

Context-aware Image Tweet Modelling and Recommendation

Tao Chen, Xiangnan He and Min-Yen Kan School of Computing, National University of Singapore

Introduction

Research Questions

- How to represent the semantics of an image tweet?
 - Are visual objects sufficient?
- How to utilize such representations for personalized image tweet recommendation task?

Our Contributions

- We propose a CITING framework to model image tweet by its contextual text
- We develop a feature-aware matrix factorization model to capture user's personal interest
- We have released code and datasets: https://github.com/kite1988/famf

CITING: Context-aware mage Tweet Modelling

3. Extended context

Personalized Image Tweet Recommendation

Experiments

Dataset from Twitter

- The traditional Matrix Factorization model does not work well due to serious cold start problems
- To alleviate this, we propose feature-aware Matrix Factorization (FAMF) to model user's interest
 - Decompose user-item interaction to user-feature interaction
 - Item's latent factor User's latent factor

	Twitter Users	Retweets	All Tweets	Ratings
Training	027	174,765	1,316,645	I,592,837
Test	926	9,021	77,061	82,743

Evaluation

- For each user, keep the recent 10 retweets as test set and the rest as training set
- Report mean average precision (MAP) and precision at top positions

	Method	Features	P@1	P@3	P@5	MAP
	Random		0.114**	0.115	0.115	0.156**
2	Length	Post's text	0.176**	0.158	0.150	0.173**
3	Profiling	Post's text	0.336**	0.227	0.197	0.202**
4	FAMF	Visual objects	0.211**	0.205	0.192	0.211**
5	FAMF	Post's text	0.359*	0.325	0.287	0.275**
6	FAMF	Non-filtered context	0.413	0.352	0.319	0.296
7	FAMF	CITING	0.419	0.355	0.319	0.298
8	FAMF	CITING + Visual objects	0.425	0.350	0.313	0.298

- Pair-wise Learning to Rank
 - Positive tweets (retweets) should be ranked better than negative tweets (non-retweets)
 - Bayesian Personalized Ranking [Rendle et al. 2009]
 - Infer the parameters via stochastic gradient descent (SGD)

**: p<0.01, *: p<0.05

- 4-8 vs. 1-3: FAMF is effective in modelling user interest
- 4 vs. 5: Visual objects are not sufficient to model Twitter image's semantics
- 7 vs. other: Our CITING text significantly outperforms the others
- 7 vs. 6: The filtered fusion rules improve text quality
- 8 vs. 7: The further incorporation of visual objects does consistently improve the performance

Tao Chen: chentaokite@gmail.com

ACM MM 2016, Amsterdam, The Netherlands