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Abstract. Billions of people spend their virtual life time on hundreds of
social networking sites for different social needs. Each social footprint of a
person in a particular social networking site reflects some special aspects
of himself. To adequately investigate a user’s preference for applications
such as recommendation and executive search, we need to connect up all
these aspects to generate a comprehensive profile of the identity. Pro-
file linkage provides an effective solution to identify the same identity’s
profiles from different social networks.

With various types of resources, comparing profiles may require plenty
of expensive and time-consuming features such as avatars. To boost the
online social network profile linkage solution, we propose a cost-sensitive
approach that only acquires these expensive and time-consuming features
when needed. By evaluating on the real-world datasets from Twitter and
LinkedIn, our approach performs at over 85% F1-measure and has the
ability to prune over 80% of the unnecessary feature acquisitions, at a
marginal cost of 10% performance loss.
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1 Introduction

Online social network is the most important part of the cyber-life, where ne-
tizens share their lives, express their opinions, communicate with their friends
and business partners. People use more than one social network to satisfy dif-
ferent social needs of sharing, reading, discussing and communicating. He may
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communicate his friends in Facebook, post his comments in Twitter, show his
life in Instagram and connect to his business in LinkedIn. To picture a person
completely, especially for executive search and recommendation, it is very impor-
tant to cover all aspects of the person’s virtual footprints. Therefore, finding an
effective solution to identify users for the same identity has high attractiveness
in academic study and commercial value in business.

The similar task, record linkage, has been investigated in traditional database
research area for decades. There is also several related work addressing the prob-
lem in social network perspective recently[1–7]. However, these approaches barely
apply to the large-scale dataset and fail to consider the difficulty dealing with
the time-consuming and expensive feature acquisitions. In this paper, we pro-
pose an effective and efficient approach taking both features directly extracted
from profiles and expensive features acquiring cost-sensitively.

The remainder of this paper is structured as follows. We first describe the
related work that informs our task in the next section. In Section 3, we define
our problem and describe our analysis of online social network user profiles. This
motivates our chosen method to maximally leverage well-populated attributes
in profiles for profile linkage, which we present in Section 4. In Section 5, we
evaluate our approach on it to examine both effectiveness and efficiency.

2 Related Work

2.1 Profile Linkage across Social Networks

Although profile linkage problem just rises along with the booming develop-
ment of online social networks, the related task record linkage, also named as
entity resolution, has been well studied in traditional database area, including
named attributes computations[8, 9], schema mapping for heterogeneous data
structures[10–12], probabilistic linkage models[13] and duplicate detection for
hierarchical-structured data[14].

Inherited from record linkage task, several work addresses the profile link-
age task by applying the intuitive attribute comparison approaches into social
network occasions[1–4, 15]. Liu et al. [16] and Zafarani et al. [7] carefully inves-
tigate behaviors of how a user generate his username, and then discover user’s
characteristics to identify the same individual. Besides attributes comparison,
Narayanan et al. [5] and Bartunov et al. [6] rely on social connections and set-
tle identification by exploiting the assumption that a person has similar social
circles across different web sites.

However, these work is not based on the real world dataset, which ignores
the problems of time-consuming and expensive feature acquisition procedures.
When dealing with large-scale data, the enormous cost has to be considered.

2.2 Cost Sensitive Feature Acquisition

Traditional linkage tasks usually gather all attributes locally and features are
easily generated. Thus the cost of acquiring and computing features is omitted.
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However, both employing web services results acquiring external resources from
web and in extremely high cost comparing to local similarity computation.

Several approaches are investigated to deal with missing attribute values ac-
quisition [17–19]. Lin et al. [20] improved probabilistic K-NN with acquiring
attribute values of uncertain data objects. Tan et al. [21] proposes a hierarchical
cost-sensitive approach to acquire search engine results with hierarchical depen-
dencies. However, user profile linkage task acquires various types of features with
both time cost and usage limitations. These approaches are not designed to solve
the profile linkage tasks in which we should consider the hybrid cost controlling.

3 Motivation

3.1 Profile Linkage

Identity refers to a unique entity, such as individual people, groups and compa-
nies, which is usually identifiable in the real-world. Profile refers to a particular
social network’s account for the identity, which consists of attributes with val-
ues. In different social networks, an identity may register several accounts to
cover different social applications. Intuitively, profiles from the same identity
should be quite similar to each other. Profile linkage is then defined as the
task that discovers profiles projected from the same identity. Similar to other
linkage tasks, profile linkage has two kinds of solutions: 1) clustering profiles for
a certain identity; 2) comparing each pair of profiles to determine whether they
belong to the same identity.

We address the profile linkage problem by comparing candidate profile pairs,
denoted as pairwise profile linkage. Notice that there exist transitivity conflicts
when involving more than two social networks. In this paper, we only solve the
case of two social networks and leave the transitivity conflicts in future work.

The online social network profile linkage faces unique characteristics, includ-
ing semi-structured data, multimedia resources, privacy and so on. Therefore,
attributes in profiles are often sparse and arbitrary. Meanwhile, profiles in differ-
ent OSN often prefer different attributes. As an example, Twitter is most public
and similar to most other closed social media (i.e., FaceBook), where people
share their personality to attract followers.

To take full advantage of online social network profiles, we adopt two external
features to solve the problem of sparse and arbitrary features: 1) Geocode is a
kind of structured locality information, which is much more precise than compar-
ing textual location. Google Maps API provides web service to convert strings
to geocodes. 2) Avatar is the most common multimedia resources in profile. A
person may use same portrait across different social networks, which provides a
very strong evidence when distinguishing between people with the same name.

3.2 Cost-Sensitivity

Since adopting time-consuming features such as geocode and avatar, we face a
trade-off between the feature acquisition cost and the classifier performance.
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The acquisition of the complicated features could be very time-consuming. The
web services even have limitations or payments for the usage. The expensive fea-
ture acquisitions motivate the cost-sensitive approach that carefully selects the
most distinguishable features with less cost.We regard the selective feature acqui-
sitions that reduce the time and network cost as the micro-level cost-sensitivity.

In this work, the object of the approach is to achieve better results with
less time-consuming within the given usage quotas. To every comparison having
available extra feature, we define that the comparison benefits if it is re-classified
to be correct by given certain extra feature. Therefore, we predict the expected
benefit of a comparison in unit time-consuming and adopt the expectation as
the criteria of selecting the most effective feature.

4 Approach

To solve the online social network profile linkage, we propose an indexing frame-
work. We index all profiles by tokens extracted from usernames. The tokens
are the continuous letters or digit sequences separated by spaces or symbols.
Based on Liu et al. [16]’s survey, 79% users prefer same username across dif-
ferent communities. Our investigation also shows that 96.1% matched profiles
are connected by at least one token. Therefore, two profiles are very unlikely to
be matched without a shared token, which helps to prune unnecessary pair-wise
comparisons.

Afterwards, we retrieve all pairs of profiles that share at least one token and
adopt a probabilistic classifier to determine whether the given two profiles are
from the same identity.

4.1 Probabilistic Classifier

The probabilistic classifier is employed to estimate the probability of whether
two given profiles q and t are linked (denoted as lq,t = {0, 1}), by given similarity
features Fq,t and shared tokens Mq,t. By assuming the similarity features and
shared tokens are independent of each other, we have:

pq,t = Pr(lq,t|Fq,t,Mq,t) =
Pr(lq,t|Mq,t)×

∏
fk∈Fq,t

Pr(fk|lq,t)
∏

fk∈Fq,t
Pr(fk)

(1)

where Pr(lq,t|Mq,t) is approximately calculated by:

P̂ r(lq,t = 1|Mq,t) =
1

|⋂m∈Mq,t
Dm|+ β

(2)

where Dm is all profiles indexed by token m and β is a smoothing factor prevent-
ing Pr(lq,t|Mq,t) from being 1. We set β = 0.5 empirically in our experiments.

By applying Pr(lq,t = 0|·) + Pr(lq,t = 1|·) = 1 to Equation 1, the equation is
derived:

pq,t =
1

1 + (|⋂m∈Mq,t
Dm|+ β − 1)×∏

fk∈Fq,t

Pr(fk|lq,t = 0)

Pr(fk|lq,t = 1)

(3)
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where P̂ r(fk|lq,t) is estimated by kernel density estimator [22, 23]. Finally, q and
t are regarded as matched if pq,t > 0.5.

4.2 Features

CSPL uses features discovered from user’s profile to conduct the supervised
linkage. These features are consist of local features extracted directly from profile
attributes, and external features acquired by web services or web resources. To
estimate the benefit for cost-sensitive acquisition, all features are normalized to
a range of [0, 1]. Table 1 lists all the involved local features and how they are
computed.

Table 1. Local similarity features extracted directly from profiles

Feature Description

user sim Jaro Winkler distance between two usernames

language Jaccard similarity of the written or spoken languages

description vector-space model cosine similarity of user’s biography

URL cosine similarity of the URL tokens (split by symbols)

popularity
|friendq−friendt|
|friendq+friendt| where friendu is the counts of user u’s friends

Besides these easily acquired local features, we also employ two time-consuming
and usage-limited features: avatar and geocode as discussed in section 3:

1. Avatar is user uploaded image, given as a URL in the profile. We employ
a gray-scale χ2 dissimilarity, a bin-by-bin histogram difference by [24], to
compare avatars. This method has been reported effective for texture clas-
sification, and represented as:

Favatar =
1

2

∑

i∈Bins

(Hq,i −Ht,i)
2

(Hq,i +Ht,i)
(4)

where Hq,i and Ht,i is the ith bin of the image’s gray-scale histograms.
2. Geocode is the structured information with lat-long coordinates. We access

Google Maps API to convert textual location into geographic coordinates,
and then calculate spherical distance d in kilometers for comparison. At last,
we use e−γd to normalize the distance within [0, 1] with γ = 0.001 in our
experiments.

4.3 Cost-Sensitive Feature Acquisition

Note that some of our features are externally acquired. For example, obtaining
the Geocode requires API invocations, while obtaining a users’ Avatar requires
a separate resource request. These external features are expensive to acquire as
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they incur both network delays and bandwidth, and are much more costly than
computation over local features. We wish to manage these costs, so as not to
use external resources when the local evidence already overwhelmingly supports
a linkage decision.

In fact, compared to to acquiring external features, the cost of computation
over all local features is negligible. In our classifier, we thus first utilize all of
the local features in the beginning, and iteratively choose the instances that are
most probable to be improved by adopting a new external feature. We employ
a cost-sensitive classifier derived from Näıve Bayes to prune these unnecessary
network operations.

Let p̂ denote the probability distribution estimated by the existing set of
features, and the p̂+k′

be the posterior probability when conditioned on the
additional feature k′. Let fk′ be value of the extra feature, and we derive the
relationship between p̂ and p̂+k′

:

p̂+k′
=

1

1 +
1− p̂

p̂
× Pr(fk′ |l = 0)

Pr(fk′ |l = 1)

(5)

To efficiently improve linkage performance, we need to acquire the k′ feature that
is most effective. Here, we assume that adding features improves performance
at the entire dataset level. We estimate the benefit of acquiring a prospective
feature by its utility to raise the certainty of the classifications, either for a match
or a non-match:

(p̂− 0.5)(p̂+k′ − 0.5) ≤ 0 (6)

By solving the inequality, we can restate the post-condition of the classification:
{
gk′ < p̂−1 − 1, p̂ > 0.5

gk′ > p̂−1 − 1, p̂ ≤ 0.5
(7)

where gk′ represents the ratio
P̂ r(fk′ |l = 1)

P̂ r(fk′ |l = 0)
for convenience.

Note that fk′ is unknown and cannot be computed directly ahead of acquisi-
tion. We therefore must estimate the probability that gk′ satisfies the condition,
given p̂, which is difficult to compute accurately as the distribution of gk′ is
unknown. We thus need to develop an approximation method.

Notice that we have already estimated Pr(fk′ |l) by using the kernel density
estimator during training. Furthermore, all our features have values in normal-
ized range of [0, 1]. We sample s points Δ1, Δ2, · · · , Δs within [0, 1] following
the distribution of Pr(fk′) estimated during training using the kernel density
estimation. We then compute the corresponding estimation ĝk′ j |f ′=Δj . Suppose
that rp,k′ is the rank of value p̂−1 − 1 in the ordered list of {ĝk′}, we can then
compute the approximate benefit of acquiring feature k′ with equation:

Ek′
q,t = P̂ r(benefit|p, k′) =

⎧
⎨

⎩

rp,k′

s
, p > 0.5

1− rp,k′

s
, p ≤ 0.5

(8)
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where Ek′
q,t is the expectation of benefit given p̂ and k′.

In practice, acquiring different features has different time costs. This adds
another dimension of complexity to our feature acquisition process, as features
have different per time-unit benefit. If the time cost of acquiring feature k′ is
ck′ , the per time-unit feature benefit expectation of comparison with probability

p and added feature k′ is
Pr(benefit|p, k′)

ck′
.

We conclude the per time-unit benefit expectation of the given comparison
〈q, t〉 to be:

Eq,t = max
k′∈Kq,t

E+k′
pq,t

ck′
(9)

where Kq,t represents the set of acquirable features of the comparison 〈q, t〉. By
acquirable, we mean that a feature meets the following criteria: 1) have not been
acquired; 2) exist in both profiles; 3) its acquisition will not exceed a quota (e.g.,
a API daily limit). The most effective external feature is the one that maximizes
the benefit expectation.

5 Experiment

We set up experiments on linking 150,000 users across Twitter and LinkedIn to
evaluate the performance of our linkage approach and the efficiency and effec-
tiveness of the cost-sensitive feature acquisition method.

5.1 Linkage Performance

To evaluate the classifier’s performance, we crawled a realistic profile dataset
from Twitter and LinkedIn. The Twitter profiles are sampled from tweets posted
between 9 Oct. 2012 and 16 Oct. 2012. The LinkedIn profiles are sampled from
the directory1. In total, we obtained 152,294 Twitter profiles by RESTful API
and 154,379 LinkedIn profiles by parsing user profile pages, which are all publicly
available.

To discover the relationship between each LinkedIn and Twitter profiles, we
employ third party websites Google+ that encourages users to reveal their OSN
profiles. We generate the ground truth with the assumption that all corre-
sponding OSN accounts filled by one user belong to themselves. We crawled
180,000 Google+ profiles and extract the overlapping users of our dataset and
the Google+ profiles. This partial ground truth contains 9,750 identities: 4,779
matched Twitter–LinkedIn users, 3,339 singular Twitter users and 1,632 singular
LinkedIn users.

Besides the standard IR metrics: Precision (Pre), Recall (Rec) and F1-measure
(F1), we employ the identity-based accuracy (I-Acc), representing as:

I-Acc =
correctly identified identities

all ground truth identities

1 http://www.linkedin.com/directory/people/a.html

http://www.linkedin.com/directory/people/a.html
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We use simple classifiers like C4.5, SVM and Näıve Bayes as the base-line,
which have been reported effective in [2]. In our experiment, we choose Twit-
ter as the query dataset and LinkedIn as the target. To generate the training
set, We randomly sampled 1,000 query instances and all the corresponding tar-
gets. To evaluate the classifier performance adequately, we include all features
in this experiment. Table 2 shows that our approach CSPL make the best per-
formance both in F1 and I-Acc. Furthermore, our approach make a significant
improvement in recall with slight loss in precision, which discovers more linking
relationship between candidate pairs.

Table 2. Linkage performance over our Twitter→LinkedIn dataset with all features

Method Pre Rec F1 I-Acc

C4.5 0.905 0.658 0.762 0.806

SVM 0.942 0.456 0.614 0.727

Näıve Bayes 0.934 0.625 0.748 0.801

CSPL 0.866 0.846 0.856 0.865

5.2 Cost-Sensitive Feature Acquisition

CSPL is also designed to optimally control for cost in acquiring external features.
We denote our cost-sensitive approach based on benefit expectation as described
in Section 4.3 as CSPL BE.

Table 3. Cost-sensitivity with different pseudo time cost settings

Cl = Ca = 1 Cl = 1, Ca = 3 Cl = 3, Ca = 1
#I Acq Time Acq Time Acq Time

30% 2,000 2,000 2,000 2,110 4,000 8,273
60% 5,000 5,000 5,000 6,224 6,000 13,202
90% 32,000 32,000 32,000 79,072 32,000 45,824

Time (Max Acq = 188,590)

100% 188,590 439,880 314,480

Since CSPL BE is based on the time-unit benefit expectation, it is sensitive
to different time cost settings. To comprehensively evaluate the performance in
different time cost settings, we set up and investigate three pseudo time settings
to simulate possible cases: 〈Cl, Ca〉 = 〈1, 1〉, 〈Cl, Ca〉 = 〈1, 3〉 and 〈Cl, Ca〉 =
〈3, 1〉 , where Cl and Ca is the time cost of Geocode and Avatar respectively.
The experiment results are sampled per 2,000 acquisitions. To make the results
comparable, we set three checkpoints to estimate the approximate number of
acquisitions and time cost to the nearest sample. Table 3 gives pseudo time costs
over three checkpoints at 30%, 60% and 90% of all external feature acquisitions.
Coupled with the results from Figure 1, we see that CSPL BE achieved 90% of
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the remaining performance improvement that would be achieved by acquiring
all external features, by merely acquiring 17% additional features and between
15–18% more time (depending on cost settings).
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Fig. 1. Performance with different feature acquisition cost by given pseudo time cost.
Figures in the first row are evaluated by F1-measure and ones in the second row are
evaluated by I-accuracy.

To specifically evaluate our benefit estimation, we need to compare with other
forms to estimating the utility of yet unacquired features. We establish a base-
line (CSPL UN) that acquires the minimal cost feature of the most uncertain
comparisons. The uncertainty of a comparison is defined as 1−2×|p̂−0.5|, where
p̂ is the previous estimated probability of the comparison. Figure 1 displays this
comparison for the three different pseudo time cost settings and two evaluation
metrics. Note that acquiring only about 15% of the external is effective enough.
Thus we only investigate the subfigure in which the performance has not reached
stable status yet. Illustrated by the figures, our approach represented in solid
line increases faster than the baseline represented in dashed line despite different
time cost settings, which indicates that our approach performs better with the
same feature acquisitions or time cost.

5.3 Benefit Expectation

Our cost-sensitive feature acquisition strategy relies on the estimation to the ben-
efit expectation. We conduct this experiment to evaluate whether our algorithm
is able to correctly simulate the expectation before actual feature acquisition.

We evenly split [0, 1] into N buckets and assign the midpoint as the represen-
tative probability p̃i to the i-th bucket. We first initial the matched probability
p of each comparison computed by local features. Each comparison is then dis-
patched into a certain bucket according to p. We acquire every external feature
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individually for these comparisons and get updated results. The percentage of
beneficial instances within each bucket is then regarded as the actual benefit
expectation to the representative probability p̃i. Meanwhile, we have the set
of probabilities p̃i and then compute their corresponding Ek′

p without actually
involving the new features.
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(b) Feature Avatar

Fig. 2. Evaluation of the benefit expectation algorithm

In Figure 2, solid lines represent the prediction of the beneficial comparisons
calculated by our algorithm, while dashed lines represent the actual expectation
observed by actually involving new features. Figure 2 ((a)) and ((b)) corre-
sponding to feature Geocode and Avatar respectively. Figure 2 illustrates that
estimation and actual results are consistent, which indicates that our algorithm
correctly estimates the benefit expectation.

In addition, we observe that the instances classified as positives, i.e. potential
false positives, are more likely to be corrected than false negatives. It is mainly
caused by the unbalanced dataset where there are too many negative instances.
Meanwhile, the Geocode has a better benefit expectation with the same proba-
bility comparing to it Avatar, which indicates that Geocode is more effective in
improving performance. It provides an intuitive way to compare the effectiveness
between different features.

6 Conclusion

We investigate the profile linkage problem and propose a cost-sensitive proba-
bilistic approach to reduce time consuming feature acquisitions. To effectively
acquire external features, we establish an approximate algorithm to estimate the
benefit of involving a new feature with performance time unit cost. The strategy
is also able to satisfy the limitation of feature quota.

Our experiment results show the effectiveness of our approach with 85%
F1-measure and 86% I-accuracy compared to base-line. Our cost-sensitive frame-
work also has the ability to prune the unnecessary network acquisitions for ex-
ternal features while keeping the performance loss in an acceptable level. Indeed,



Online Social Network Profile Linkage 127

with only 10% loss on F1-measure, we achieve more than 85% network acquisi-
tions reduction.

In the future work, there are two routines to improve the linkage approach:
1. Improve linkage approach with more than profile resources, such as involving
social connections, user generated content and mobile footprints. 2. Adopt the
linked identities to a practical application such as recommendation to investigate
the improvement caused by adequate user study.
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