is a path between any pair of two
open class words or named entities. We also restrict the
length of the path to 7 relations between the two slots.

measured by their co-occurrences in both question
relation paths and answer relation paths
respectively. We employ a variation of mutual
information to represent relation co-occurrences.
Different from normal mutual information, we
account for path length in our calculation.
Specifically, we discount the co-occurrence of two
relations when appearing in long paths. The mutual
information is presented as:

)(Re)(Re
)Re,(Re

log)Re,(Re
10

10
10 lflf

ll
llMI

AQ ×
×

= ∑ δα
 (1)

where Rel0 and Rel1 are two relations extracted
from question paths and answer paths respectively.
fQ(Rel) and fA(Rel) represents the number of
occurrences of Rel in question paths and answer
paths.)Re,(Re 10 llδ is 1 when the relations Rel0
and Rel1 occurring in a question path and its
corresponding answer path respectively, and
otherwise 0. α is the inverse proportion of the
lengths of the question path and the answer path.

We calculate pairwise similarity for all
dependency relations based on this equation. These
relation similarities form the basis for calculating
relation path similarity in evaluation answer
strings. Figure 2 shows an excerpt of the similarity
measures between different relations.

F
r

3

s
t
i
n
t
c
q
q
e
s
a
q
c
r

∑=
path

A
Ans

Q
Ans PPSimAnsWeight),()(,*)(,*)((2)

Here P refers to all paths in the question or a
candidate sentence with one slot being the question
target or a candidate answer.

Recall that a relation path consists of several
relations along the path in the parsing tree. To
measure the similarity of two relation paths, we
combine the similarities between their relations. In
our submissions, we experimented with two
different methods in aligning relations when
calculating path similarities.

First, we treat relations along a path as a
sequence of tokens and consider all possible
alignments of relations between two paths without
really aligning any relations. We term this total
path matching which is similar to IBM’s Model 1
statistical translation model (Brown et al. 1993).
In our case, we substitute simple mutual
information to represent their “translation
probability”. The path similarity is calculated
by

∏∑
+

=
j i

A
j

Q
iAPlen

Q
AQ llMI

Plen
PPSim)Re,(Re

)(1(
),()(

ε

 (3)
In the second configuration, which is called

relation triple matching, we count only similarities
of individual relations that have the same slot
fillers. In other words, only the relations between
adjacent nodes that contain the question terms in
the parsing tree are considered in the path
similarity calculation. In this case, the alignments
of relations are judged by their two end slot fillers.
We combine all similarities of matched triples to
rank candidate answers.

Relation-1 Relation-2 Similarity
whn pcomp-n 0.43
whn i 0.42
i pcomp-n 0.39
i s 0.37
pred mod 0.37
appo vrel 0.35
whn nn 0.34
s num 0.33

igure 2. Excerpt of similarity measures between

elations

.3 Evaluating Answer Strings

To ensure high recall, we feed the top 50 ranked
entences from the passage retrieval module into
he answer evaluation module. We consider two
ssues to select the correct answer: the correct
amed entity type as determined by question
yping, and the similarity of paths between
andidate answers and question terms in the
uestion and the candidate answer sentence. For
uestions with an unknown target type, we
xamine all noun and/or verb phrases in the given
entences. We first align the relation paths
nchored by matched question terms from the
uestion and the answer sentence. We then
ombine the similarities of all relation paths. We
ank the candidate answers by:

∏
∈+

=
Mj

A
j

Q
iMN

Q
AQ llMI

Plen
PPSim)Re,(Re

)(1(
),()(

ε

 (4)
where M represents the set which contains all
matched triples.

After ranking candidate answers by Equation 2,
we select the highest ranked answer string, which
has the appropriate target type and also falls into
the verification list, as the final answer.

3.4 Evaluation Results and Discussions

We submitted three runs for factoid questions,
all of which employ approximate dependency
relation matching in answer extraction. The highest
average accuracy of 0.625 is achieved by the
configuration that uses total path matching. The
performance obtained by relation triple matching
(average accuracy of 0.600) is close to it. We
conjecture that using triple matching to align

Analysis of Question Distributions

0

5

10

15

20

25

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 31 33 35 37 39 43

Runs with Correct Answers

#

Q
u
e
s
t
i
o
n
s

Questions # Correct Questions by NUSCHUA1

Figure 3. Illustration of distribution of questions

relations deliberately ignores the long dependency
relationship between entities. However, it does not
significantly degrade performance because
dependency parsers may not resolve long distance
dependency relations well.

Further examination reveals that measuring
dependency relation path similarity in answer
extraction outperforms our previous system, in
which the first occurrence of a named entity with
the correct type is returned for questions with a
known answer type.

For all non-NE questions (in which the system is
unsure of the question target type), the module
picks the most probable noun phrase which is
nearest to all question terms in the top ranked
passage. These non-NE questions account for 69
out of the total 230 factoid questions according to
our question typing module. We use our previous
system as the baseline and compare it with the new
answer extraction module in our first submitted
two runs. We list the results in Table 1. The table
shows that leveraging more syntactic relations
boosts the performance of selecting answer strings,
especially those non-NE answers.

Table 1. Performance comparison of two
submitted runs

 Baseline NUSCHUA1 NUSCHUA2
Overall
average
accuracy

0.51 0.62 0.60

For
questions
with NE
typed
targets

0.68 0.78 0.75

For
questions
without
NE typed
targets

0.29 0.42 0.41

We have also analyzed the distribution of this
year’s factoid questions. We illustrate the
distribution of questions according to the number
of runs that give the correct answers in Figure 3.
We include the number of questions that are
answered correctly by NUSCHUA1 in the figure
as well. The X axis in Figure 3 stands for the
number of runs with correct answers for
corresponding number of questions (as showed by
axis Y) in all submitted runs to TREC. The leftist
end of the X axis represents that no runs gave
correct answers to these questions. As illustrated in
Figure 3, our system does not perform well in
answering those difficult questions. As illustrated
in the figure, we miss all questions that are
correctly answered by one and two runs. It shows
that although we have improved our previous
system by incorporating more complicated relation
matching techniques, the system still has much
room for improvement. One serious problem is the
lexical gap, i.e. the difference in vocabulary used
to express the questions and those used in the
passages. Our relation matching is conducted only
when some question words are matched in the
candidate passages. In the future work, we may
incorporate approximate matching of question
terms in the relation matching.

4 Definition Generation for Topics

To facilitate answering topic-related factoid and
list questions as well as provide sentences for
answering “Other” questions, we deem it important
to identify precise and complete definition
sentences for the given topics. In last year’s TREC
definitional QA task, top ranked groups utilized a
relatively uniform architecture for extracting
definition sentences: (1) finding additional

information for the topics from external web sites
or thesauri; and (2) employing manually
constructed definition patterns to identify
sentences. Enlightened by our previous
experimental results (Cui et al., 2004b), we tried to
improve our previous system by using (1) existing
definitions from specific web sites, rather than
generic web search; and (2) machine learned soft
matching definition patterns, instead of manually
constructed hard-matching patterns represented in
regular expressions. We combine the use of these
two techniques to identify precise definition
sentences.

4.1 Statistical Ranking of Definition
Sentences with External Knowledge

In order to ensure recall, for each topic, we
constructed two data sets as the basis for selecting
definition sentences: one based on TREC corpus
and the other from external knowledge. The TREC
set is constructed by relevant documents
determined by the document retrieval module
using the topic as the query. We retrieve up to 800
documents for each topic. These documents are
split into sentences. To construct the external
knowledge set, we accumulate existing definitions
for the topics from six specific web sites and
glossaries. The external resources and their
coverage of topics are listed in Table 2. The
definitions are downloaded through pre-written
wrappers for these sources. As Biography.com and
S9 are dedicated for people, we do not search for
definitions for organizations and other objects in
these two sites.

Table 2. List of external resources for definitions
and their coverage of topics.

External Resource Names
Coverage of

Topics (out of 65
topics)

Biography.com (http://www.biography.com/)
 19

S9 (http://s9.com/biography/index.html)
 15

Wikipedia
(http://en.wikipedia.org/wiki/Main_Page)

63

Bartleby.com (http://www.bartleby.com/)
 37

Google Glossary (search by “define: <term>”
in Google)

25

WordNet Glossary
 13

We first perform statistical weighting of

sentences on both of these two data sets to find
those relevant sentences to the given topics. When
ranking sentences with corpus word statistics, we
employ the centroid-based ranking method, which
has been used in other definitional QA systems
(e.g., Xu et al., 2003). We select a set of centroid

words (excluding stop words) which co-occur
frequently with the search target in the input
sentences. To select centroid words, we use mutual
information to measure the centroid weight of a
word w as follows:

)(
)1)_(log()1)(log(

)1)_,(log()(widf
termschsfwsf

termschwCowWeightcentroid ×
+++

+
=

 (5)
where Co(w, sch_term) denotes the number of
sentences where w co-occurs with the search term
sch_term, and sf(w) gives the number of sentences
containing the word w. We also use the inverse
document frequency of w, idf(w) 5 , as a
measurement of the global importance of the word.
Words whose centroid weights exceed the average
plus a standard deviation are selected as centroid
words.

The weighting of centroid words can be
improved by using external knowledge. We
augment the weight of the centroid words which
also appear in the definitions from the external
knowledge data set. We form centroid words into a
centroid vector, which is then used to rank input
sentences by their cosine similarity with the vector.

4.2 Soft Matching Definition Patterns

By doing statistical ranking, we obtain a list of
highly ranked sentences that are potentially
definition sentences. These sentences are closely
relevant to the given topic but may not be
necessarily definition sentences. Definition
sentences, such as “Gunter Blobel, a molecular
biologist ……,” are often written in a certain style
or pattern.

Definition patterns in most of TREC systems are
manually constructed, which is labor intensive.
These patterns are usually represented and matched
using regular expressions. We consider these
techniques hard matching because they require
definition sentences to match exactly. The use of
hard pattern rules fails to capture the variations in
vocabulary and syntax that are often exhibited in
definitions sentences and cannot recognize
definition patterns which are not explicitly seen in
training. To overcome this problem, we proposed a
probabilistic soft matching technique which
computes the degree of match between test
sentences and training instances (Cui et al., 2004a).
Given a set of training instances, a virtual vector
representing the soft definition pattern Pa is
generated by aligning the training instances
according to the positions of <SCH_TERM>:

5 We use the statistics from Web Term Document

Frequency and Rank site
(http://elib.cs.berkeley.edu/docfreq/) to approximate
words’ IDF.

http://www.biography.com/
http://s9.com/biography/index.html
http://en.wikipedia.org/wiki/Main_Page
http://www.bartleby.com/

<Slot-w, … Slot-2, Slot-1, SCH_TERM , Slot1, Slot2, … Slotw :
Pa>

where Sloti contains a vector of tokens with their
probabilities of occurrence derived from the
training instances.

The test sentences are first preprocessed in a
manner similar to the preprocessing of labeled
definition sentences. Using the same window size
w, the token fragment S surrounding the
<SCH_TERM> is retrieved:

<token-w, …, token-2, token-1, SCH_TERM, token1, token2, …
tokenw : S>

The matching degree of the test sentence to the

generalized definition patterns is measured by the
similarity between the vector S and the virtual soft
pattern vector Pa, accounting for similarity of
individual slots as well as the sequence of slots.
Our soft matching technique is described in detail
in (Cui et al., 2004a).

4.3 Manually Constructed Patterns
In addition to centroid-based weighting and soft

pattern matching, we also used a set of manually
constructed definition patterns, which is a subset of
patterns we used for last year’s TREC definitional
QA task. These patterns, mainly consisting of
appositives and copulas, are high-precision
patterns represented in regular expressions, for
instance “<SEARCH_TERM> is DT$ NNP”. The
purpose of using such hard matching patterns in
addition to soft matching patterns is to capture
those well-formed definition sentences that are
missed due to the imposed cut-off of ranking
scores by soft pattern matching and centroid-based
weighting.

Therefore, the system works in stages: it ranks
all sentences using centroid-based ranking and soft
pattern matching, and takes the top-ranked
sentences as candidate definition sentences. It then
examines those lower-ranked sentences which are
not included in the candidate definition sentences
and adds in those sentences matched by any of the
manually constructed patterns. In this way, we
boost the recall of definition sentences identified
by the sentence extraction module.

4.4 Redundancy Removal and Answer
String Extraction

As the TREC QA guideline suggests, to answer
Other questions, the nuggets that have been
covered by those topic-related factoid/list
questions are to be removed. Our system performs
a two-stage redundancy checking when selecting
definition sentences into the final answer. Suppose

we are to select N sentences for the final answer,
the selection process works as:

Here answer_stc refers to those sentences that

have been previously selected as part of the answer
for Other questions. Factoid_stc refers to those
sentences that produce the answers for those
factoid or list questions. We measure the similarity
between two sentences using the simple cosine
similarity which weights unigrams by their inverse
document frequency (IDF). We apply a stricter
similarity threshold for sentences used to answer
factoid/list question as the answers to such
questions tend to be amount for a very small
portion of the sentences.

In addition to full definition sentences, we also
develop a set of heuristic rules to extract fragments
from sentences in order to shorten the final
answers. These heuristic rules are adopted from
our last year’s system. For instance, for a definition
sentence that has appositive of the topic, only the
appositive part is extracted. Without introducing
any confuse, all starting topic words of each
sentence are also removed. For example, “TB, also
known as tuberculosis ……” is transformed to
“also known as tuberculosis ……”

a) Add the first sentence into the answer.
b) Examine the next sentence next_stc

if max continue;

if max

continue;
else add next_stc into the answer;

7.0))_,_((<istcanswerstcnextsim

85.0))_,_((<jj
stcfactoidstcnextsim

i

c) Go to step (b) until N sentences have been selected.

4.5 Evaluation Results
We submitted three runs for Other questions.

They differ only in the length of the cut-off
criterion applied. The summary of the three runs is
listed in Table 3.

Our second run achieves the highest score in the
“Other” task. Due to the change of F5 measure to
F3 measure, the length of the answers plays a more
important role in the evaluations. It is crucial for
us to develop a systematic method for selecting
definition answers than the current heuristics that
we employ.

This year’s “Other” task cannot be considered
identical to last year’s definitional QA task
because it requires us to exclude all nuggets that
have been covered by those topic-related
factoid/list questions. This makes the evaluation of
the “Other” task more difficult. Based on our
observation, the essential aspects about a topic
have been covered by the factoid/list questions. For
instance, given a query on a singer, questions about

standard topics of interest (such as his/her birthday,
songs and band) are already posed through specific
factoid or list questions. Thus, it is very difficult
for a system to determine what “other” information
is most important about the topic. We believe that
this is the main reason that causes the overall
scores of this task to decline.

Table 3. Summary of submitted runs for Other
questions.

Runs
Answer string
extraction
applied

Average
length (in
bytes)

Final F3
score

NUSCHUA1 No 2079 0.448

NUSCHUA2 Yes 1973 0.460

NUSCHUA3 Yes 2505 0.379

5 Exploiting Definitions to Answer
Factoid/List Questions

We also experimented with using definition
sentences to answer topic-related factoid/list
questions. The third run for factoid question
answering illustrates such an idea. In this run the
definition sentence extraction module sends its top-
ranked sentences to the passage retrieval module.
The passage retrieval module ranks these definition
sentences according to specific factoid/list
questions. This approach, while efficient and
effective in extracting answers to common
questions about persons and organizations, tends to
miss peripherally relevant passages. This run
achieves an average precision of 0.50, which is
lower than the runs that use the whole relevant
document for passage retrieval. We conjecture that
the cut-off threshold of selecting definition
sentences leads to lower recall that affects the
passage retrieval.

We also incorporate existing definitions from
external web sites and thesauri in answering
certain types of list questions. Specifically, we
utilize a set of manually constructed wrappers to
acquire certain aspects of a person or a
corporation. One of the wrappers is to extract the
names of a person’s works, including his/her
songs, movies, books and plays, which are often
listed in a specific format in websites. In this way,
we can obtain a list of names or works directly
from these sites. In addition, such lists of works are
often presented in a uniform manner: they are often
enclosed by quotation marks and consist of several
capitalized words. Although these extracted lists
may contain noise, false matches can be discarded
by validating the list against existing definitions.
As such, we achieve high precision and recall for
the eight list questions on people’s songs, albums

and books, with an average F measure of 0.81 and
0.73 respectively for the two runs. In addition to
works, we also pre-compiled a list of structured
patterns for extracting product names of a
company and working positions for a person. In
the future work, we plan to extend our soft
matching patterns to accomplish this task to
combat variations in news articles.

In addition, we found many fields of simple facts
about a person can be extracted directly from
existing definitions, such as the birth/death date,
birthplace and career. We believe that developing
such a set of wrappers to mine such simple facts
would improve both the effectiveness and
efficiency of the QA system.

6 Conclusion

We have reviewed the newly-adopted techniques
in our QA system. They include measuring relation
path similarity in answer extraction, soft matching
patterns for identifying definition sentences, and
using definitions about topics to answer topic-
related factoid/list questions. While these
techniques have improved over our previous QA
system, we identify several directions in future
work. First, the mismatch of question terms is still
a serious problem. It is crucial to devise a
framework that can align semantically related
words and calculate relation path similarities.
Second, a generic method for selecting appropriate
text fragments from definition sentences is
necessary. The main challenge here is to identify
relevant part of the definition sentence when only
partially matched. Third, the performance gain by
using definitions to answer common questions
about a person or an organization still remains to
explore. More experiments should be conducted to
figure out what kind of specific questions can be
correctly answered by automatically generated and
manually constructed definitions.

7 Acknowledgement

The authors are grateful to Shi-Yong Neo, Victor
Goh and Yee-Fan Tan for their help with migrating
previous year’s subsystems. We also thank Hui
Yang for sharing her experience in participating
TREC QA. The first author is supported by
Singapore Millennium Foundation Scholarship (ref
no. 2003-SMS-0230).

References

[Attardi et al., 2001] G. Attardi, A. Cisternino, F.
Formica, M. Simi and A. Tommasi, PiQASso: Pisa
Question Answering System, Proceedings of text
Retrieval Conference (Trec-10), 599-607, NIST,
Gaithersburg(MD), November 13-16, 2001.

[Brown et al., 1993] P. Brown, S. Della, V. Della
Pietra and R. Mercer, The mathematics of
statistical machine translation: Parameter
estimation, Computational Linguistics, 19(2), pp.
263-311, 1993.

[Cui et.al., 2004a] H. Cui, M.-Y. Kan and T.-S.
Chua, Unsupervised learning of soft patterns for
definitional question answering, Proceedings of the
Thirteenth World Wide Web Conference (WWW
2004), New York, May 17-22, 2004, pp. 90-99.

[Cui et.al., 2004b] H. Cui, M.-Y. Kan, T.-S. Chua
and J. Xiao, A Comparative Study on Sentence
Retrieval for Definitional Question Answering,
Proceedings of SIGIR Workshop on Information
Retrieval for Question Answering, Sheffield, U.K.,
2004.

[Katz and Lin, 2003] B. Katz and J. Lin,
Selectively Using Relations to Improve Precision
in Question Answering, Proceedings of the EACL-
2003 Workshop on Natural Language Processing
for Question Answering, April 2003.

[Light et al., 2001] M. Light, G. Mann, E. Riloff
and E. Breck, Analysis for elucidating current
question answering technology, Journal of Natural
Language Engineering, Fall-Winter, 2001.

[Lin, 1998] D. Lin, Dependency-based Evaluation
of MINIPAR, In Workshop on the Evaluation of
Parsing Systems, Granada, Spain, May, 1998.

[Xu et al., 2003] J. Xu, A. Licuanan, R.
Weischedel, TREC 2003 QA at BBN: Answering
Definitional Questions, The Twelfth Text
REtrieval Conference (TREC 2003) Notebook, pp.
28-35, 2003.

[Yang et al., 2003] H. Yang, H. Cui, M.-Y. Kan,
M. Maslennikov, L. Qiu and T.-S. Chua,
QUALIFIER in TREC-12 QA Main Task, In the
notebook of the 12th Text REtrieval Conference
(TREC’2003), Maryland, USA.

[Yang et al., 2002] H. Yang and T.-S. Chua, The
Integration of Lexical Knowledge and External
Resources for Question Answering, In the
Proceedings of the Eleventh Text REtrieval
Conference (TREC’2002), Maryland, USA, 19-22
Nov 2002, pp. 155-161.

	Introduction.
	System Overview
	Approximate Dependency Relation Matching for Answer Extracti
	Extracting Dependency Relation Triples
	Learning Relation Similarity
	Evaluating Answer Strings
	Evaluation Results and Discussions

	Definition Generation for Topics
	Statistical Ranking of Definition Sentences with External Kn
	Soft Matching Definition Patterns
	Manually Constructed Patterns
	Redundancy Removal and Answer String Extraction
	Evaluation Results

	Exploiting Definitions to Answer Factoid/List Questions
	Conclusion
	Acknowledgement

