
A
pp

ea
rs

 in
 A

si
an

 I
nf

or
m

at
io

n
R

et
ri

ev
al

 S
ym

po
si

um
 (

A
IR

S)
 2

00
5.

 C
op

yr
ig

ht
 (

C
)

Sp
ri

ng
er

-V
er

la
g.

 h
ttp

://
w

w
w

.s
pr

in
ge

r.
de

/c
om

p/
ln

cs
/in

de
x.

ht
m

l

Supervised Categorization of JavaScriptTM using
Program Analysis Features

Wei Lu and Min-Yen Kan

Department of Computer Science,
School of Computing,

National University of Singapore,
Singapore, 117543

{luwei, kanmy}@comp.nus.edu.sg

Abstract. Web pages often embed scripts for a variety of purposes, including
advertising and dynamic interaction. Understanding embedded scripts and their
purpose can often help to interpret or provide crucial information about the web
page. We have developed a functionality-based categorization of JavaScript, the
most widely used web page scripting language. We then view understanding em-
bedded scripts as a text categorization problem. We show how traditional infor-
mation retrieval methods can be augmented with the features distilled from the
domain knowledge of JavaScript and software analysis to improve classification
performance. We perform experiments on the standard WT10G web page corpus,
and show that our techniques eliminate over 50% of errors over a standard text
classification baseline.

1 Introduction

Current generation web pages are no longer simple static texts. As the web has pro-
gressed to encompass more interactivity, form processing, uploading, scripting, applets
and plug-ins have allowed the web page to become a dynamic application. While a boon
to the human user, the dynamic aspects of web page scripting and applets impede the
machine parsing and understanding of web pages. Pages with JavaScript, Macromedia
Flash and other plug-ins are largely ignored by web crawlers and indexers. When func-
tionality is embedded in such web page extensions, key metadata about the page is often
lost. This trend is growing as more web content is provided using content management
systems which use embedded scripting to create a more interactive experience for the
human user. If automated indexers are to keep providing accurate and up-to-date in-
formation, methods are needed to glean information about the dynamic aspects of web
pages.

To address this problem, we consider a technique to automatically categorize uses
of JavaScript, a popular web scripting language. In many web pages, JavaScript real-
izes many of the dynamic features of web page interactivity. Although understanding
embedded applets and plug-ins are also important, we chose to focus on JavaScript as
1) its code is inlined within an HTML page and 2) embedded JavaScript often interacts
with other static web page components (unlike applets and plug-ins).

2 Wei Lu and Min-Yen Kan

An automatic categorization of JavaScript assists an indexer to more accurately
model web pages’ functionality and requirements. Pop-up blocking, which has been
extensively researched, is just one of the myriad uses of JavaScript that would be useful
to categorize. Such software can assist automated web indexers to report useful infor-
mation to search engines and allow browsers to block annoying script-driven features
of web pages from end users.

To perform this task, we introduce a machine learning framework that draws on
features from text categorization, program comprehension and code metrics. We start
by developing a baseline system that employs traditional text categorization techniques.
We then show how the incorporation of features that leverage knowledge of the JavaScript
language together with program analysis, can improve categorization accuracy. We con-
duct evaluation of our methods on the widely-used WT10G corpus [4], used in TREC
research, to validate our claims and show that the performance of our system eliminates
over 50% of errors over the baseline.

In next section, we examine the background in text categorization and discuss how
features of the JavaScript language and techniques in program analysis can assist in cat-
egorization. We then present our methods that distills features for categorization from
the principles of program analysis. We describe our experimental setup and analysis
and conclude by discussing future directions of our work.

2 Background

A survey of previous work shows that the problem of automated computer software
categorization is relatively new. We believe that this is due to two reasons. First, pro-
gramming languages are generally designed to be open-ended and largely task-agnostic.
Languages such as FORTRAN, Java and C are suitable for a very wide range of tasks,
and attempting to define a fixed categorization scheme for programs is largely sub-
jective, and likely to be ill-defined. Second, the research fields of textual information
retrieval (IR) and program analysis have largely developed independently of each other.
We feel that these two fields have a natural overlap which can be exploited.

Unlike natural language texts, program source code is unambiguous to the compiler
and has exact syntactic structures. This means that syntax plays an important role that
needs to be captured, which has been largely ignored by text categorization research.

Ugurel et al.’s [11] work is perhaps the first work that uses IR methods to attack
this problem. They employ support vector machines for source code classification in a
two-phase process consisting of programming language classification followed by topic
classification. In the second, topic classification task, they largely relied on each soft-
ware projects’ README file and comments. From the source code itself, only included
header file names were used as features. We believe a more advanced treatment of the
source code itself can assist such topic classification. These features, including syntactic
information and some language-specific semantic information, could be important and
useful for classification. Other recent work in categorizing web pages [14] has revived
interest in the structural aspect of text. One hypothesis of this work is that informing
these structural features with knowledge about the syntax of the programming language
can improve source code classification.

Lecture Notes in Computer Science 3

Program analysis has developed into many subfields, in which formal methods are
favored over approximation. The subfield of program comprehension develops models
to explain how human software developers learn and comprehend existing code [9].
These models show that developers use both top-down and bottom-up models in their
learning process [12]. Top-down models imply that developers may use a model of
program execution to understand a program. Formal analysis via code execution [2]
may yield useful evidence for categorization.

Comprehension also employs code metrics, which measure the complexity and per-
formance of programs. Of particular interest to our problem scenario are code reuse
metrics, such as [3, 5, 7], as JavaScript instances are often copied and modified from
standard examples. In our experiments, we assess the predictive strength of these met-
rics on program categories.

We believe that a standard text categorization approach to this problem can be im-
proved by adopting features distilled from program analysis. Prior work shows that the
use of IR techniques, such as latent semantic analysis can aid program comprehension
[8]. The key contribution of our work shows that the converse is also true: program
analysis assists in text categorization.

3 JavaScript categorization

The problem of JavaScript program categorization is a good proving ground to explore
how these two fields can interact and inform each other. JavaScript is mostly confined
to web pages and performs a limited number of tasks. We believe this is due to the
restrictions of HTML and HTTP, and because web plug-ins are more conducive an en-
vironment for applications that require true interactivity and fine-grained control. This
property makes the text categorization approach well-defined, in contrast to categoriza-
tion of programs in other programming languages. Secondly, JavaScript has an intimate
relationship with the HTML elements in the web page. Form controls, divisions and
other web page objects are controlled and manipulated in JavaScript. As such, we can
analyze how the web page’s text and its HTML tags, in the form of a document object
model (DOM), affect categorization performance.

Ugurel et al. [11] proposed 11 topic categories for source code topic classification
task, including circuits, database, and development. They have assessed their work on
different types of languages, such as Java, C, and Perl. Their work are based on large
software systems and therefore these categories are designed for topical classification
of general software systems and does not fit our domain well.

We examined an existing JavaScript categorization from a well-known tutorial site,
www.js-examples.com. This site has over 1,000 JavaScript examples collected world-
wide. To allow developers to locate appropriate scripts quickly, the web site categorizes
these examples into 54 categories, including ad, encryption, mouse, music and variable.

While a good starting point, the js-examples categorization has two weaknesses that
made it unusable for our purposes. First, the classification is intended for the developer,
rather than the consumer. Examples that have similar effects are often categorized dif-
ferently as the implementation uses different techniques. In contrast, we intend to cate-
gorize JavaScript functionality with respect to the end user. Second, the classification is

4 Wei Lu and Min-Yen Kan

Category Description (# units in corpus)

Dynamic-Text Banner Displays a banner that changes content with time (264)
Initialization Initialize/modifies variables for later use (123)
Form Processing Passing values between fields, or computing values from form fields (119)
Calculator Displays and manipulates a calculator (88)
Image Pre-load Pre-load images for future use (87)
Pop-up Pops up a new window (80)
Changing Image Change the source of an image (79)
HTML Generate HTML components, such as forms (68)
Web Application Web applications such as games & e-commerce (62)
Background Color Change or initialize the background color (50)
Form Validation Validate a forms data fields (50)
Page Load a new page to the browser window (49)
Plain Text Print some text to the page (46)
Multimedia Load multimedia (43)
Static-Text Banner Displays a banner which does not change with time (42)
Static Time Information Display static system time (41)
Loading Image Load and display images (39)
Form Restore Restore form fields to default values (37)
Server Information Display page information from the server (36)
Dynamic Clock Display a clock that changes with system time (35)
Navigation Site navigator (32)
Browser Information Check browser information (32)
Cookie Store or retrieve data on server about client (26)
Trivial Perform a simple one-liner task (24)
Interaction User interaction with the page (24)
Warning Message A static warning message (16)
Timer Display a timer which is running (10)
Greeting Display a greeting to the user (10)
CSS Change the Cascading Style Sheet of the page (7)
Client-Time based Counter Display interval between current time and another time relevant to page (7)
Visiting Browser History Visit a page from the browser’s history (6)
Calendar Display a calendar (5)

Others Multiple functionality or too few instances (133)

Table 1. JavaScript functional categories, sorted by frequency. Number of instances indicated in
parenthesis in the description field.

used for example scripts, which are usually truncated and for illustrative purposes. We
believe that their classification would not reflect actual JavaScript embedded on web
sites.

To deal with these shortcomings, we decided to modify the js-examples scheme
based on a study of JavaScript instances in actual web documents. We use the WT10G
corpus, commonly used in web IR experiments, as the basis for our work. In the WT10G
corpus, we see that JavaScript that natively occurs in actual web pages are different and
more difficult to handle. Actual web pages often embed multiple JavaScript instances to
achieve different functionality. Also, scripts can be invoked at load time or by triggering
events that deal with interaction with the browser. For example, a page could have a set
of scripts that performs browser detection (that runs at load time) and another separate
set that validates form information (that runs only when the text input is filled out). In
addition, some scripts are only invoked as subprocedures of others.

As such, we perform categorization on individual JavaScript functional units, rather
than all of the scripts on a single page. A functional unit, or simply unit, is defined
as a JavaScript instance, combined with all of (potentially) called subprocedures. Any

Lecture Notes in Computer Science 5

HTML involved in the triggering of the unit is also included. Figure 1 shows an exam-
ple.

HTML Event Handler

Triggered Script

Triggered Subprocedure

<script>
 var x=1;

 function fun1() {
 fun2(x++);
 }

</script>
 function fun2(y) { ... }

<input type=button onClick="fun1()">

Fig. 1. A JavaScript unit, the basic element used for our classification.

We base our categorization of JavaScript on these automatically extracted units.
Based on our corpus study, we created a classification of JavaScript into 33 discrete
categories, shown in table 1. These categories are based on functionality rather than
by their implementation technique. A single other category is used for scripts whose
purpose is unclear or which contains more than one basic functionality.

We have made our dataset, annotations and categories freely available for research
use and encourage others to make use of this resource. Details of these resources will
be presented at the conclusion of the paper.

4 Methods

Given such a categorization, a standard text categorization approach would tokenize
pre-classified input units and use the resulting tokens as features to build a model. New,
unseen test units are then tokenized and the resulting features are compared to the mod-
els of each category. The category most similar to the test unit would be inferred as its
category.

A simple approach to categorization uses a compiler’s own tokenization, treating the
resulting tokens as separate dimensions for categorization. An n dimensional feature
vector results, where n is the total number of unique tokens that occur in all training
unit instances.

We improve on this text categorization baseline in three ways. We first show how
tokenization can be improved by exploiting the properties of the language. Second, we
show that certain code metrics can help. Third, features distilled from program compre-
hension in the form of static analysis and dynamic execution allow us to analyze how
objects interact with each other, which in turn influence an unit’s classification.

4.1 Using language features for improved tokenization

A syntactic analysis of a programming language is instructive as it helps to type the
program’s tokens. After basic compiler-based tokenization, we distinguish the tokens

6 Wei Lu and Min-Yen Kan

of each unit as to whether they are numeric constants, string constants, operators, vari-
able and method names, or language-specific reserved keywords, or part of comments.
As JavaScript draws from Java and web constructs, we further distinguish regular ex-
pression operators, URLs, file extensions images and multimedia, HTML tags and color
values. Tokens of these types are tagged as such and their aggregate type counts are used
as features for categorization.

Variable and method names are special as they often convey the semantics of the
program. However, for convenience, programmers frequently use abbreviations or short
forms for these names. For example, in the JavaScript statement var currMon =
mydate.getMonth(), currMon, mydate and getMonth are short forms for
“current month”, “my date” and “get month” respectively.

To a machine learner, the tokens currMon and curMonth are unrelated. To con-
nect these forms together, we need to normalize these non-standard words (NSW) to
resolve this feature mismatch problem [10]. We normalize such words by identifying
likely splitting points and then expanding them to full word forms. Splitting is achieved
by identifying case changes and punctuation use. Tokens longer than six letter in length
are also split into smaller parts using entropy reduction, previously used to split natural
languages without delimiters (e.g. Chinese). A following expansion phase is carried out,
in which commonly abbreviated shortenings are mapped to the word equivalents (e.g.
“curr” and “cur” → “current”) using a small (around 20 entries) hand-compiled
dictionary .

Example Transition Pattern Result (with expansion)

curMsg single lowercase ⇀↽ single uppercase current message
IPAddress consecutive uppercase → lowercase ip address
thisweek no transition and length ≥ 6 this week

Table 2. Examples of Name token normalization.

4.2 Code metrics

Complexity metrics measure the complexity of a program with respect to data flow,
control flow or a hybrid of the two. Recent work in metrics [3, 5] has been applied to
specific software families and most metrics are targeted to much larger software projects
(thousands of lines of code) than a typical JavaScript unit (averaging around 28 lines).
As such, we start with simple, classic complexity metrics to assess their impact on
categorization. Examples of them are:

Cyclomatic Complexity (CC) Cyclomatic complexity is a widely used control flow
complexity metric. The cyclomatic complexity of a graph G is defined as E−N+2,
where E is the number of edges in the control flow graph and N is the number of
nodes in the same graph. In practice, it is the number of test conditions in a program.

Lecture Notes in Computer Science 7

Number of Attributes (NOA) is a data flow metric that counts the number of fields
declared in the class or interface. In JavaScript, it counts the number of declared
variables and newly created objects in the source code.

Informational fan-in (IFIN) is an information flow metric, defined as IFIN = P +

R+G, where P is the number of procedures called, R is the number of parameters
read, G is the number of global variables read. This metric is traditionally defined
for class and interfaces, constructors and methods.

We also developed several metrics based on our observation of JavaScript instances
in our corpus. These metrics count language structures that we found were prevalent in
the corpus and may be indicative of certain program functionality.

Similar Statements (SS) counts the number of statements with similar structure.
Built-in Object References (BOR) counts the number of built-in objects (e.g. date,

window) referenced by the unit.

In these metrics, similarity is determined by using a simple tree edit distance model
based on the syntax of the language, discussed next.

4.2.1 Code Reuse using Edit Distance Aside from complexity metrics, we can also
measure code reuse (also referred to as clone or plagiarism detection). This is particu-
larly useful as many developers copy (and occasionally modify) scripts from existing
web pages. Thus similarity detection may assist in classification. Dynamic program-
ming can be employed to calculate a minimum edit distance between two inputs using
strings, tokens, or trees as elements for computation.

if (x > 1) {

 alert ("hi");

}

alert ("hi")

BLOCK

 IFNE

 GT

 NAME x

 NUMBER 1.0

 BLOCK

 STMT

 CALL

 NAME alert

 STRING hi

STMT

 CALL

 NAME alert

 STRING hi

if[KEY] ([SYM] x[VAR]

>[SYM] 1[NUM])[SYM] {[SYM]

alert[VAR] ([SYM] "hi"[STR]

)[SYM] ;[SYM] }[SYM]

alert[VAR] ([SYM] "hi"[STR]

)[SYM]

 SED

there is common

subsequence

TED

LED

different roots

results in

large edit

distance

more reasonable

and accurate

than SED

Fig. 2. String based edit distance (SED), tree based edit distance (TED) and lexical-token based
edit distance (LED)

We employ a standard string edit distance (SED) algorithm to calculate similarity
between two script instances. We use the class of the minimal distance training unit as a

8 Wei Lu and Min-Yen Kan

separate feature for classification. However, this measure does not model the semantic
differences that are introduced when edits result in structural differences as opposed
to variable renaming. A minimal string edit distance may introduce drastic semantic
changes, such as an addition of a parameter or deletion of a conditional statement.

In program analysis, abstract syntax trees (ASTs) [1] are often used to model source
code and correct for these discrepancies. An AST is a parse tree representation of the
source code that model the control flow of the unit and stores data types of its vari-
ables. Therefore we can use the AST model to define a tree-based edit distance (TED)
measure between two JavaScript units. TED algorithms are employed in syntactic sim-
ilarity detection [15]. However, as is shown in Figure 2, the given two code fragments
are of the same functionality, but have different syntactic structures. Hence, syntactic
difference does not imply functionality similarity, and vice versa. In this manner, a stan-
dard TED algorithm used in syntactic similarity detection is not likely to outperform a
simple SED algorithm for our task. Aside from the tree-based edit distance measure,
we can also measure similarity from a lexical-token approach (lexical-token based edit
distance, LED) [6], in which source codes are parsed into a stream of lexical-tokens,
and these tokens become the elements for computation. Edit costs are assigned appro-
priately depending on token types and values. We have implemented all three models
and have assessed each approach’s effectiveness.

4.3 Program Comprehension using the Document Object Model

window.document.
getElementById(
‘‘seminar’’).
choice[2].value;

Accesses the value of the second ra-
dio button in a form “seminar”

top.
newWin.document.
all.airplane.
img2.src;

Accesses the source of an image
“img2” in the form “airplane”,
embedded in a window “newWin”.

Table 3. Units that reference their HTML context.

So far we have considered JavaScript units as independent of their enclosing web
pages. In practice, since JavaScript units may be triggered by HTML objects and may
manipulate these HTML objects in turn, a JavaScript unit has an intimate relation with
its page and is often meaningful only in context. These objects are represented by a doc-
ument object model (DOM)1. In fact, a unit which does not interact with a DOM object
cannot interact with the user and is considered uninteresting. Many variables used in

1 Although the browser object model (BOM) is distinct from the DOM, we collectively refer to
the two models as DOM for readability.

Lecture Notes in Computer Science 9

JavaScript are DOM objects whose data type can only be inferred by examining the en-
closing HTML document. Table 3 illustrates two examples where the script references
DOM objects.

<input onclick="doIt(this.form)">
<script>
 function doIt(frm) {
 var newWin = window.open();
 newWin.document.write(frm.name);
 frm.txt.value="ok";
 }
</script>

5
4
3
2
1

0

Set value of input in form

Write on the window

Get reference to enclosing for function

SET::INPUT.value

CALL::DOCUMENT.CHILD.write

GET::INPUT.form

Fig. 3. Types of DOM object references.

We classify references to DOM objects into three categories: gets, sets, and calls.
These are illustrated in the JavaScript unit in Figure 3: on line 1 DoIt() gets a refer-
ence to a form object, on line 4 the input object represented by frm.txt is set to a
value “ok”, and on line 3 the object document calls its write method. The count of
each of these DOM object references is added as an integer feature for categorization.

4.3.1 Static analysis Certain aspects of the communication between the DOM objects
and the target JavaScript can be done by a straightforward analysis of the code. We
extract two types of information based on this static analysis: triggering information
and variable data type information.

Certain classes of JavaScript are triggered by the user’s interaction with an object
(e.g. a form input field) and others occur when a page is loaded, without user inter-
action. This triggering type (interactive, non-interactive) is extracted for each unit by
an inspection of the HTML. For units triggered by interaction, we further extract the
responsible DOM object and event handler. We also extract the lexical tokens from the
enclosing web page elements for interactive units. For example, an input button with
a text value “restore” is likely to trigger a unit whose class is form restore; like-
wise, button inputs with text labels such as “0”,“1”, and “9” are indicative of the class
calculator.

DOM object settings and values may flow from one procedure to another. We re-
cover the data type of objects by tracing the flow as variables are instantiated and as-
signed. This is done with the assistance of the abstract syntax tree described in 4.2.1.
A variable and its data type form a single unified token (e.g. newWin 7→WINDOW)
used for categorization. In addition, all the JavaScript unit’s interaction with DOM ob-
jects are then traced statically and recorded (e.g. GET::INPUT.value) as static analysis
features for categorization.

10 Wei Lu and Min-Yen Kan

4.3.2 Dynamic analysis Static analysis is not able to recover certain information that
occurs at run time. Dynamic analysis (i.e., execution of code) can extract helpful fea-
tures along the single, default path of execution. Although dynamic analysis is incom-
plete (in the sense that it only examines a single execution path), such analyses can
determine exact values of variables and may help by discarding unimportant paths.

1 var msg = "Welcome to this page";

2 banner(0);

3 function banner (index) {

4 window.status =

 msg.substring(0, index);

5 seed = seed++;

6 if (index >= msg.length)

 index = 0;

7 window.setTimeout("banner("+index+

 ")", 100);

 }

Static Analysis Features

Dynamic Analysis Features

������� � �	�
�����
.status

CALL::WINDOW � ����� ��� � �������

������� � ���
�����
.status{}������� � ���
�����
.status{W}������� � ���
����� � ��� ��� ���� � ��!

CHANGES::WINDOW.status

Fig. 4. Sample JavaScript unit (l), along with features extracted by static and dynamic analysis
(r).

We illustrate how dynamic analysis can yield additional features for categorization
in Figure 4. This sample JavaScript unit, taken from the WT10G corpus, creates a dy-
namic text banner that scrolls in window’s status bar. The functionwindow.setTime-
out() displays the string represented by ‘‘banner’’+index+‘‘)’’ after 100
milliseconds, which makes the banner text in the window change over time. Without dy-
namic analysis, we cannot recover what value msg.substring(0,index) refers
to. More importantly, dynamic analysis allows us to extract the value of the expression
‘‘banner(’’+index+‘‘)’’. In this example, dynamic analysis also recovers the
fact that the variable’s value is changing, hence a new feature is added to the feature set
(i.e. CHANGES::WINDOW.status).

5 Evaluation

We tested the above methods on the WT10G corpus, containing approximately 1.7 M
web pages from over 11K distinct servers. After pre-processing and cleaning of the
WT10G corpus, over 18 K pages contained processable JavaScript scripts units. String
identical duplicates and structurally-identical script units were then removed. This re-
sulted in a final corpus of 1,637 units, which are unique in textual form and structure.
The high ratio of the number of script instances to unique scripts validates our claim
that many scripts are simply clones.

We perform supervised text categorization using a support vector machine approach
(SVM). SVMs were chosen as the machine learning framework as they handle high-
dimensional datasets efficiently. This is extremely important as feature vectors contain
anywhere from 3,000 to 8,000 features, depending on which feature sets are used in the

Lecture Notes in Computer Science 11

model configuration. Specifically, we used the generic SVM algorithm (SMO) provided
with WEKA [13]. We use a randomized, ten-fold cross validation of the final corpus of
1,637 script units, which excludes the other category. Instance accuracy is reported in
the results. Due to space limitations, we report instance accuracy which has been used
in previous work [11] and have omitted other IR metrics such as precision and recall.

Our experiments aim to measure the performance difference using different sets of
machine learning features. In all of the experiments, the baseline model tokenizes units
and passes the tokens as individual features to the learner.

Features used Accuracy ER

Most frequent class baseline 16.12% –
Text categorization baseline 87.47% –

L. All lexical analysis 89.61%(**) 17%
Lc. Language token counting 88.57% 8%
Ln. Function/variable normalization 87.66% 1%
M. All software metrics 77.76% –
Ms. Standard classic metrics 20.46% –
Mj . w/ new metrics (Ms+SS+BOR) 25.60% –
Me. String-based edit distance 73.85% –
Ma. AST-based edit distance 72.69% –
Mt. Token-based edit distance 74.89% –
P. All program comprehension 87.29% –
Ps. Static analysis 79.78% –
Pd. Dynamic analysis 71.22% –

L+M 90.04%(*) 21%
L+P 92.36%(**) 39%
L+M+P 93.95%(**) 52%

Table 4. Component Evaluation Results. Error reduction (ER) is measured against the text cate-
gorization baseline. (*) indicates the improvement over the approach using previous feature set
is statistically significant at 0.05 level under T-test, (**) indicates statistically significant at 0.01
level

Table 4 shows the component evaluation in which we selected certain combination
of features as input to the SVM classifier. Here, we can see the majority class cate-
gorizer performs poorly, as this dataset consists of many classes without a dominating
class. However, a simple text categorization baseline, in which strings are delimited by
whitespaces performs very well, accurate on 87% of the test instances. When informed
lexical tokenization is done and combined with features from software metrics, static
and dynamic analysis, we are able to improve categorization accuracy to around 94%.
Perhaps unsurprisingly, using only software metrics and program comprehension fea-
tures fail to contribute good classifiers. However, when coupled with a strong lexical
feature component, we show improvement.

The performance improvement may seem marginal, but in fact they are statistically
significant, as demonstrated by the use of a one-tailed t-test. We believe significance is

12 Wei Lu and Min-Yen Kan

achieved due to the large scale of the evaluation set’s degrees of freedom present in the
classification problem.

A good baseline performance may seem discouraging for research, but many im-
portant problems exist which exhibit the same property (e.g. spam detection, part of
speech tagging). These problems are important and small gains in performance do not
make advances in these problems less relevant. As such we also calculate the error re-
duction that is achieved by our methods over the text categorization baseline. By this
metric, almost half of the classification errors are corrected by the introduction of our
techniques.

Lexical Analysis. We hypothesized that token features and variable and function
name normalization would enhance performance. The results show that simple typing
of tokens as keywords, strings, URLs and HTML tags is effective at removing 8%
of the categorization errors. Less effective is when variable and function names are
normalization through splitting and expansion. When both techniques are used together,
their synergy improves performance, removing 17% of errors. This validates our earlier
hypothesis that program language features do positively impact program categorization.

Metrics. We also break down our composite metric feature set into its components
to assess their predictive strength. Our results also show that edit distance alone is not
sufficient to build a good categorizer. Such a code reuse metric is not as accurate as our
simple text categorization baseline. A finding of our work is that applying published
software metrics “as-is” may not boost categorization performance much, rather these
metrics need to be adapted to the classes and language at hand. Only when collectively
used with lexical analysis is performance increased.

Program Comprehension. Static and dynamic features alone perform do not per-
form well, but their combination greatly reduces individual mistakes (29% and 51% for
the static and dynamic analyses, respectively). The combined feature set also does not
beat the simple lexical approach, but serves to augment its performance.

A Note on Efficiency. The experiments in this paper were conducted on a single,
modern desktop machine with two gigabytes of main memory. In general, feature cre-
ation is fast, for all 1.6K script instances in our corpus took approximately 3 minutes,
and a 10-fold cross validation of the SMO classifier takes about 10 minutes. The ex-
ception to the feature creation is when edit distance-based code reuse metrics were
computed. These features are computed in a brute-force, pairwise manner and took up
to ten hours to generate. We are currently looking into faster approaches that may lower
the complexity of the approach.

6 Shortcomings

Our results are promising, but we would like to call attention to some of the shortcom-
ings of our work that we are currently addressing:

Annotator Agreement. Our corpus is annotated by one of the paper authors. While
this provides for consistency, the annotator notes that some instances of problematic,
even for a language whose applications are largely distinct. We feel this a source of
some errors and are working on further annotation and finding inter-annotator agree-

Lecture Notes in Computer Science 13

ment. A reasonable upper bound of performance may be less than 100%, meaning that
our performance gains may be more signficant than discussed in this paper.

Dynamic Analysis Incompleteness. Many tasks are executed conditionally de-
pending on the browser’s type. In our dynamic analysis, we assume scripts are only
executed under as MSIE 4.0, which causes certain analyses to fail to extract data. As
browser checking is ubiquitous in JavaScripts, we may relax this constraint and follow
all execution pathways that are conditional on the browser.

7 Conclusion and Future Work

We present a novel approach to the problem of program categorization. In specific, we
target JavaScript categorization, as its use is largely confined to a small set of purposes
and is closely tied to its enclosing web page. A key contribution of our work is to
create a functional categorization of JavaScript instances, based on a corpus study of
over 18,000 web pages with scripts. To encourage our researchers to use our dataset
as a standard reference collection, we have made our dataset, annotations and resulting
system freely available1.

Although previous work [11] has examined the use of text classification approaches
to classify source code, our method is the first method that employs the source code
in a non-trivial way. Different from previous work which classified code into topic cat-
egories, our work attempts to achieve a more fine-grained functional categories with
less data. In this work, rather than treating the problem merely as a straightforward
text categorization problem, we incorporate and adapted metrics and features that orig-
inate in program analysis. Our corpus study confirms that many such scripts are indeed
copies or simple modifications. While our baseline does well, performance is greatly
improved by utilizing program analysis. By careful lexical analysis, 10% of errors are
eliminated. Further improvements using static analysis and execution results in a 52%
overall reduction of categorization error. We believe they provide evidence that program
categorization can benefit from adapting work from program analysis.

We currently deploy our system as part of a smart JavaScript filtering system, that
filters out specific JavaScript units that have functionality irrelevant to the web page
(e.g. banner, pop-up). We plan to extend this work to other scripting languages and
decompiled plug-ins appearing on web pages. The aim of such work is to assist end
users to filter irrelevant material and to summarize such information for users to make
more informed web browsing a wider variety of classification (including subject-based
classification) on a wider range of computer languages in future work.

References

1. Baxter, I. D.; Yahin, A.; Moura, L. M. D.; SantAnna, M.; and Bier, L. 1998. Clone detection
using abstract syntax trees. In ICSM, 368–377.

2. Blazy, S., and Facon, P. 1998. Partial evaluation for program comprehension. ACM Comput-
ing Surveys 30(3).

1 http://wing.comp.nus.edu.sg/∼luwei/SMART/

14 Wei Lu and Min-Yen Kan

3. Cory Kapser and Michael W. Godfrey. Aiding Comprehension of Cloning Through Catego-
rization. Proc. of 2004 International Workshop on Software Evolution (IWPSE-04), Kyoto,
Japan, 2004.

4. D. Hawking. Web Research Collection. http://es.csiro.au/TRECWeb/, June 2004.
5. I. Krsul and E. H. Spafford. Authorship Analysis: Identifying the Author of a Program. Proc.

18th NIST-NCSC National Information Systems Security Conference, 514–524, 1995.
6. Kamiya, T., Kusumoto, S., Inoue, K. (2002). Ccfinder: a multilinguistic token-based code

clone detection system for large scale source code. IEEE Trans. Softw. Eng., 28(7), 2002,
654–670.

7. Kontogiannis, K. 1997. Evaluation experiments on the detection of programming patterns
using software metrics. In Proceedings of the Fourth Working Conference on Reverse Engi-
neering (WCRE 97), 44–54. Washington, DC, USA: IEEE Computer Society.

8. Maletic, J. I., and Marcus, A. 2000. Using latent semantic analysis to identify similarities in
source code to support program understanding. In Proceedings of the 12th IEEE International
Conference on Tools with Artificial In- telligence (ICTAI00), 46.

9. Mathias, K. S.; II, J. H. C.; Hendrix, T. D.; and Barowski, L. A. 1999. The role of software
measures and metrics in studies of program comprehension. In ACM Southeast Regional Con-
ference.

10. Rowe, N., and Laitinen, K. 1995. Semiautomatic disabbreviation of technical text. Informa-
tion Processing and Management 31(6):851–857.

11. S.Ugurel, B.Krovetz,C.L.Giles,D.Pennock,E.Glover,H.Zha. What is the code? Automatic
Classification of Source Code Archives. Eighth ACM International Conference on Knowl-
edge and Data Discovery (KDD 2002), 623–638 (poster), 2002.

12. von Mayrhauser, A., and Vans, A.M. 1994. Dynamic code cognition behaviors for large scale
code. In Proceedings of the 3rd Workshop on Program Comprehension, 74–81.

13. Witten, I. H., and Frank, E. 2000. Data Mining: Practical machine learning tools with Java
implementations. San Francisco: Morgan Kaufmann.

14. Wong,W.-C., and Fu, A.W.-C. 2000. Finding structures of web documents. In ACM SIG-
MOD Workshop on Research Issues in DataMining and Knowledge Discovery (DMKD).

15. Yang, W. (1991). Identifying syntactic differences between two programs. Software - Prac-
tice and Experience, 21(7), 1991, 739–755.

