
Stylistic and Lexical Co-training for Web Block
Classification

Chee How Lee
National University of Singapore

3 Science Drive 2
Singapore 117543

leecheeh@alumni.nus.edu.sg

 Min-Yen Kan
National University of Singapore

3 Science Drive 2
Singapore 117543

kanmy@comp.nus.edu.sg

Sandra Lai
National University of Singapore

3 Science Drive 2
Singapore 117543

laihuiju@comp.nus.edu.sg

ABSTRACT
Many applications which use web data extract information from
a limited number of regions on a web page. As such, web page
division into blocks and the subsequent block classification have
become a preprocessing step. We introduce PARCELS, an
open-source, co-trained approach that performs classification
based on separate stylistic and lexical views of the web page.
Unlike previous work, PARCELS performs classification on
fine-grained blocks. In addition to table-based layout, the
system handles real-world pages which feature layout based on
divisions and spans as well as stylistic inference for pages using
cascaded style sheets. Our evaluation shows that the co-training
process results in a reduction of 28.5% in error rate over a
single-view classifier and that our approach is comparable to
other state-of-the-art systems.

Categories and Subject Descriptors
I.7.m [Document and Text Processing]: Miscellaneous; H.5.4
[Information Interfaces and Presentation]:
Hypertext/Hypermedia.

General Terms
Algorithms, Experimentation.

Keywords
PARCELS, co-training, lexical and stylistic learners, web page
division, web page block classification.

1. INTRODUCTION
Extracting fields from web data is becoming an increasingly
important issue, especially in cases where agents need to
interact, e.g., the Semantic Web. Unfortunately, web pages that
use different HTML tags may result in similar layouts, and
semantically similar pages may present information in different
layouts. Due to this semi-structured nature of web pages and the
mishmash of HTML coding, retrieving relevant information
from web pages is a difficult task.

A possible step towards a solution is web page subdivision and
block classification, in which a page is first divided into blocks,
and the blocks classified by some scheme. Many algorithms
benefit from using fine-grained blocks rather than uniformly
processing the entire page. These include ad blocking, mobile
device presentation and information extraction.

We present a PARser for Content Extraction and Layout
Structure, or PARCELS, a system to perform the division and
classification tasks using machine learning techniques. Unlike
previous work, PARCELS uses a co-training model, adopting
two independent views on block classification: one learner
based on stylistic information and another based on lexical
information. PARCELS is also designed to process real-world
web page targets, handling more recent features of HTML
including cascading style sheets (CSS) and non-tabular layout
(e.g., and <DIV> tags).

In the following section, we discuss recent work in web page
division/classification. Our method is based on co-training,
which we review in Section 3, along with a description of the
features used in the stylistic and lexical learners. In Section 7,
we present our evaluation of PARCELS and compare it with
previous work. We conclude with a discussion of the
PARCELS software distribution, its associated utilities and
availability.

2. RELATED WORK
The problem of decomposing web pages into blocks for post
processing has been an area of recent interest in the literature.
In our understanding of the published work, web page fragments
[8], blocks [14], elements [16], nodes [9] and shingles all refer to
the idea of tiling the physical representation of a web page with
smaller blocks, as in Figure 3. In this paper, we follow the use
in [1], using blocks to denote the divisions of a web page into
semantic regions. These blocks often represent some logical
division as governed by the application of interest, e.g., an
advertisement image for ad blocking, or the main contents of a
page for adaptive content delivery.

To date, all related approaches that we have examined rely on
the well-formed tree structure of the target page’s hypertext
markup. Although many real-world pages do not have well-
formed markup, this is easily (and often) fixed by first
canonicalizing the page using a tool such as HTML Tidy1.
Typically, the canonicalized markup is used to form a
Document Object Model (DOM) tree. The tree is then

1 http://tidy.sourceforge.net/

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
WIDM’04, November 12–13, 2004, Washington, DC, USA.
Copyright 2004 ACM 1-58113-978-0/04/0011...$5.00.

manipulated directly to search for layout related structures (e.g.,
table cells and paragraph tags) or indirectly through rule-based
post-processing [14][9]. PARCELS takes an identical pre-
processing approach by working with the canonicalized DOM
structure tree.

To our knowledge, all systems that have tackled the web page
subdivision problem demonstrate their techniques on pages that
do not utilize advanced HTML markup, avoiding pages that
require Cascading Style Sheets (CSS) for correct font display
and XHTML (e.g., <DIV> and tags) for advanced
layout. We have conducted a diachronic survey of online news
sites, and the results indicate that the use of such technologies is
gaining popularity and thus important. A web page division
system geared towards real-world use needs to cope with these
possibilities.

Classification of blocks occurs next. In many ways, block
classification is complementary to the problem of web
information extraction (IE). In the latter, the goal is to identify
blocks of a web page with a particular meaning; in the former,
the goal is to classify which meaning a particular block has. IE
techniques, such as wrapper induction, allow a database system
to extract relational data from an external resource by
automatically creating the appropriate contextual patterns.
These patterns often contain structural HTML tags (paragraph
and list item tags) as well as specific lexical items (e.g.,
“price:”). Block classification algorithms also take both lexical
and spatial information into consideration. We feel that
structural and lexical information both play a large role in block
classification, although they are largely independent of each
other. Learning-based block classifiers that use both types of
features should take advantage of this dichotomy, but to our
knowledge, they currently do not.

Regardless of the division and classification approach, the
comparative evaluation of approaches remains difficult. This is
because division and block classification algorithms target
different levels of granularity. A comparison requires a mapping
of levels across systems. For example, the block model in [8]
and [9] feature only a binary classification (relevant or
irrelevant) whereas [13] makes a case for a three-class model of
relevance. Since different applications may have different
notions of relevance, we believe it is more useful to tackle the
problem of block classification at a functional level (similar to
Wong [14]) rather than assigning a numeric score of relevance.

Given these weaknesses in the current work, our paper makes
two main contributions:

1. Our model explicitly takes advantage of the relative
independence between structural and lexical information.
We build upon prior work by introducing co-training as an
additional layer in the classification process to achieve
greater accuracy.

2. The division algorithm used in PARCELS explicitly
handles both advanced markup types, incorporating useful
CSS / XHTML features into the same generic framework
for standard web page division, such as the ones based on
table structures. Proper CSS parsing is non-trivial as
attributes can be embedded within the tag or encoded
within a style sheet (either internal or external to the page).

We also compare our work with a recently published system
from the latest World Wide Web conference, with control for
differences in division and block classification schemes. The
results show our work comparable to the published system.

3. CO-TRAINING
Co-training [1], originally conceived for web page
classification, is an iterative technique that decomposes a
learning problem into two separate, independent views. Co-
training is a bootstrapping process that gradually adds self-
labeled data into the supervised training pool. Each view of the
problem is represented by features that are used to induce a
simple classifier. These classifiers are applied to unlabeled
examples to annotate k examples from the unlabeled pool u.
The self-labeled examples are added to the training pool for
subsequent rounds and the two classifiers are re-trained for i
iterations. Conditional independence of the views has been
advised, but recent work by Nigam and Ghani [7] casts some
doubt on these assumptions. In the original web page
classification task, Blum and Mitchell [1] use features derived
from the anchor text pointing to the target page for one view,
and words on the target page as the other view.

To apply co-training to web block classification, we use two
separate views based on the stylistic and lexical properties of
blocks, as shown in Figure 1. This approach is motivated by the
observation that lexical elements alone can often be effective in
classification. So can structural elements: Shih and Karger [12]
argue that the semantic structure of web pages is often obvious
to users, even when written in an unfamiliar language. Note that
the anchor text view used in Blum and Mitchell’s work [1] is
not helpful in block classification, as links to specific web page
blocks are uncommon.

L1
Training Data

L1
Learner

L1
Model

Self-labeled
blocks

L2
Training Data

L2
Learner

L2
Model

Self-labeled
blocks

Un-annotated
Data

Most confident L2 self-labeled blocks

Most confident L1 self-labeled blocks

L1
Training Data

L1
Learner

L1
Model

Self-labeled
blocks

L2
Training Data

L2
Learner

L2
Model

Self-labeled
blocks

Un-annotated
Data

Most confident L2 self-labeled blocks

Most confident L1 self-labeled blocks

 Figure 1. Co-training flowchart.

4. WEB PAGE DIVISION
We divide HTML tags into two categories for the purpose of
web page division using the DOM tree. Structural tags are used
to define and group semantically-related text, and are
intermediate nodes in the DOM tree. They subsume content
tags which present the actual contents of the page. Tables,
division and layer tags are thus structural tags whereas font
formatting and list tags are content tags. In PARCELS – since
our goal is fine-grained classification – paragraph, image and
text that flank a content tag are also structural elements; i.e.,
they result in separate blocks.

PARCELS first does a pass over all of the leaf content tags,
which are largely non-overlapping parts of the web page (with
notable exception of layer tags and dynamic HTML). Content

tags are then associated with a proper container (i.e., the closest
ancestral structural tag). Leaf content tags that are associated
with the same container are merged, as long as they are adjacent
in the DOM tree. This algorithm is shown in Figure 2. The
calculation of a proper container makes our approach similar in
spirit to Yin and Lee [16].

Input: web page w;
 lists s and c of structural and content tags;
 maximum depth structural nesting depth d.
Output: list of blocks B.

DOM_tree t := get_DOM_tree(tidy(w));
For each leaf node l (of type c) in t {

Attach l to closest ancestor a (of type s) with max depth d;
}
For each intermediate node (of type s) {
 Block b := Merge all adjacent attached leaf nodes;

B = B + b;
}

Figure 2: Web page division algorithm.
In HTML, control tags (e.g., tables) can be recursively nested.
In practice, we rarely see more than four levels of nesting. As
such, we set a maximum nesting for structural tags, beyond
which the tags are ignored. This allows deeply-nested text to be
attached to higher-level ancestors, which we believe is more
likely to provide coherent meaning. The result of such a division
process is shown in Figure 3 below.

Figure 3: Web page after division. Contiguous dark regions

indicate a single block.
Our division algorithm is simple and robust, and can be easily
adapted to divide web pages according to other DOM-based
methods. A different inventory of structural and content tags
can be substituted to result in more coarse-grained blocks for
comparison.

5. BLOCK CLASSIFICATION MODEL
Resulting blocks need to be labeled. The choice of appropriate
labels is conditioned on the needs of the post-classification
application and the expected input. We have chosen to classify
online news pages by function. In a co-training framework, this
corresponds to constructing two orthogonal sets of features for
the separate learners l1 and l2. The choice of labels also
influences feature design. We first discuss our classification
scheme, and then turn to the features used in the stylistic and
lexical learners.

5.1 News page block classification
There are three major reasons for our choice of online news as
input:
1. Complex design. News sites are highly trafficked as they

contain important and timely information to users. As
such, news sites place an emphasis on the usability and

density of information on their pages. These requirements
are manifested in intricate layouts and result in tedious and
human-incomprehensible HTML. News site layout also
changes often, making other approaches such as wrapper
induction particularly fragile. These qualities make the
news domain an attractive target: 1) news itself is
important to extract for information aggregation services,
and 2) the induced rules may apply to news sites evolving
over time and to other simpler web page domains.

2. Mixed levels of granularity. A highly-structured domain
such as news allows us to experiment with different
granularity in classification. News articles have specific
features which are fine-grained fields that can be tagged,
such as the article’s location, publisher and reporter’s
name. The articles themselves are often formatted to allow
easy access to key sections of related news. This
phenomenon occurs in many well-structured text genres.
We capture the phenomenon by annotating these mid-level
tags: subheaders and supporting contents. Finally, coarse-
grained tags apply to most web sites, as in the
differentiation between site navigation and article-specific
content. We have designed our classification with multiple
levels of granularity to test PARCELS’ ability to capture
coarse-grained tags as well as fine-grained ones.

3. Related work. For the same reasons as the above, much
previous work has been published on the extraction and
tagging of news contents. Working with comparable input
allows us to compare our methodology with previous
approaches.

Label Description
Main content Main text of the article

Title Headline of the article or phrase that
summarizes the article

Site links / navigation
Links to other parts of the web site,
including navigation bars, but unrelated
to the article

Search Text / links related to searching or search
options

Links supporting contents
of article

Hyperlink placed within the main content
of the article

Supporting content Content related to the main article, (e.g.,
captions, sidebars)

Supporting Image Image related to the article’s contents

Subheader Embedded section headers internal to the
main article

Site content Content unrelated to the article (such as
disclaimers, copyrights)

Site image Site-specific image unrelated to the
article

Advertisement* External site advertisements. Not internal
(e.g., link to related sections)

Links to related article* Hyperlinks to other related articles (other
reports on similar topics)

Newsletter* Text / links related to newsletters or
email alerts

Location* Location where event occurred
Date / Time of article* Date and time the article was published
Source station* Source / provider / broadcast station
Reporter name* Author of the article

Table 1: PARCELS news domain classification. Fine-
grained classes are marked with the asterisk (*).

After examining over 10 online news sites, we defined 17 tags
to model observed commonalities, as given in Table 1. As some
blocks may demonstrate more than one class (e.g., the lead
paragraph of an article may contain the location where the event
occurred), we asked annotators to mark the most salient one.
We labeled 20 documents from 15 different news web sites for
classifier training, using a visual annotator (part of the
PARCELS toolkit), giving a total of 1,625 labeled blocks. As
one might expect, the distribution of the different tags in the
data set was skewed considerably, with site navigation and main
content blocks comprising almost 50% of the corpus. Details on
the distribution of the corpus are given in Table 2. To create the
unlabeled data set for our experiments, we further downloaded
50 news documents from 45 news web sites by selecting them
from sources gathered from the Google News2 service.

Class label Frequency in
corpus

 Class label Freq. in
corpus

Site Nav. 479 (29.5%) Newsletter 30 (1.8%)

Main Content 309 (19.0%) Title 20 (1.2%)

Site Content 150 (9.2%) Content Image 16 (0.9%)

Search 141 (8.6%) Timestamp 14 (0.8%)

Ads 134 (8.2%) Reporter 9 (0.5%)

Related Links 118 (7.2%) Country 6 (0.3%)

Site Images 74 (4.5%) Source 6 (0.3%)

Supp. Content 63 (3.8%) Content Link 3 (0.1%)

Subheaders 53 (3.2%)

Table 2: Class distribution in the corpus, sorted by
frequency.

5.2 Stylistic features
Stylistic features in PARCELS cover features that encode
information about the block’s placement on the page and its
appearance. Our parser parses the stylistic properties of each
block of text based on some of the design trends today [6]. We
cover placement features first. Unlike some approaches that
retrieve the x,y location of an element from a browser’s internal
DOM tree [16], our approach is browser-agnostic.
Authors of web pages have three major control structures to
spatially lay out blocks on a stand-alone3 web page: a default
linear style, tabular formatting and layer formatting. As such,
PARCELS first attempts to identify the prevalent system used.
This is done by taking an inventory of tabular and division tags
present in the topmost levels of the DOM tree. Our data analysis
shows that <TABLE> and <DIV> tags used close to the root of
the DOM tree have a strong correlation respectively to tabular
and layer-based markup. This validates earlier findings [5].

2 http://news.google.com
3 Control structures that use multiple web pages, such as frames,

are beyond the scope of the work presented here.

Once the layout control system is identified, an appropriate
subsystem is called to parse the page. As both tabular and
division-based layouts degenerate to the simple linear style
when table, CSS and XHTML tags have been processed, both
the tabular and division-based parsers internally invoke the
linear parser for finer- grained blocks within the web page.

5.2.1 Linear structure
Paragraph (<p>), header (<h1>-<h6>) and rule tags (<hr>)
specify the basic unit for a block of text. Consecutive paragraph
tags constitute separate blocks for our task, in contrast to earlier
work which tends to view a span of paragraphs as a single
block. The resulting fine-grained blocks are necessary for
semantic classification. Use of coarser-grained blocks tends to
conflate many classes. The power of fine granularity
classification comes with a price: the number of words in an
average block is much lower than in other division models,
which affects the classification power of the lexical view in the
learning model.

5.2.2 Table Structure
Tables are the most widely used control structure on the Web.
Initially introduced to present data in tabular format, the table
has evolved into a formidable control structure and has been
extensively analyzed by researchers.

Hurst and his colleagues have analyzed data tables in scientific
texts [2][3][4]. We follow their formalism by introducing
features that model the 1) reading order (or cell flow) of table
elements, 2) the implied semantics of adjacent data values and
3) the implied semantics of table cell positions:

1. Features for cell flow refer to how each cell is positioned
next to another in their parent table and how each table is
positioned within the nested parent table. These features
may provide extra information that help to classify cells
correctly.

2. In [3], Hurst implies that the data of neighboring table cells
can help determine a particular cell’s data type. As cells of
the same data type are often closely related, this affects
how a table as a whole is intended to be read. In
PARCELS, we model this by introducing a feature that
groups cells in the same row or column together if they
have similar data types. Data type in this context is
determined by the cell’s type of data and its word density,
where applicable. Type of data is determined by the text in
the cell. If the text in a particular cell is all numeric, it
would be different from another group of cells which are
words. Similarly, word density refers to the number of
words that particular cell contains with respect to the whole
page. It indicates the importance of a cell in terms of word
density.

3. The position of table cells is equally important. We have
created features that encode each cell’s visual position.
These features enable us to infer the cell’s position with
respect to any nested table or the parent table itself. Using
the position of the cells and their stylistic properties, we
can determine whether a row or a column of cells are
header cells and such. Finally, as nested tables are a very
common phenomenon in this process, we have added an
additional feature to model cell depth.

5.2.3 XHTML/CSS Structure
In contrast to table cells, divisions and spans can be laid out
independently. These structures are often used to impose
logical structure and reading order on the elements of the page.
CSS tags allow both division and spans to inherit either relative
or absolute positioning features that also need to be encoded.
For pages that use these tags, percentages as well as absolute
pixel settings can be used for setting the height or the width of
divisions. Absolutie pixel positions need to be converted to
percentages. This is done by finding the maximal x,y position
for any cell on the page, and normalizing the position of all
other cells against this coordinate.

XHTML also allows the layering of overlapping elements using
a CSS attribute, z-index. Overlap affects classification as
content is placed over background images, and advertisements
occasionally float over the main page. As such, the z-index is
also modeled in our layout features.

5.2.4 Font features
The textual formatting of text may affect its classification. For
each block, we derived features that model its words’ color,
weight, family, size and hyperlink features. Instead of capturing
their value directly, we model the relative difference from the
page’s median values. For example, we target to learn that
larger fonts than normal (rather than learn that a specific font
size) indicate subheaders and titles. Learning relative
differences helps to make the learned model more portable to
new, unseen web pages.

5.2.5 Image features
Web blocks often feature images in the form of either web page
decorations or content features. We model their sizes (where
available) and number of images within a block.

5.3 Lexical Features
The lexical view receives only the string of tokens present in a
web page block. PARCELS first calculates low-level features
based on the words themselves and their statistical properties.
To model the linguistic and functional properties of the web site,
PARCELS also calculates high-level features, consisting of the
part-of-speech (POS), types of hyperlinks and image counts for
a span of text.

5.3.1 Low-level features
We have provided the learner with two basic features to model
the count and vocabulary of the words present in the text block.
We first extract text that appears in the browser by extracting
any alt text from image tags and then removing any
remaining HTML tags. The resulting words are stemmed using
Porter’s stemmer and the stems are used as features for
classification. Fine-grained classes (e.g., newsletter and search)
often have a set expression or vocabulary that makes them
distinguishable. The weight of each word is set in accordance to
its TF×IDF (term frequency × inverse document frequency) [10]
score, in which the IDF component has been pre-computed from
a separate corpus.

5.3.2 High-level features
To perform part-of-speech (POS) tagging, we utilize QTAG4,
which uses a simplified variant of the common Penn Treebank
tag set. Ratios of each part of speech tag count relative to the
total are provided. This results in 32 POS-related features. For
certain common POS, we provide aggregate POS features as
well (e.g., a noun ratio adds the separate plural and singular
noun ratios together).
The lexical features include four link-related features: mailto-
links, image-links, text-links and total-links. mailto-links refers
to the number of links containing the string “mailto:” which
implies feedback / email functionality. image-links refers to
links which point to images (quite distinct from the stylistic
vector’s image tag count). This can help identify thumbnails that
point to larger versions. The remaining links are counted as
normal text-links. The sum total of all three link types is given
in the aggregate feature total-links.

6. CO-TRAINING WITH BOOSTEXTER
In performing co-training, an appropriate machine learner must
be selected. In PARCELS, we employ Boostexter [11] as it is a
multi-class learner that handles both numeric and textual
features. Boostexter is an ensemble learning method which
combines a set of weak classifiers to determine an input vector’s
classification. In a series of rounds, a new weak learner is
induced over the training data, in which the tuples that have
been incorrectly labeled from the previous round are more
heavily weighted for the current round. Boostexter’s weak
learner corresponds to a decision stump, in which a single
feature is used for discrimination.
As Blum and Mitchell’s original work [1] is applicable only to
binary classification problems, we have adapted the original
algorithm to a multi-class setting. In the original algorithm, the
number of self-labeled positive and negative examples that are
added to the training data is determined by their initial
distribution in the training data. This is to prevent skewing
training data distribution during co-training iterations. In the
multi-class problem, we also attempt to do the same, adding
self-labeled instances from each class in the same proportion as
in the initial distribution. We round up any fractional values to
whole tuples, as many of the classes make up a small fraction of
the corpus, and would otherwise not contribute a self-labeled
example in subsequent rounds.
We make one further modification to the co-training algorithm.
In the original algorithm, the k most confident self-labeled
examples are replaced by k new examples from the unlabeled
pool. As unlabeled data is inexpensive to prepare, we simplify
the step by replacing the entire unlabeled pool of u examples at
each round. Having a fresh set of unlabeled examples is likely
to improve classifier accuracy (assuming the examples are
drawn from the same distribution) as self-labeled examples that
are not chosen at each round are not reconsidered in later
iterations.
To create a combined classifier, the confidence of output labels
of both the stylistic and lexical classifiers are compared, and the
classifier with the higher confidence is used as the final label.

4 http://web.bham.ac.uk/O.Mason/software/tagger

7. EVALUATION
To assess the performance of PARCELS and validate our
claims, we have performed the following experiments:
1. We first assessed the co-trained classifiers with the

scenario specified in the paper (e.g., using fine-grained
block division, followed by block classification into the 17
categories. We compared the performance versus a single
Boostexter-based classifier which used both the lexical and
stylistic features together.

2. To assess how PARCELS performs on web pages that use
advanced XHTML and CSS tags for layout, we conducted
a separate evaluation with a corpus of web pages that
specifically use CSS.

3. Finally, we compared our work with previous work which
uses coarser-grained classification. In particular, we
compared our work against another news web block
classification system: Song et al.’s three-level model (i.e.,
unrelated, topically related and important).

We used the standard measures of error rate to gauge the
performance of the overall system, and the F1 measure (defined
as the harmonic mean between precision and recall) to capture
performance on individual classes. We carried out all
experiments using five-fold cross-validation, in which five
independent training and testing splits were used to minimize
noise. Throughout our evaluations, we determined an optimal
number of rounds of boosting to be applied through cross-
validation.

7.1 Basic Performance
For the first experiment, we assessed the classifiers’
performance on the basic data set mentioned in Section 5.1. The
default hypothesis corresponded to using the most frequent class
in the training data as the label for every example. Site
navigation was the most frequent class, corresponding to 29.4%
of the training data. This resulted in a baseline error rate of
70.6%. Using the single-view model in which all features (both
stylistic and lexical) were used, the learned Boostexter classifier
improved the error rate to 35.0% percent.
Separate stylistic and lexical learners had access to only a subset
of the combined classifier, and as such, we expected them to
perform worse. Surprisingly, they both outperformed the single-
view model, achieving 33.2% and 32.5% error for the lexical
and stylistic classifiers alone (respectively). Also surprisingly,
the combined classifier (which used the label of the most
confident classifier) fared worse than either of its component
classifiers and the single-view model, with a 38.4% error rate.
As mentioned earlier, co-training allowed us to incorporate self-
labeled examples from unannotated data to improve
performance on the test set. We used our previously
downloaded set of 50 web pages for the co-training iterations,
comprising slightly over 6,000 separate blocks. In each round,
300 blocks were self-labeled by the machine learners (this is the
u parameter, the size of the unlabeled pool), and the 20 most
confident examples (the k parameter) were added to the training
data. These changes contributed at most a 20/1200 = 1.6%
increase in the size of the training data per round. We co-trained
for 20 rounds (parameter r) to exhaust the unlabeled data. The
plot of the error rate versus co-training iterations is shown

below in Figure 4. In the figure, the leftmost values correspond
to the performance without co-training (round 0), and are the
same as those mentioned in the above paragraph.
Similar to [1], we see that over a number of iterations, co-
training did improve the performance of the classifier. All three
learners benefited from the co-training process. The reduction
in error rate for the classifiers was 35.8%, 6.1% and 34.8% for
the lexical, stylistic and combined classifiers, respectively
(averaged over five folds of cross validation). This result
validates our hypothesis that co-training does improve learner
performance in the domain of web block classification. The
combined classifier achieved a 28.5% reduction in error rate in
comparison with the single-view model. The lexical classifier
exhibited both the smoothest and the best percentage
improvement. We believe that this is due to the variety of
different vocabulary exhibited on the web pages for each of the
categories. The self-labeled data gathered from the stylistic
learner may be able to help the lexical learner pinpoint key
words that are discriminative.
How does PARCELS do on individual classes? We investigated
the results on the combined classifier. In short, it performed
satisfactorily on major classes, but disappointingly, it did not
achieve our goal of fine-grained classification at any level.
PARCELS is able to detect main content, site navigation and
search bars well, but fails to annotate any of the fine-grained
classes.

0.2
0.22
0.24
0.26
0.28
0.3

0.32
0.34
0.36
0.38
0.4

1 3 5 7 9 11 13 15 17 19

Co-training iterations

Er
ro

r R
at

e

Single-view

Lexical

Stylistic

Combined

Figure 4: Error rate per co-training iteration for the

learners with five-fold cross validation, for i=20, k=20,
u=300.

Table 3 shows the effect of co-training on per-class detection.
While co-training helped to improve the performance of the
common classes, the performance of the smaller classes
decreased.

Iteration 1 Iteration 20

Label F1 Label F1

Main Content .829 Main Content .892

Site
Navigation

.705 Site Navigation .816

Search .509 Search .703

Site Content .282 Site Content .148

Related Links .276 Related Links .071

Site Image .195

Content Image .118

Table 3: Per-class F1 performance of the combined classifier,
at iteration 1 (left column) and iteration 20 (right column).

All other classes obtained an F1 of 0.

We feel that the performance of PARCELS on coarse-grained
tags is acceptable and serves as a motivation for us to further
our work. PARCELS’ failure to detect fine-grained classes
forces us to re-evaluate our approach to fine-grained class
detection. Perhaps part of the cause for the failure is the
relatively small number of examples of fine-grained classes in
the corpus. It is also likely that the feature set currently in
PARCELS is better suited for coarse-grained classes. We
hypothesize that contextual features (i.e., features of
neighboring blocks) and higher-level lexical features (e.g.,
named entities for location and reporter name) would assist in
the detection of these classes. Further modeling of features
similar to those used in wrapper induction (i.e., encoding of the
XPath to the block) may also help address this limitation.

7.2 XHTML/CSS Performance
To assess PARCELS’ performance on XHTML / CSS-based
data, we performed a separate experiment using data gathered
from news sites using XHTML and CSS-based layout. This
corpus was smaller, comprising a total of five documents that
were also manually annotated. This process resulted in 499
labeled blocks, with a distribution as shown in Table 4. We also
downloaded a set of six unlabeled documents, resulting in 800
unannotated blocks to be used for unsupervised co-training.
Main content was the most frequent class, corresponding to
17.6% of the training data, and a baseline error of 83.4%. Using
the single-view model in which all features (both stylistic and
lexical) were used, the learned Boostexter classifier improved
the error rate to 33.3%.

Class label

Freq. in
corpus

 Class label

Freq. in
corpus

Main Content 88 (17.6%) Search 12 (2.4%)
Site Content 80 (16.0%) Supp.Content 12 (2.4%)
Site Nav. 70 (14.0%) Content Img. 6 (1.2%)
Related Links 66 (13.2%) Title 4 (0.8%)

Subheaders 39 (7.8%) Newsletter 4 (0.8%)
Content Links 33 (6.6%) Reporter 3 (0.6%)
Site Images 30 (6.0%) Country 1 (0.2%)
Ads 30 (6.0%) Source 0 (0.0%)
Timestamp 21 (4.2%)

Table 4: Class distribution in the XHTML/CSS corpus.
The separate stylistic and lexical engines performed worse than
the single-view model before co-training, achieving error rates
of 39.7% and 39.5% respectively for the stylistic and lexical
views. The combined classifier again did poorer than either of
its component classifiers, achieving an initial error rate of
42.3%. Using parameters similar to those in Section 7.1 to
achieve the same 1.6% increase in training data size per
iteration, co-training assisted in improving the overall accuracy
of the separate learners but did not improve over the single-view
model. One possible reason is that we simply did not have
sufficient unlabeled data for co-training to work in this scenario.
In the previous experiment, unlabeled data outnumbered labeled
training data in a 4:1 ratio, whereas only a 2:1 ratio was
achieved in this experiment. This is due to the difficulty in
finding web sites that currently use the XHTML/CSS model for
layout. We conjecture that a larger corpus of unlabeled data may

reduce the error rate. Figure 5 shows the effect of co-training on
error rate over nine iterations.

0.3

0.32

0.34

0.36

0.38

0.4

0.42

0.44

1 2 3 4 5 6 7 8 9

Co-training iterations

Er
ro

r
Ra

te

Single-view

Lexical

Stylistic

Combined

Figure 5: Error per co-training iteration for XHTML/CSS

only data, where i=9, k=10 and u=70.

7.3 Comparative Performance
Song et al. [13] have also tackled a similar problem of web page
block division and classification. Their final experiments
classified blocks into a three-level model of block importance.
The first level was used to annotate noisy information:
advertisement, copyright and page decorations. The middle
level (denoted as Level 2/3 in their paper) encompassed “useful
information but not very relevant to the topic of the page”, as
well as other “relevant information to the theme of the page but
not with prominent important”. This included site navigation,
related topics and topic indices. The final level labeled the most
prominent parts of a page, such as headlines and main content.
For comparison, we modified our block segmentation algorithm
to segment the page into a larger granularity similar to the
original VIPS algorithm [18] used by Song et al. VIPS uses
visually coherent parts in the page that sometimes are not
possible to model using dominating nodes in the DOM tree. As
a result, we could not divide the web page with the same model
as theirs, but instead approximated their division algorithm by
setting our system to create coarser-grained divisions.

Importance Level Frequency in corpus
Level 1 (least important) 118 (65.9%)
Level 2 43 (24.0%)
Level 3 (most important) 18 (10.1%)
Table 5: Class distribution in the corpus using the three-

level annotation model of Song et al. [13].
After segmentation, we re-annotated our training data according
to their three-level system. The distribution of the three classes
is shown in Table 5. With the annotated data set, we assessed
the classifiers’ performance. The default hypothesis, which
predicted Level 1 resulted in a baseline error of 34.1%. The
single-view model using both stylistic and lexical features
achieved an error rate of 19.5%, in comparison to Song et al.’s
approach, which achieved an error rate of 14.1%, 18.9% and
16.2% using different machine learning models. As such, we
believe our system is comparable, as we did not tune our system
over through the application of different machine learners.

0.15

0.2

0.25

0.3

0.35

0.4

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Co-training iterations

Er
ro

r R
at

e

Single-view

Lexical

Stylistic

Combined

Figure 6:Error per co-training iteration on the three-level

annotation model, using i=20, k=4 and u=40.
Co-training seems to be ineffective in this final scenario. We
followed the same experimental procedure as in the previous
experiments, keeping the ratio of self-labeled examples added to
the training data pool balanced. However, the learners did
benefit from the results of the co-training process. After 20
rounds of co-training that exhausted the unlabeled data set, we
saw no apparent gain in performance; rather, the error rate
increased. While the combined learner started with an error rate
of 21.1% and ended with 17.6% error, the general trend over the
iterations did indicate significant performance improvement. We
plan on conducting further analysis to pinpoint the cause.

8. CONCLUSIONS AND FUTURE WORK
We have demonstrated PARCELS5, an open-source, trainable
system for web page division and block classification. We used
a co-training model to leverage unlabeled data for partially
unsupervised learning, and showed that it improves performance
for our main task of block classification, achieving an overall
error rate reduction of 28.5% over a single-view learner which
used both stylistic and lexical features together in its feature set.
Having separate co-trained learners improved performance on
the basic stylistic and lexical learners for our fine-grained block
division model. However, co-training failed to improve results
over the single-view learner in our extended experiments. At
this point, we have some plausible explanations why the co-
training model did not improve upon the basic system, and plan
to test these hypotheses in our on-going work.
Current work in PARCELS includes improving the quality of
features used in classification. We plan to add modules to
handle link structure [15] and common cross-document structure
[8][17] to improve performance. Complex web sites often use
content management systems that generate templatized HTML
that is structurally common between web pages. Our planned
module comprise of another view that models the web page in
the context of its immediate community of pages.
Our current version of PARCELS is unable to perform fine-
grained classification, in which specific fields, such as reporter’s
name, location and date/time are to be annotated. This tells us
that our current framework is unsuited for information
extraction use. We plan to focus on the annotation of these
classes by using more powerful features such as those based on
XPath, and using a machine learner that is more effective in
modeling minority classes in multi-class scenarios (e.g., cost
factor settings in SVM).

5 http://parcels.sourceforge.net/

9. REFERENCES
[1] Blum, A. and Mitchell, T. Combining labeled and unlabeled data

with co-training. In Proc. of COLT ‘98, pages 92-100. 1998.

[2] Cohen, W.W., Hurst, M. and Jenson, L.S. (2002). A flexible
learning system for wrapping tables and lists in HTML documents.
In the 11th WWW Conference, Hawaii, 2002, pp. 232 – 241

[3] Hurst, M. and Douglas, S. (1997). Layout & Language:
Preliminary experiments in assigning logical structure to table
cells. In Proc. of Applied Natural Language Processing Conf.,
Washington, 1997, pages 217–220.

[4] Ghani, R. Combining labeled and unlabeled data for text
classification with a large number of categories. In Proc. of IEEE
Int’l Conf. on Data Mining, pages 597-598. 2001.

[5] Hurst, M. Layout and Language: Beyond Simple Text for
Information Interaction – Modeling the Table. In the 2nd Int’l Conf.
on Multi-model Interfaces, 1999.

[6] Ivory, M.Y. Characteristics of Web Site Designs: Reality vs.
Recommendation. In Proc. of HCI Int’l Conf., 2003.

[7] Nigam, K. and Ghani, R. Analyzing the effectiveness and
applicability of Co-Training. In Proc. of the 9th Int’l Conf. on
Information and Knowledge Management, pages 86–93. 2000.

[8] Ramaswamy, L., Iyengar, A., Liu, L. and Douglis, F. Automatic
Detection of Fragments in Dynamically Generated Web Pages. In
Proc. of WWW ’04, pages 443-454. New York, USA. May 2004.

[9] Reis, D., Golgher, P. B., da Silva, A. and Laender, A. H. F.
Automatic Web News Extraction Using Tree Edit Distance. In
Proc. of WWW ’04, pages 502-511. New York, USA. May 2004.

[10] Salton, G. and Buckley, C. Term-weighting approaches in
automatic text retrieval. Information Processing and Management.
24:513-523. 1988.

[11] Schapire, R. E. and Singer, Y. BoosTexter: A boosting-based
system for text categorization. Machine Learning, 39 (2/3), pages
135-168. 2000.

[12] Shih, L. K. and Karger, D. R. Using URLs and Table Layout for
Web Classification Tasks. In Proc. of WWW ’04, pages 193-202.
New York, USA. May 2004.

[13] Song, R., Liu, H., Wen, J.-R. and Ma, W.-Y. Learning Block
Importance Models for Web Pages. In Proc. of WWW ’04, pages
203-211. New York, USA. May 2004.

[14] Wong, W. and Fu, A. W., Finding Structure and Characteristics of
Web Documents for Classification. In Proc. of ACM SIGMOD
Workshop on Research Issues in Data Mining and Knowledge
Discovery (DMKD). Dallas, USA. 2000.

[15] Xi, W., Zhang, B., Chen, Z., Lu, Y., Yan, S. and Ma, W.-Y. Link
Fusion: A Unified Link Analysis Framework for Multi-Type
Interrelated Data Objects. In Proc. of WWW ’04, pages 319-327.
New York, USA. May 2004.

[16] Yin, X. and Lee, W.-S. Using Link Analysis to Improve Layout on
Mobile Devices. In Proc. of WWW ’04, pages 338-344. New
York, USA. May 2004.

[17] Ye, S. and Chua, T.-S., Detecting and Partitioning of Data Objects
in Complex Web Pages, In Proc. of Web Intelligence ’04, Beijing.
China. September 2004.

[18] Yu, S., Cai, D., Wen, J.-R., and Ma, W.-Y., Improving pseudo-
relevance feedback in web information retrieval using web page
segmentation. In Proc. of WWW ’03, pages 11-18. Budapest,
Hungary. May 2003.

