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Abstract

We present our work towards building a ro-
bust multiple document summarizer (SWING),
with a focus on guided summarization.
SWING is an extractive summarizer built upon
information retrieval principles. Our key
contribution is utilizing category knowledge,
collected over all news topics, to calculate
category-specific importance (CSI) of sen-
tences. We propose two new category-specific
features in this work to compute the CSI of
a sentence. We also exploit identified named
entities to improve the guided summarization
process. Evaluation results show that our
methods are effective with respect to both the
ROUGE and Pyramid scoring metrics.

1 Introduction

The Guided Summarization task at TAC 2011 is
designed to promote the development of abstrac-
tive and content-aware summarization techniques. It
guides the participant systems to do so by explic-
itly assigning topics to categories and advocating the
systems to retrieve content relevant to the aspects of
each category. Aside from this main component, the
task also has an update component that requires sys-
tems to generate summaries that assume the user has
read some articles from the same topic before. The
task is similar to Update Summarization task at TAC
2009 (Dang and Owczarzak, 2009).

Some interesting approaches have been previ-
ously proposed at TAC 2010 for the Guided Sum-
marization task. Conroy et al. (2010) augmented
their CLASSY system with a guided query gen-
eration component that expands query terms for

each aspect of category by performing searches over
Google, dictionaries, thesaurii and authored world
knowledge. Steinberger et al. (2010) generates
guided summaries via information extraction prin-
ciples. Aspect information extracted from an en-
tity extractor is coupled with a latent semantic anal-
ysis model to capture relevant information. They
also build lexicons for some category aspects that
are not identified by the event extractor. External
knowledge such as Wikipedia is also used by many
groups (Varma et al., 2010) for this task. An ample
set of relevant articles are selected manually from
Wikipedia for each category. These articles are used
to build domain models and later to extract impor-
tant sentences containing events mentioned in the
template.

We believe that providing category-specific in-
formation in a summary is as important as provid-
ing relevant topic information. To this effect, we
have developed a robust sentence-extractive summa-
rizer, SWING (a guided Summarizer from WING1),
based on Information Retrieval principles. We ex-
tract diverse features from the article text, and uti-
lize them to estimate the importance of informa-
tion through a regression model. The set of features
employed include simple heuristics (length of sen-
tence, positional information of sentence in the arti-
cle), frequency measures (document frequency) and
relative entropy estimates (Kullback-Lieber diver-
gence). While these features help to find the generic
importance of individual sentences, a key aspect of
our summarizer is that it also makes use of the arti-

1The Web Information Retrieval / Natural Language Pro-
cessing Group (WING).



cle’s associated category for each topic to calculate
the category-specific importance (CSI) of each sen-
tence. CSI is captured through both category rele-
vance scores and category differential measures.

As answer types for most of the aspects (WHERE,
WHO, WHEN) are entities, we also carried out
an additional set of experiments to explore how
automatically-identified named entities can improve
the guided summarization process. We built ranked
lists of entities based on their frequency of occur-
rence at different levels of granularity (i.e. topic and
corpus levels) and studied if these have a positive
influence on content responsiveness.

In following sections, we explain the system ar-
chitecture and the features used for computing rele-
vance and CSI. Later, we detail about the submission
runs and evaluation results. Finally we present our
post-competition analysis and discuss our findings.

2 System Overview

SWING is designed to be an easy-to-use and ef-
fective testbed for the evaluation of summarization
techniques. Design decisions were made keeping in
mind the need for the system to be easily modifiable.

2.1 Architecture

The system consists of several independent Ruby
programs linked together with Unix pipes.

Independent modules and programs. Building
independent modules makes it easy to add and re-
move functionalities to and from the system. New
ideas and techniques can be incorporated easily
without affecting the other parts of the system.

Unix pipes. Unix pipes are a stable, well-
proven method of inter-process communication. By
standardizing the data format of input and output
streams, the independent modules can communicate
with each other easily. We have chosen to make use
of Javascript Object Notation (JSON) to define the
input and output streams because it is simple to con-
struct and easy to process programatically.

Figure 1 illustrates how the different independent
modules are chained together. Key functionalities
which we have incorporated into this pipeline in-
clude:

Input. Converts provided source documents into
a JSON formatted string which is compatible with

Figure 1: SWING pipeline.

the rest of the system.
Preprocessing. Processes input text as desired

before proceeding with summarization.
Summarization. The main functional component

which implements the desired summarization algo-
rithm.

Output. Transforms the output of the pipeline
into a desired format for evaluation and validation.

2.2 Methodology

Our summarization system is based fundamentally
on a supervised machine learning approach. A set
of syntactic features is first derived from the input
documents. They are combined together with a set
of weights derived from support vector regression
(SVR). The model used for SVR is trained on the
TAC summarization track data for 2010. After scor-
ing each sentence, the Maximal Marginal Relevance
algorithm (Carbonell and Goldstein, 1998) is then
used to perform sentence re-ranking and selection.

2.2.1 Features

SWING consists of two classes of features:
generic features and category-specific features.
Generic features include sentence length (SL), sen-
tence position (SP), and a modified version of doc-
ument frequency. We also use two category-specific
features – Category Relevance score (CRS) and
Category KL-Divergence (CKLD) – to compute
category-specific importance (CSI) of a sentence.



2.2.1.1 Generic Features
These features capture generic information rele-

vant to all news articles.

Sentence position (Edmundson, 1969) is a sim-
ple yet effective feature that is being used in sum-
marization in the news domain. The intuition is that
leading sentences in a news article usually contain
summarizing information. Since the TAC data con-
sists of news articles, we use the positional infor-
mation to boost the top sentences of an article. The
score of a sentence s is computed as,

SP (s) = 1− p

N

where p is the position of sentence s and N is the
total number of sentences in that article.

Sentence length is a binary feature that checks
if the number of words in a sentence is at least 10.
This feature helps in avoiding noisy short text in the
summary. The value 10 is empirically determined in
our system tuning.

SL(s) =

{
1 if len(s) >= 10
0 otherwise

Bigram DFS (BDFS) Document frequency
score (DFS) is a generic scoring feature that
has been proven successful in past summarization
tasks (Bysani et al., 2009; Schilder and Kondadadi,
2008). It computes the importance of a token as the
ratio of the number of documents in which it oc-
curred to the total number of documents. We ex-
tended the idea of the DFS from unigrams to bi-
grams. BDFS is the weighted linear combination
of the DFS for unigrams and bigrams of a sen-
tence. Since bigrams encompass richer information
and unigrams avoid problems with data sparseness,
we chose a combination of both. The BDFS of a
sentence s, BDFS(s), is computed as

α(
∑

wu∈sDFS(wu)) + (1− α)(
∑

wb∈sDFS(wb))

|s|

where wu are the unigram and wb are the bigram
tokens in sentence s. α is the weighting factor that
is set to 0.3, after tuning on the development set.
The DFS of a token w is calculated by the below
equation,

DFS(w) =
|{d : w ∈ d}|
|D|

where D is the set of documents in the topic and d
is a document in D.

2.2.1.2 Category-Specific Features
The guided summarization task provides addi-

tional category and aspect information related to
each topic. We devise two features, Category Rel-
evance Score (CRS) and Category KL-Divergence
(CKLD), to measure the category-specific impor-
tance (CSI) of each sentence. CSI is used along with
general relevancy features to boost sentences having
target category related information.

CRS computes the categorical relevance of a
word, using the frequency of documents (CDFS) and
the frequency of topics (TFS) in which the word oc-
curred in a particular category. A linear combination
of scores at both topic level and document level is as-
signed to each word. This feature is devised to uti-
lize category information in guided summarization
task and is specific to the task. CRS of a sentence s
in category c, CRS(s), is calculated as

β(
∑

w∈s TFSc(w)) + (1− β)(
∑

w∈sCDFSc(w))

|s|

where TFSc(w) and CDFSc(w) are computed by:

TFSc(w) =
|{t : w ∈ t, ∀t ∈ c}|

|Tc|

CDFSc(w) =
|{d : w ∈ d, ∀d ∈ t ∩ t ∈ c}|

|Dc|

where Tc and Dc are the sets of topics and docu-
ments in category c, respectively.

CKLD is a category differential measure that cal-
culates the importance of a word in the category as
its KL divergence value of its distribution in the cur-
rent category (c) to all the categories in the dataset
(C). The greater the divergence from the total set C,
the more informative the word is for category c. The
probabilities are computed in terms of document fre-
quencies. The CKLD value of a sentence s is given
as:



CKLD(s) =
∑
w∈s

pc(w)log
pc(w)

pC(w)

where pc is calculated as the CDFS of the word,
namely:

pc(w) = CDFS(w)

and pC is calculated as:

pC(w) =
|{d : w ∈ d, ∀d ∈ (

⋃
c∈C Dc)}|∑

c∈C |Dc|

2.2.2 Role of Named Entities
While CSI takes into account the importance of

a word relative to the target category to summa-
rize, it does not explicitly allow us a way to tailor
the produced summaries to the aspects required for
each category. We observed that many aspects of
each category seek objective information such as the
name of subjects or the location of a described event.
These relate largely to WHO, WHERE and WHEN,
hinting that we should look closely at sentences con-
taining named entities.

To validate our observations, we experimented
with 2 named entity related feature classes:

Top Entities for Topic (Toptopic) This module
gathers the top n named entities (i.e. PERSON,
LOCATION, etc.) from documents within a given
document set, and assigns a unit score for sentences
containing these entities.

Top Entities Corpus-Wide (Topcorpus) As
Toptopic, but with documents drawn from the whole
corpus.

Both feature classes are calculated as:

Topx(s) =

{
1 if ∃w ∈ s, w ∈W
0 otherwise

where W is the set of identified top named entities.

2.3 Training and SVR
Each sentence is scored with the features explained
above. The features are automatically weighted by
support vector regression, following the methodol-
ogy described in (Bysani et al., 2009). We train the

regression model using the ROUGE-2 (R2) similar-
ity of sentences with human models as described in
the paper. Data from TAC 2010 is used as the train-
ing corpus, and the trained regression model is used
to predict the R2 scores of each sentence in the TAC
2011 test set.

2.4 Sentence Reranking
After each sentence has been scored, the maximal
marginal relevance (MMR) (Carbonell and Gold-
stein, 1998) algorithm is used to re-rank and extract
the best sentences to make up a 100-word summary.
In our implementation, the MMR of a sentence s is
computed as:

MMR(s) = Score(s)−R2(s, S)
where Score(s) is the score predicted by the regres-
sion model, S is the set of sentences already selected
to be in the summary from previous iterations, and
R2 is the predicted ROUGE-2 score of the sentence
under consideration (s) with respect to the selected
sentences (S).

We have also experimented with computing the
MMR value based on the term frequency/inverse
document frequency (TFIDF) of the words in each
sentence, but we found that the using the R2 values
gives us better extracted sentences when evaluated
against ROUGE.

2.5 Post-Processing
There are many text fragments found within the cor-
pus that are not useful in a summary. These in-
clude news agency headers and the date of the ar-
ticle. These are removed automatically during post-
processing from our generated summaries with the
use of regular expressions.

After the post-processing step, the summary may
get shortened to less than 100 words. The MMR
sentence selection step is then repeated until the final
summary reaches the intended length.

2.6 Update Summarization
In the update summarization task, all processing
steps are similar to the generic summarization task,
except for MMR re-ranking. We follow our pre-
vious work in (Lin et al., 2007) and modified the
MMR equation so that it further penalizes a sen-
tence in set B if it is similar to some other sentence



in set A. This is useful because an update summary
should not contain duplicated content from the set
A summary. We find that penalizing sentences that
are very similar to those found in documents within
set A helps to select sentences which are novel. The
similarity is again measured with ROUGE-2. The
modified MMR is shown as follows:

MMR(s) = Score(s)− λ ·R2(s, S)
−δ ·max

s′∈A
R2(s, s′)

The additional, final component of the equation
tries to find a sentence in set A that is most similar
to s in terms of predicted ROUGE-2. During our
tuning phase, we found that λ = 0.2 and δ = 0.2
give the best performance.

3 Submissions

The test dataset for the TAC 2011 Guided Sum-
marization task consists of 44 topics, categorized
into 5 categories. Each topic has 20 relevant docu-
ments, equally divided into 2 sets (Set A and Set B)
based on the timestamps of the articles. Unlike regu-
lar, query-based summarization, each category has a
specific template of aspects that defines the informa-
tion the summarization system has to provide. The
task is to generate two 100-word summaries: one
for each set of a topic, answering all the aspects in
the template. The summary for Set A is an ordinary
summary, while the summary for Set B is an update
summary that assumes that the user is already famil-
iar with the documents in Set A. Repeated content
from Set A should thus be omitted from Set B.

We submitted two runs for the summarization
track this year. The first run (NUS1, ID:43) was
created by choosing the best performing configura-
tion on the training data in terms of ROUGE-2 score.
The submission consists of five features: SP, SL,
BDFS, CRS, and CKLD. The second run (NUS2,
ID:17) is obtained by running the NUS1 implemen-
tation to retrieve up to 60% of the allowed summary
length, and the remainder by incorporating an alter-
native set of features, consisting of the 2 named en-
tity feature classes described in Section 2.2.2. The
purpose of this is to accommodate informative, but
non-ROUGE emphatic sentences into the summary
for better coverage of the different aspects.

We provide the evaluation results from NIST in
tables below. 50 runs were submitted for the task
from 22 different teams, including 2 baselines from
TAC. Table 1 reports the ROUGE scores and ranking
of our submitted runs along with the best ROUGE
scores among all participant systems. Similarly, Ta-
ble 2 reports the manual evaluation results (average
pyramid scores and overall responsiveness) of our
runs. We also replicate the results of two NIST base-
lines in the tables for comparison – Baseline1 re-
turns the top sentences in the most recent article un-
till the summary length (100 words) is reached, and
Baseline2 is the output of the MEAD summarizer.2

System ROUGE-2 ROUGE-SU4

Set A

NUS1 0.13440 (1) 0.16519 (1)
NUS2 0.12994 (2) 0.15984 (2)
Baseline1 0.06410 0.09934
Baseline2 0.08682 0.11749
Best 0.13440 0.16519

Set B

NUS1 0.09581 (1) 0.13080 (1)
NUS2 0.08855 (3) 0.12792 (3)
Baseline1 0.05685 0.09449
Baseline2 0.05903 0.09132
Best 0.09581 0.13080

Table 1: Automatic evaluation results.

Results show that our runs have comfortably
surpassed both the baselines in terms of ROUGE
scores. NUS1 turned in the best ROUGE scores for
both Set A and Set B. A drop in ROUGE scores is
observed for Set B when compared to Set A across
all summarizers, showing that update summariza-
tion is a harder task and hints at the need for more
sophisticated methods.

A similar trend is observed in the manual evalua-
tion results. Both the runs have scored better than
the baselines by a sizable margin. Although our
runs are tuned for ROUGE-2 scores in the regres-
sion model, the scores are still comparable to the
best systems in terms of pyramid scores and overall
responsiveness. NUS1 is behind the best systems in
terms of average pyramid scores by only 0.003 and
0.006 in Sets A and B, respectively. It shows that
ROUGE scores are correlated with content-based
manual evaluation metrics. It is interesting to note

2http://www.summarization.com/mead/



System Avg.Pyramid Over.Response

Set A

NUS1 0.474 (2) 3.068 (8)
NUS2 0.468 (3) 3.091 (4)
Baseline1 0.304 2.500
Baseline2 0.362 2.841
Best 0.477 3.159

Set B

NUS1 0.347 (3) 2.455 (12)
NUS2 0.337 (7) 2.500 (7)
Baseline1 0.237 2.091
Baseline2 0.284 2.114
Best 0.353 2.591

Table 2: Manual evaluation results.

that while NUS1 outperforms NUS2 in most evalu-
ation measures, NUS2 is judged to be consistently
better than NUS1 for overall responsiveness that is
based on both linguistic quality and informative-
ness.

4 Post-Competition Experiments

We carried out a set of post-competition experiments
to test the efficacy of each of the features used in
our submissions. Given the time constraints, it is
only feasible to perform the experiments using auto-
matic evaluation measures, thus we only report the
ROUGE scores of our experiments in this section.

The probabilities used for CKLD in Section 2.2.1
is computed in terms of the document frequencies.
Later, we used term frequencies of the words in cal-
culating its probability. The probabilities for this
modified CKLD (i.e., CKLDtf ) are computed as:

pc(w) =
fc(w)∑

wi∈Wc
fc(wi)

pC(w) =

∑
c∈C fc(w)∑

c∈C
∑

wi∈Wc
fc(wi)

where fc(w) is the frequency of word w in category
c, Wc is set of unique words in category c and C is
the set of all categories.

The evaluation results of these post-competition
experiments for both Set A and Set B are presented
in Table 3. The first row is the original submission
run (NUS1). Each row represents a change in con-
figuration of NUS1 by removing one or more fea-
tures. The final two rows in each set use CKLDtf

instead of CKLD.

Configuration R2 RSU4

Set A

NUS1 0.13457 0.16502
NUS1 – CRS 0.13463 0.16506
NUS1 – CKLD 0.13702 0.16788
NUS1 – CRS – CKLD 0.13392 0.16513
NUS1 – BDFS 0.09419 0.13245
NUS1 – SL 0.13523 0.16482
NUS1 – SP 0.1262 0.15586
NUS1(CKLDtf ) 0.13796 0.16808
NUS1(CKLDtf ) – CRS 0.13725 0.16749

Set B

NUS1 0.09376 0.12875
NUS1 – CRS 0.09126 0.12605
NUS1 – CKLD 0.09359 0.12747
NUS1 – CRS – CKLD 0.09209 0.1275
NUS1 – BDFS 0.08388 0.12287
NUS1 – SL 0.07996 0.11665
NUS1 – SP 0.09565 0.12978
NUS1(CKLDtf ) 0.09354 0.12763
NUS1(CKLDtf ) – CRS 0.09209 0.12748

Table 3: Feature ablation tests with ROUGE-2 (R2) and
ROUGE-SU4 (RSU4) scores.

A comparison of NUS1 against the configurations
without the category-specific features (i.e., CRS and
CKLD) is helpful to illustrate the effect achieved
of leveraging these category-specific features. The
effect is more noticeable in Set B, which shows
that both features are needed to achieve the op-
timal results and they are complementary to each
other. Further, CKLDtf achieved higher scores
compared to CKLD in Set A. The combination of
CRS+CKLDtf helps in improving the scores from
0.13457 to 0.13796 for R2 and 0.16502 to 0.16808
for RSU4, as shown in bold.

Also, it is observed that BDFS is an important
generic feature in the pipeline, and a large drop in
ROUGE is observed without this feature. The ef-
fect of category-specific features is not significant in
Set B. This suggests that the update summarization
task requires a different approach beyond our use of
category-specific information.

5 Conclusion

In this paper we present our SWING summariza-
tion system, and briefly described the two runs we
submitted for the TAC 2011 Guided Summariza-
tion task. There are two unique characteristics for
the guided summarization task — categories and as-
pects. We formulate our methods to address the



acquisition of category-specific information of each
topic using the collective knowledge provided in
the whole data set. Our initial efforts towards an-
swering aspects make use of named entity informa-
tion at the topical level. Both automatic and man-
ual evaluation measures validate that our category-
specific methods are very effective in producing
a guided summary. In future work, we look to-
wards devising more sophisticated features to cap-
ture aspect-specific information, as well as exam-
ining the integration of aspect-based scores with
category-specific scores.
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