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Abstract
Capturing the semantic interaction of pairs of
words across arguments and proper argument rep-
resentation are both crucial issues in implicit dis-
course relation recognition. The current state-of-
the-art represents arguments as distributional vec-
tors that are computed via bi-directional Long
Short-Term Memory networks (BiLSTMs), known
to have significant model complexity.
In contrast, we demonstrate that word-weighted av-
eraging can encode argument representation which
can be incorporated with word pair information ef-
ficiently. By saving an order of magnitude in pa-
rameters and eschewing the recurrent structure, our
proposed model achieves equivalent performance,
but trains seven times faster.

1 Introduction
Sentences alone do not serve to form coherent discourse.
Logical relations, both inter- and intra-sententially, are
needed for a coherent text. Such relations are termed dis-
course relations. Automatically recognizing discourse rela-
tions is useful for downstream applications such as machine
translation and summarization.

Discourse relations can be overtly signaled by occurrences
of explicit discourse connectives such as Indeed and After that
(cf Ex. (3) & (4)). In contrast when the context is clear,
such overt signals can be omitted, leading to discourse re-
lations that it is said to be implicitly signaled (not marked by
a lexical connective in the text; cf Ex. (1) & (2)). The lack
of any overt signal makes implicit discourse relations much
more challenging to recognize.

This explicit/implicit distinction is adopted by the Penn
Discourse Treebank (PDTB, version 2.0) [Prasad et al.,
2008]. We adopted the PDTB for this study due to its large
size when compared against other discourse corpora such as
the Rhetorical Structure Theory Treebank (RST) [Carlson et
al., 2002]. While the PDTB has a hierarchical annotation
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Ex (1) You are so fortunate. The hurricane came five
hours after you left.

Ex (2) In 1986, the number of cats was down to 1000.
In 2002, it went up to 2000.

Ex (3) I never gamble too far. In other words, I quit
after one try.

Ex (4) I was sleeping when he entered.

Figure 1: Toy examples of each of the four Level–1 discourse re-
lations annotated in the PDTB formalism. (1) and (2) are implicit
relations; (3) and (4) are explicit. Arg1 is italicized and Arg2 is
bolded, as per convention.

scheme, currently most studies (e.g. [Chandrasekaran et al.,
2017]) – inclusive of this one – restrict their use to the top-
most, Level–1 categories: Contingency (Ex. (1)), Compari-
son (Ex. (2)), Expansion (Ex. (3)) and Temporal (Ex. (4)).
The two text spans where the discourse relation holds are
called arguments, named Arg1 and Arg2 respectively. Arg2 is
defined as the argument that syntactically houses the (explicit
or implicit) discourse connective.

Modeling word pairs have been shown useful for implicit
discourse relation recognition in many studies [Marcu and
Echihabi, 2002a; Rutherford and Xue, 2014; Chen et al.,
2016]. This is because semantic interactions exist between
the two arguments. This can be realised in many forms, of
which word pairs are arguably the simplest. For example,
the interaction between up and down is most likely to sig-
nal a Comparison relation as in Ex. (2). Traditional methods
use word pairs [Marcu and Echihabi, 2002a], or variants like
Brown Clustering pairs [Rutherford and Xue, 2014], as fea-
tures for supervised learning.

In addition, argument representation — or how arguments
are modeled as a whole — is also crucial for correct inter-
pretation. Taking the fortunate–hurricane pair in Ex. (1), one
might construe a Comparison relation due to the word pair’s
contrasting sentiment polarity. However, it is understood as
a Contingency relation when the entire context of both argu-
ments are taken into account.

To address the argument representation challenge, recent
works have leveraged the powerful semantic representability



of neural network models. For example, Gated Relevance
Networks (GRN) [Chen et al., 2016] and Neural Networks
with Multi-Level Attention (NNMA) [Liu and Li, 2016], ap-
ply a bi-directional Long Short-Term Memory network (BiL-
STM) [Hochreiter and Schmidhuber, 1997; Schuster and Pali-
wal, 1997] to represent each argument. Both models achieve
the-state-of-the-art F1 score without employing handcrafted
features. However, BiLSTMs inevitably introduce many pa-
rameters. The large number of parameters slows the training
process and is prone to overfitting. Especially in the context
of the PDTB, a relatively small dataset, a lightweight repre-
sentation is a viable method to simplify the model.

Motivated by this observation, we propose a new model
that integrates the modeling of both word pair interaction and
argument representation, without the use of BiLSTMs. Our
model — termed the Simple Word Interaction Model (SWIM)
— achieves a comparable F1 score to the state-of-the-art and
runs seven times faster by eschewing the use of BiLSTMs.

2 Related Work
Supervised learning approaches for the implicit discourse re-
lations recognition is the common paradigm in prior work.
Surface features for the task include word pairs [Marcu and
Echihabi, 2002b] sentiment polarity scores, General Inquirer
tags [Pitler et al., 2009], and parser production rules [Lin
et al., 2009]. Among all these models, the naı̈ve feature
of word pairs [Marcu and Echihabi, 2002a; Rutherford and
Xue, 2014] – which is the co-occurrence frequency of a pair
of words, one drawn from each of the two arguments – has
proven to be extremely efficient.

Another trend is to employ semi-supervised methods.
This is due to the limited amount of annotated data and the
relative abundance of weakly-labeled data (i.e., explicitly-
signaled instances). For example, Lan et al. [2013] explored
multitask learning; Hernault et al. [2010] applied feature vec-
tor extension; and Rutherford and Xue [2015] selectively
added some explicit instances as implicit training data, ac-
cording to their connectives.

The recent wave of deep learning approaches to NLP
problems leverage word embeddings pre-trained on large cor-
pora to achieve significant gains on tasks involving complex
semantics. While many architectural designs have been ex-
plored (e.g. [Zhang et al., 2016]), the state-of-the-art deep
learning methods on our task — the GRN (discussed in detail
later) and NNMA — are fundamentally BiLSTM based, in-
volving many parameters, which leads to inefficiency in train-
ing and testing.

3 Simple Word Interaction Model (SWIM)
SWIM models both the fine-grained word pair interaction and
coarse-grained argument representation. We first introduce
the model here and detail its implementation in the follow-
ing sections. To capture word pair interaction, we calcu-
late an interaction score for each word pair that measures the
importance of the interaction between its component words.
For argument representation, we apply a weighted average
of the component word pair representations. The argument
representation thus encapsulates word pair interaction, and is
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Figure 2: The components of the SWIM, GRN and BiLSTM + GRN
models. “WA” denotes “weighted average”.

passed to a final a multilayer perceptron layer (MLP) to de-
termine the final discourse relation (cf Figure 2(a)).

3.1 Word Interaction Score
Following current best practices, SWIM’s word interaction
score captures both linear and quadratic relations between
the two word’s embeddings. Formally, let M and N denote
the lengths of Argument 1 (hereafter, Arg1) and Argument 2
(Arg2). Further, let xi, yj denote the pre-trained (row) word
embeddings of ith word of Arg1 and jth word of Arg2, sep-
arately. Then for each pair of words xi and yj , SWIM calcu-
lates an interaction score as in Eq. (1):

sij = xiAyj
T +B[xi,yj ] + cij (1)

where A ∈ Rd×d, B ∈ R1×2d and cij ∈ R are train-
able parameters, and [xi,yj ] is a concatenation of the two
word embeddings. xiAyj

T models the quadratic relation be-
tween the two word embeddings, while B[xi,yj ] captures
linear relationships. cij is the bias term for the final interac-
tion. At training, these parameters — A, B and cij — model
and encode word pair semantics, assigning a high interaction
score when well correlated with a particular discourse rela-
tion class. Similar approaches have been applied to many
fields, e.g. recommendation system [He et al., 2017].

SWIM calculates the interaction matrix S, computing sij
for each possible (ith) word of Arg1 and (jth) word of Arg2.

3.2 Argument Representation
Both (Bi)LSTMs and embedding averaging are valid meth-
ods for representing text sequences, inclusive of discourse ar-
guments and sentences. Recent studies suggest that LSTMs
perform well when sequential order is important [Iyyer et al.,
2015]. However, this is less the case in argument represen-
tation, where content plays a larger role than ordering – e.g.,
in Exs. (1) & (2), the discourse relations do not change even
when the words are reordered. Simpler methods, such word
averaging may be sufficient and effective as suggested by Wi-
eting et al. [2016] who concluded that “word averaging mod-
els perform well for [the related tasks of] sentence similar-
ity and entailment, outperforming LSTMs.” Hence, SWIM
adopts embedding averaging.

However, embedding averaging alone is insufficient – each
argument’s words are actually understood in the context of
the opposing argument. For example, on its own down in
Arg1 of Ex. (2) is less likely considered to signal any dis-
course relation. However, once combined with the word up
in Arg2, it becomes the most important signal in Arg1 for



the Comparison relation. In light of this, SWIM represents
each argument as an average of its component words’ word
embeddings, weighted for its interaction with the opposing
argument.

We denote SWIM’s argument representation for Arg1
(Arg2) as x′ (y′), as calculated in Eq. (2).

x′ = 1
M

∑M
i=1(

∑N
j=1

exp(sij)∑N
k=1 exp(sik))

[xi,yj])

y′ = 1
N

∑N
j=1(

∑M
i=1

exp(sij)∑M
k=1 exp(skj))

[yj,xi])
(2)

In Eq. (2), we start with the concatenations of word pair
embeddings [xi,yj], weighting them with the interaction
score sij , to account for its importance.

Let us walk through Eq. (2), taking the computation of x′
as an example. For each word xi in Arg1, we enumerate all
words in Arg2 (yj for j ∈ {1, 2...N}) to form word pairs
([xi,yj]). We weight these word pair representation accord-
ing to its normalized interaction score, obtaining an interac-
tion weighted word representation, the term in the parenthe-
ses. AllM interaction-enhanced word representations are av-
eraged to arrive at the final form for x′.

SWIM computes a single representation of both Arg1 and
Arg2 by concatenating x′ and y′ for input to the final MLP
classification to obtain the output discourse relation:

output = fo(Wofh(Wh[x
′,y′])) (3)

where Wh ∈ R4d×k and Wo ∈ Rk×n. In Wo and Wh, n
is the number of class labels, d is the embedding size, k is
the size of the hidden layer. fh and fo are sigmoid activation
functions. The final classification layer described in Eq. (3)
is a two-layer MLP whose hidden layer is designed to obtain
a more abstract representation.

3.3 Model Discussion On BiLSTMs
Both state-of-the-art prior models for implicit discourse rela-
tion classification – GRN and NNMA – adopt BiLSTMs for
argument representation. A discussion on the role of BiL-
STMs in both models is relevant. We use GRN as a sample
for this discussion as i) both GRN and our proposed SWIM
is designed to model word pair interaction and apply simi-
lar word interaction calculation approach; ii) the necessity of
BiLSTMs in GRN has been previously studied in [Chen et
al., 2016].

The GRN workflow is illustrated in Figure 2(b). GRN
feeds one argument into an individual BiLSTMs to get an in-
termediate representation for each word, denoted as hxi

and
hyj

for each xi and yj , separately. As illustrated in Fig-
ure 3, the intermediate representation incorporates informa-
tion from the argument as a whole.

For each pair of hxi and hyj , an interaction score sij is
calculated as in Eqs. (4) & (5). As we focus on the role of
BiLSTMs, we do not discuss interaction scores further.

sij = u(g � hxi
M[1:r]hT

yj
+

(1− g)� f(V[hxi
,hyi

] + b)
(4)

g = σ(Wg[hxi
,hyi

]) (5)
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Figure 3: An illustration of BiLSTM for argument representation. A
BiLSTM treats one argument as a sequence of words x1,x2...xT .
It consists of two LSTMs, one for forward propagation (from x1 to
xT ), outputting hf

1 ...h
f
T and one for backward propagation (from

xT to x1), outputting hb
T ...h

b
1. The information continue to accu-

mulate as it propagates. The darker shade of color signifies that more
information has been accumulated in the current sequence during
propagation. For each word xi, the final representation is the con-
catenation of both direction’s output hi = [hf

i,h
b
i]. Therefore, hi

contains the information of the whole argument.

In the above, � denotes element-wise multiplication.
M[1:r] ∈ Rr×2d×2d, V ∈ Rr×4d, Wg ∈ Rr×4d, u,b ∈ Rr

are trainable parameters where d is the embedding size and
r = 2 according to the original paper [Chen et al., 2016].
Both f and σ are sigmoid activation functions. Eq. (4) & (5)
of GRN degrades to Eq. (1) in SWIM if we set r = 1, g = 0.5
and remove aggregating vector u. Similar to SWIM, a word
pair interaction matrix S ∈ RM×N is obtained. Finally, the
matrix S is max pooled and then reshaped into a vector to
feed a final multi-layer perceptron (MLP) for classification.

The matrix S, which is the representation for each instance,
actually contains two aspects of information: i.) word content
information (whether significant word pair interactions exist);
and ii) positional information (where the strong interacting
words are). Thus, BiLSTMs in GRN contribute both position
information and content information. However, we can es-
chew BiLSTM use by only handling content information via
embedding average, since embedding average and BiLSTM
are know to have similar content representations. We can test
this hypothesis by inserting BiLSTMs into SWIM to evaluate
its effect: we plug a BiLSTM layer in between the embedding
layer and word interaction layer, as illustrated in Figure 2. We
refer to this model as the BiLSTM + SWIM model in the fol-
lowing discussion1.

To evaluate BiLSTMs’ effect on model complexity, we fur-
ther calculate the number of parameters of various model. As
shown in Tabel 1, the use of BiLSTMs, which encode super-
fluous position information, increase the model complexity
by an order of magnitude (Row 1, 2, 5, 6). As for NNMA,
it contains a complex multi-level attention layer unlike BiL-
STMs which is less different from our design. Therefore, we
just list its number of parameters for reference without dis-
cussing it in more details.

4 Experiments
We now evaluate SWIM, with the aim to show its competi-
tiveness in terms of prediction performance. Importantly, we
note that the evaluation of a computational model not only

1We use a dense layer between BiLSTM and SWIM to reduce
the output size from 2d to d, to lessen the number of parameters in
BiLSTM + SWIM.



Model d = 50 d = 100

1. BiLSTM 80K 320k
2. GRN 100k 400k
3. NNMA (2 levels) 260k 720k
4. NNMA (3 levels) 350k 920k
5. SWIM 12.5k 30k
6. BiLSTM + SWIM 102.5k 390k

Table 1: Model complexity analysis. Number of parameters versus
the hidden size d. We omit matrices with fewer than 1k parameters.

lies in the best prediction performance, but also its stability
(robustness), and efficiency. This is especially important for
neural network models, which are computationally intensive
and sensitive to random factors. We first describe the systems
we compare against, then describe the experimental setup be-
fore describing the main results.

4.1 Comparison Systems
In the following list of architectures, numberings follow those
used in Table 2 for convenience. First, we must validate
performance against the current state-of-the-art baselines in
terms of raw prediction performance, in the numbered sys-
tems below. The cited papers, our SWIM and replicated ex-
periments follows the same training, development, and test-
ing splits, so are comparable.
1-2. Gated Relevance Networks (GRN; [Chen et al., 2016]).

We replicate their architecture with the assistance of the
original author, tuning parameters according to the orig-
inal paper.

3-4. Neural Networks with Multi-Level Attention (NNMA;
[Liu and Li, 2016]). We cite results from the paper.

We study a number of variants of SWIM to test our design de-
cisions. In the lettered systems below, we examine variations
on argument representation, using embedding averaging and
BiLSTMs:

a. Embedding Average (EA). We perform naı̈ve embed-
ding averaging to get a representation vector for each
argument. Then, we concatenate the two vectors for in-
put to a MLP as in Eq. (3).

b. BiLSTM. We use the word embeddings as input to BiL-
STMs (hfT , hb1), concatenate their output to form the ar-
gument representation and pass it to the MLP layer for
classification2. This setting benchmarks the vanilla use
of BiLSTM for argument representation.

c. Word Interaction Score (WIS). We use scores in the in-
teraction matrix S for classification without modifica-
tion. Following the GRN approach (cf Section 3.3), we
perform max-pooling on S before inputting the scores
to the MLP layer. This tests whether our weighted argu-
ment representation helps.

2Another common approach for BiLSTM argument representa-
tion is to get the intermediate representation for every time step
hi, i ∈ {1...T} and average these intermediate representation as
EA does. We find that both approaches yield similar results, hence
only the approach in the body text is reported.

d. BiLSTMs + WIS. Following GRN, we feed word em-
beddings to BiLSTMs to get an intermediate representa-
tion. Then we calculate word interaction scores based on
these intermediate representation using Eq. (1), obtain-
ing the interaction matrix S which is max-pooled and
fed into a MLP layer. This aims to test the effect of BiL-
STMs on WIS. BiLSTM + WIS is similar to GRN except
for the word interaction computation part. However, we
here only focus on the study of BiLSTMs without dis-
cussion its difference.

e. BiLSTM + SWIM. As described in Section 3.3, this tests
whether BiLSTMs further aid SWIM, since content in-
formation has already been encoded by SWIM’s word
embedding averaging.

We also investigate whether both linear and quadratic terms
are necessary for SWIM’s word interaction computation:

A. Quadratic Term (QT only). Only the quadratic term and
bias term of Eq. (1) are retained.

B. Linear Term (LT only). Only the linear and bias terms
are retained.

4.2 Experimental Setting
We adopt the standard settings for the PDTB v2.0 dataset use
in our experimentation (Sections 2–20, Sections 0-1 & Sec-
tions 23-24, and Sections 21-22 for training, development and
testing, respectively.

We follow the practice of [Zhou et al., 2010; Liu and Li,
2016] which follow the standard definition of PDTB v2.0,
which admits a separate categorization outside of discourse
relations for EntRel (hence distinct from Expansion), unlike
[Pitler et al., 2009; Chen et al., 2016] that deemed entity
relations (EntRel) as a form of Expansion relations. Aside
from this, our other settings are standard: we use Stanford
CoreNLP [Manning et al., 2014] for tokenization, pad all sen-
tences to length 50, and use Stanford’s GloVe [Pennington et
al., 2014] 100 dimensional pre-trained word embeddings for
SWIM and 50 dimensional pre-trained embedding for BiL-
STMs + SWIM. The embedding layer is fixed during train-
ing, and dropout is performed on the input and MLP layers
(dropout percentage = 20%). For training, we adopt multi-
class cross-entropy loss, using AdaGrad for the stochastic op-
timization [Duchi et al., 2011]. The initial learning rate is set
at 0.01, with a batch size of 32. Following [Liu and Li, 2016;
Rutherford and Xue, 2014], we use instance re-weighting.

4.3 Experimental Results
Table 2 presents our results. Prediction performance is evalu-
ated in both standard schemes of n binary classifications and
a single n-way classification (where n = 4), using macro F1.

The upper portion of Table 2 shows that our SWIM ar-
chitecture (Row 5) performs on par with GRN and NNMA,
with the exception of Temporal relations. Introspecting these
results at an instance level, we find that GRN, NNMA and
SWIM exhibit little agreement on Temporal relations. As
Temporal relations only constitute 5% of the dataset, it is a
minority class where its performance may be largely affected
by random factors. In our efficiency analysis, we calculate



Model Comp. Cnt. Exp. Temp. 4-way Time (ms) Avg.Std.
1. GRN (cited) 40.17% 54.76% – 31.32% – – –
2. GRN (replicated) 39.05% 54.53% 69.01% 33.52% 44.61% 3.46 0.012
3. NNMA (cited, two level) 39.86% 53.69% 69.71% 37.61% 44.95% – –
4. NNMA (cited, three level) 36.70% 54.48% 70.43% 38.84% 46.25% – –
5. SWIM 40.47% 55.36% 69.5% 35.34% 46.46% 0.49 0.008

a. EA 33.01% 46.56% 68.31% 29.59% 40.22% 0.08 0.005
b. BiLSTM 34.01% 47.31% 68.53% 30.01% 40.84% 3.0 0.011
c. WIS 35.53% 51.15% 68.98% 30.72% 40.64% 0.45 0.007
d. BiLSTM + WIS 39.42% 53.85% 70.05% 32.75% 44.57% 3.37 0.011
e. BiLSTM + SWIM 38.71% 54.32% 70.02% 35.06% 45.96% 3.37 0.012

A. QT only 37.73% 53.02% 68.12% 33.21% 43.25% 0.34 0.008
B. LT only 36.78% 51.51% 67.41% 32.72% 42.04% 0.18 0.008

Table 2: Models’ effectiveness, efficiency and stability. Effectiveness measured by macro F1; efficiency, by average processing time per
instance, in milliseconds; stability, by macro-averaged standard deviation over 10 runs.

the time cost per instance in one training epoch (measured in
milliseconds). Our proposed SWIM runs 7 times (3.46/0.49)
faster than GRN.

This result is significant as the training times listed in Ta-
ble 2 are for individual epochs and for a single architecture.
The time savings benefits two aspects: first, neural models are
typically trained over hundreds of epochs and with hundreds
of individual configurations for hyperparameter tuning, lead-
ing to significant savings in development and tuning times in
creating the final model. Second, semi-supervised learning is
an important direction for implicit discourse relation recogni-
tion, due to the abundance of weakly labeled data. In semi-
supervised learning, usually a much large number of training
instances are involved. For example, Liu et al. [2016] report
training with over 400k instances. With 400k instances, we
estimate that a GRN architecture will take about 38 hours for
a run of∼100 epochs; in comparison, SWIM would complete
in less than 6 hours.

Model stability is another concern. In our analysis we run
each model 10 times by initializing with different random
seeds for both 4 binary classifications and the single, four-
way classification, calculating the standard deviation over the
ten runs. We see that SWIM’s predictive performance is
more stable (last column, comparing 0.008 with 0.012, F-test
p = 0.001984 < 0.005) than GRN.

The middle portion of the table provides empirical valida-
tion of SWIM’s choice of argument and word pair represen-
tations. Rows a and b validate our hypothesis that embed-
ding averaging achieves prediction performance comparable
to the more complex BiLSTM model. Simplifying SWIM’s
model further by employing only the raw word interaction
score (Row c) also underperforms.

Could the simplified treatment of the interaction scores
coupled with the standard BiLSTM approach close the perfor-
mance gap? Row d explores this option. The answer is ‘no’,
as it underperforms; SWIM (Row 5) adds the use of embed-
ding averaging to sensitize the argument representation to the
interaction scores. Augmenting SWIM with BiLSTMs does
not improve the results further (Row e), plausibly supporting
our hypothesis that positional information encoded by BiL-

GRN SWIM
test′ 42.35% (−2.26%) 46.46% (NC)

Table 3: Word order sensitivity comparison: F1 of a single 4-way
classification on the scrambled (test′) set.

STMs may contribute noise over the use of the content cues
already encoded by embedding averaged argument represen-
tation. Additionally, all BiLSTMs models take significantly
longer training times and produce less stable results (cf Row
5 vs. Rows 2, b, d, and e).

Finally, comparing SWIM against the selective use of only
the quadratic or linear word interaction terms in the bottom
portion of the table suggest that both are needed to properly
model word interaction (Row 5 vs. Rows A and B).

Overall, we conclude that the current SWIM configuration
strikes a good balance among effectiveness, stability, effi-
ciency and model complexity.

Discussion
There are loose ends to validate in our claims that have not
yet been supported by evidence. Here, we detail three issues
where we present auxiliary data to buttress our arguments.

First, we have argued that positional information encoded
by BiLSTM (in the guise of GRNs) is not needed for our clas-
sification task. We validate this proposition via supplemental
experimentation. To give credence that GRN models posi-
tional information, we randomize the order of the words in
each argument in the test set to obtain a new test set (test′).
We then test the pre-trained GRN, SWIM against test′. Ta-
ble 3 gives the 4-way classification performance figures on
test′. The results indicate that GRN is sensitive to the po-
sition of words, while SWIM-based models retain their per-
formance, validating that SWIM does not model positional
information.

Second, we need to assess the sensitivity of the neural ar-
chitectures to dataset scale, as we have argued that the SWIM
architecture is optimal for the task, independent of the scale
of data currently available. We train and test GRN and SWIM
with different model sizes by changing the hidden layer and



Model 10k 30k 100k 300k
GRN 42.06% 43.03% 44.61% 43.59%
SWIM 45.93% 46.46% 44.32% 43.95%

Table 4: F1 score of 4-way classification with different total number
of parameters. The optimal configuration is reported in Table 2, and
bolded per system.

embedding sizes3 of each model to have their total number of
parameters be at parity: set to 10k, 30k, 100k and 300k (Ta-
ble 4). This result suggests that GRN intrinsically requires
much more parameters to achieve better prediction results;
in contrast, SWIM makes better use of its limited number of
parameters.

(a) WIS

(b) SWIM

Figure 4: The interaction scores of one PDTB instance
(wsj 1691), generated by both WIS (a) and SWIM (b). Darker
entries indicate a higher interaction score.

Finally, we also wish to assess whether SWIM actually
does assigns high interaction scores to important word pairs
in the matrix S through per instance analysis. In Figure 4,
we introspect the interaction matrices of WIS and SWIM on
a PDTB example to illustrate how they differently they be-
have. We note that both WIS and SWIM calculate word in-
teraction scores in the same way, but that SWIM’s contextual-
ization of its argument representation modeling assigns high
scores more intuitively than WIS does. WIS assigns word
pairs featuring are (’re) high scores, possibly due to its cor-

3For GRN, 50d is the smallest pre-trained GloVe word embed-
ding. Therefore, we have to reduce the hidden size of GRN. For
SWIM, we use larger pre-trained embeddings and enlarge the hid-
den size to increase model size.

Figure 5: The interaction scores of a Comparison PTDB instance
(wsj 1499) generated by SWIM.

pus frequency. The arithmetic post-processing of the argu-
ment context by SWIM redistributes scores, correctly assign-
ing the fortunate–hurricane pair the highest interaction score.
Separately, Figure 5 shows SWIM’s interaction scores on a
Comparison instance, where the words (row) down and (col-
umn) up are assigned high weights, which is in accord with
our intuition that the word pair is critical in determining the
discourse relation. Interestingly, the word (row) about also
yields a high score. What was the cause for this? Drilling
down, we find that the Wall Street Journal uses similar tex-
tual expressions “[numbers] ... increase/decrease/up/down ...
about” when reporting many instances of financial news. The
high weight for about lends evidence that SWIM can discover
such important contextual co-occurrence corpus patterns.

5 Conclusion
We proposed a simple neural model for implicit discourse re-
lation recognition, named SWIM, which accounts for both
word pair interaction and argument representation. In con-
trast to previous works, we utilize word embedding average,
instead of BiLSTMs, for argument representation. Experi-
ment results show our model is more stable and runs faster
while still achieving state-of-the-art F1 scores.

In the wider context of neural network research, our work
finds additional evidence that BiLSTMs spend much effort
to model positional information, which we have shown to be
less helpful for our task. In tasks where word content is val-
ued over word ordering information, our work suggests that
simpler models such as an embedding averaging, can replace
BiLSTMs while achieving similar performance.

Acknowledgments
We gratefully acknowledge Qian Zhong of the Department of
Linguistics and Translation, City University of Hong Kong
for fruitful discussions on this research, and also acknowl-
edge the support of NVIDIA Corporation for their donation
of the Titan X GPU that facilitated this research.



References
[Carlson et al., 2002] Lynn Carlson, Mary Ellen Okurowski,

and Daniel Marcu. RST discourse treebank. Linguistic
Data Consortium, University of Pennsylvania, 2002.

[Chandrasekaran et al., 2017] Muthu Kumar Chan-
drasekaran, Carrie Demmans Epp, Min-Yen Kan,
and Diane Litman. Using discourse signals for robust
instructor intervention prediction. Proceedings of the
Thirty-First AAAI Conference on Artificial Intelligence
(AAAI-17), pages 3415–3421, 2017.

[Chen et al., 2016] Jifan Chen, Qi Zhang, Pengfei Liu,
Xipeng Qiu, and Xuanjing Huang. Implicit discourse rela-
tion detection via a deep architecture with gated relevance
network. Proceedings of the 54th Annual Meeting of the
Association for Computational Linguistics, 2016.

[Duchi et al., 2011] John Duchi, Elad Hazan, and Yoram
Singer. Adaptive subgradient methods for online learning
and stochastic optimization. Journal of Machine Learning
Research, 12(Jul):2121–2159, 2011.

[He et al., 2017] Xiangnan He, Lizi Liao, Hanwang Zhang,
Liqiang Nie, Xia Hu, and Tat-Seng Chua. Neural collab-
orative filtering. In 26th International World Wide Web
Conference, 2017.

[Hernault et al., 2010] Hugo Hernault, Danushka Bollegala,
and Mitsuru Ishizuka. A semi-supervised approach to im-
prove classification of infrequent discourse relations using
feature vector extension. In Proceedings of the 2010 Con-
ference on Empirical Methods in Natural Language Pro-
cessing, pages 399–409. Association for Computational
Linguistics, 2010.

[Hochreiter and Schmidhuber, 1997] Sepp Hochreiter and
Jürgen Schmidhuber. Long short-term memory. Neural
computation, 9(8):1735–1780, 1997.

[Iyyer et al., 2015] Mohit Iyyer, Varun Manjunatha, Jordan
Boyd-Graber, and Hal Daumé III. Deep unordered com-
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