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Abstract

Many record matching problems involve information that is insufficient or incomplete, and thus solutions
that classify which pairs of records are matches often involve acquiring additional information at some cost.
For example, web resources impose extra query or download time. As the amount of resources that can be
acquired is large, solutions invariably acquire only a subset of the resources to achieve a balance between
acquisition cost and benefit. At the same time, resources often have hierarchical dependencies between them-
selves, e.g., the search engine results for two queries must be obtained before the TF-IDF cosine similarity
between their snippets can be computed.

We propose a framework for performing cost-sensitive acquisition of resources with hierarchical depen-
dencies, and apply it to the web resource context. Our framework is versatile, applicable to a large variety
of problems. We show that many problems involving selective resource acquisitions can be formulated using
resource dependency graphs. We then solve the resource acquisition problem by casting it as a combinato-
rial search problem. As the support vector machine is commonly used to effectively solve record matching
problems, we also propose a benefit function that works with this classifier. Finally, we demonstrate the
effectiveness of our acquisition framework on record matching problems.

1 Introduction
There are many real-life problems in which the given information is either insufficient or incomplete. Therefore,
an increasing number of solutions elect to acquire additional information from external resources, such as by
querying the web through a search engine, to achieve a better solution quality. Such works solve problems
in vastly different application areas, and many of these solve problems (or subproblems) that can be seen
as record matching. Examples include: the matching of entities to concepts in ontology creation [Cimiano
et al., 2005], measuring semantic similarity between words [Bollegala et al., 2007], social network extraction
[Matsuo et al., 2006], record linkage [Elmacioglu et al., 2007], author name disambiguation in bibliographic
citations [Tan et al., 2006], and web people search [Kalashnikov et al., 2008]. All of these works demonstrated
that acquiring additional information through a search engine resulted in increased matching effectiveness.
However, acquiring such web information is time consuming due to slow web accesses and rate limiting by
search engines, and can entail other access costs. This can cause significant bottlenecks unless web resources
are acquired selectively, yet existing work has ignored this issue to a large extent.

One common approach to limit the cost of resource acquisitions is through blocking, which filters out ob-
vious mismatches and only performs matching on non-obvious record pairs (e.g., [Winkler, 2006]). Successful

∗This work was partially supported by a National Research Foundation grant “Interactive Media Search” (grant #R-252-000-325-279).

1



applications of blocking can achieve a reasonable task performance with a greatly reduced number of pairwise
matchings [Goiser and Christen, 2006]. Thus, the amount of required resource acquisitions can be reduced
significantly. However, blocking techniques are often ad-hoc domain-specific techniques and can be difficult
to define properly; poor blocking decisions can result in degraded performance [Goiser and Christen, 2006].

On the other hand, there is also a large pool of work that formulates such resource acquisition problems into
selective and cost-sensitive acquisition of missing attribute values in a classification model (e.g., [Ling et al.,
2006], [Saar-Tsechansky et al., 2009]). While such works provide more principled acquisition algorithms,
they generally do not consider dependencies in resource acquisitions, and assume that resource acquisitions
are independent events across different instances. However, such assumptions are often not true in the web
resource context where resource acquisitions can have hierarchical dependencies. For example, search engine
results for a and b must be acquired to compute web-based similarity metrics between a and b, but the acquired
search engine results for a is also available for all pairwise instances that compare a with another item.

Our contributions in this work are as follows:

1. We propose a framework for performing cost-sensitive resource acquisition problems with hierarchical
dependences, through the use of a resource dependency graph. Our framework is versatile and can
be applied to a large variety of problems, and we show that a number of problems involving selective
resource acquisitions can be formulated using resource dependency graphs.

2. Given a resource dependency graph of a record matching problem, and a benefit function that measures
the goodness of making resource acquisitions, we propose an algorithm for making resource acquisitions
that take the unique characteristics of such graphs into account. We cast the problem as a combinatorial
search problem, and we apply the widely-studied Tabu search algorithm [Glover, 1990] to solve it.

3. We propose a benefit function for applying our resource acquisition framework to record matching prob-
lems when the classification model is the support vector machine. We show that the our resource acqui-
sition algorithm is effective in this setting.

This paper is organized as follows. In Section 2, we first review related work. In Section 3, we describe
our cost-sensitive resource acquisition framework and its possible applications. In Section 4, we propose an
algorithm for solving the resource acquisition problem in the context of our framework. In Section 5, we
describe a support vector machine based benefit function for use in our framework. In Section 6, we evaluate
the effectiveness of our acquisition framework. In Section 7, we conclude the paper.

2 Related Work
Record matching is widely studied and several papers have surveyed approaches to it (e.g., [Winkler, 2006],
[Elmagarmid et al., 2007], [Smalheiser and Torvik, 2009]). Here, we will only focus on related work that
utilizes web information to perform matching tasks. Again this idea is not new and hence we will only survey
a representative sample.

In [Cimiano et al., 2005], an ontology building system is created to match the entities extracted from an
input document D to a list of concepts. For an entity e ∈ D and a concept c, the system submits queries
formed by e concatenated with patterns associated with c to a search engine. From the retrieved snippets, if the
similarity of a snippet and D exceeds a threshold then concept c gets a vote. Thus, e will be associated with
the concept with the highest number of votes.

In [Bollegala et al., 2007], the semantic similarity between two words a and b is measured by first obtaining
hit counts from the three queries a, b, and a ∧ b. Using these hit counts, web versions of similarity metrics can
be computed. The values of these metrics then become attribute values in a test instance which is classified
using a support vector machine classifier.

In [Elmacioglu et al., 2007], a framework for finding matching entities in an input list is given. First, a
representative token tc is selected from the input data, and then the search engine is queried with the query
e ∧ tc for each entity e in the list. Extensive experimentation is performed using various similarity metrics
computed from hit counts, snippets, and web pages.
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Through these sample works (and many others, e.g., [Sahami and Heilman, 2006], [Matsuo et al., 2006],
[Oh and Isahara, 2008], [Kalashnikov et al., 2008]), a clear pattern can be seen. To perform record matching,
queries of the form a, b, and a∧b are issued to the search engine for some or all record pairs a and b in the input.
Optionally, these queries can be further augmented with additional terms or tokens t, thus we may query with
a ∧ t instead of just query with a. Then similarity metrics or other information such as frequency counts may
be extracted from the search engine results, which may be used standalone or combined to form test instances
for a classifier such as a support vector machine.

However, obtaining search engine results and downloading web page are time consuming processes. Fur-
ther, search engines typically perform rate limiting and restrict the number of queries one may make in one day.
For example, Yahoo! Search has a daily quota of 5, 000 queries. However, even two lists of 100 items each can
generate 10, 000 pairwise queries of the form a∧b, which requires two days. As such, it is necessary to acquire
web resources in a selective manner. In our earlier work, we considered an adaptive querying framework [Tan
et al., 2008] where an algorithm stronger in matching performance is combined with another algorithm faster
in running time to produce a combined algorithm with good performance and with reasonable runtime. In the
context of this paper, we can cast these two algorithms as producing two different attributes for test instances,
to be used by a classifier to determine whether these instances represent matches.

Thus, another line of related work is in the cost-sensitive acquisition of missing attribute values in instances,
such as [Ling et al., 2006; Saar-Tsechansky et al., 2009]. However, none of these works considered the pos-
sibility of different instances sharing the same attribute values, or attribute values in different instances being
derived from the same resource, as commonly found in the structure of record matching problems. [Kanani
and McCallum, 2007] solved a clustering problem expressed as a complete graph, and where additional web
resources can be acquired and added as additional vertices in the graph. However, their work only considered
one kind of additional resource (search engine results) and did not account for varying acquisition costs that
differing resources may incur. Further, another common issue in all of these cost-sensitive acquisition papers
is that none of them considered the hierarchical dependency of resources, such as the fact that web page down-
loads depend on search engine results. To the best of our knowledge, our work is the first to generalize the
resource acquisition problem to handle the conditions modeled in our framework.

3 Resource Acquisition Framework
Our cost-sensitive resource acquisition framework is designed to handle many kinds of resource acquisition
problems. Central to our framework is the notion of a resource dependency graph. To aid our description, we
use a simple record matching example involving web-based resources as our running example. We then expand
on this example to illustrate how the resource dependency graphs can be constructed for other record matching
problems. We define our framework in this section, and propose an algorithm for solving the acquisition
problem in Section 4.

3.1 Our Framework
We use a particular kind of record matching problem known as record linkage as our running example. The
input is two lists A and B, and the aim is to determine which record pairs (a, b) ∈ A × B are matches.
As illustrated earlier, we may query a search engine with the queries a, b, or a ∧ b, and obtain raw search
engine results which we denote as search(a), search(b), and search(a ∧ b) respectively. We can then extract
information from these search engine results, and construct a test instance xa,b to be classified as a match
or mismatch by a classifier. For concreteness, we assume that xa,b has four attribute values: hitcount(a),
hitcount(b), hitcount(a ∧ b), and dice(a, b). The first three are the hit counts (the number of web pages
matching a query) returned by the search engine in search(a), search(b), and search(a∧ b) for the respective
queries; and the fourth is the Dice coefficient dice(a, b) = 2·hitcount(a∧b)

hitcount(a)+hitcount(b) .
In this example, we consider each of search(a), search(b), search(a ∧ b), hitcount(a), hitcount(b),

hitcount(a ∧ b), and dice(a, b) as a different type of resource that may be acquired. The acquisition costs of
different resources may not be uniform, e.g., querying a search engine to obtain search(a) takes significantly
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Figure 1: Example resource dependency graph for two lists of 2 records each.

Figure 2: Structure of example resource dependency graph in plate notation.

longer than extracting hitcount(a) from search(a) after search(a) is acquired. Also, we may not want to
acquire all resources, as the classifier may already classify an instance correctly with a subset of the attribute
values in an instance. Further, some resource acquisitions have dependencies, e.g., acquiring hitcount(a)
requires search(a) to be acquired first. These dependencies can be captured in a resource dependency graph.

Definition 1. A resource dependency graph is a directed acyclic graph G = (V,E), where each vertex in the
vertex set V represents a resource, and an edge u → v exists in the edge set E if resource u must be acquired
before v can be acquired. In other words, a vertex may be acquired only after all its ancestor vertices have been
acquired. �

For our running example, Figure 1 shows the resource dependency graph corresponding to two lists of 2
records each. Observe how some resources are common to multiple instances, e.g., hitcount(a1) is common
to the instances xa1,b1 and xa1,b2 . We also see that in this simple case, the resource dependency graph already
starts to get complex. However, resource dependency graphs for record matching problems exhibit structural
regularity. Hence, we can use a variant form of plate notation and represent the resource dependency graph
for input lists of any size using Figure 2. Here, the solid box labeled a means that the vertices inside the box
are common to all instances involving a, and likewise for the box labeled b. Hence, there are |A| vertices of
the form search(a) as opposed to |A| × |B| vertices of the form search(a ∧ b). The dashed box indicates the
vertices that form the attribute values of the test instance xa,b.

Before defining the resource acquisition problem proper, we first define some of its elements.

Definition 2. Given a resource dependency graph G = (V,E), a set of vertices V ′ ⊆ V is called a feasible
vertex set if for all vertices v ∈ V ′, we have u → v implies that u ∈ V ′. That is, a feasible vertex set can
be acquired without violating any acquisition dependencies. We denote the set of all feasible vertex sets in the
graph G by F (G), with F (G) ⊆ 2V . �
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Definition 3. An acquisition cost function is a function cost : V → R+ ∪ {0}. We assume that cost(v) = 0
for any acquired vertex v. We also define a shorthand notation: for any feasible set of vertices V ′ ⊆ F (G),
cost(V ′) =

∑
v∈V ′ cost(v). �

Definition 4. A benefit function is a function benefit : F (G) → R. We assume that benefit(∅) = 0 and
benefit(V ′) = benefit(V ′u), where V ′u is the set of unacquired vertices in V ′. We also define a shorthand
notation: for any vertex v, benefit(v) = benefit({v}). �

Definition 5. A vertex type function is a function type : V → T , where T is a finite set of vertex types. �

In our running example, there are six vertex types, corresponding to search(a), search(b), search(a∧ b),
hitcount(a), hitcount(b), hitcount(a∧ b), and dice(a, b). Depending on problem requirements, we can scale
the acquisition costs and benefit values appropriately. We may (empirically or otherwise) set the acquisition
costs of each search(·) vertex and each other vertex to 10 and 1 respectively, as search engine results take
significantly longer to obtain compared to extracting hit counts. Also, as a classifier can only understand and
process the attribute values in test instances, it cannot directly utilize the raw search engine results search(a),
search(b), and search(a∧ b) since they are not part of the attribute values. Therefore, these vertices will have
zero benefit value. Thus in a resource acquisition problem, we would like to acquire a subset of vertices that
maximizes the difference between the benefit of acquiring these vertices and the total cost of acquiring them.

Definition 6. A resource acquisition problem takes in as input a resource dependency graph G = (V,E), an
acquisition cost function cost(·), a benefit function benefit(·), a vertex type function type(·), and a budget
budget. The aim of this problem is to acquire a feasible subset of vertices V ′ ∈ F (G), with cost(V ′) ≤ budget,
such that objective function obj(V ′) = benefit(V ′)− cost(V ′) is maximized. �

In most problems, we can assume that the resource dependency graph and the acquisition cost function
are known and fixed. However, the benefit function is typically only a heuristic that approximates the true
performance metric of the problem, because knowing the true metric function entails knowing the solution
set. For example, in a record matching problem, we may want to minimize the total misclassification cost or
to maximize the F -measure, but the benefit function may just return an estimated increase in classification
confidence instead. In this paper, when we consider algorithms for solving the resource acquisition problem,
we treat the benefit function as a black box. However, good benefit functions should be (almost) monotonic,
i.e., benefit(V1∪V2) ≥ benefit(V1) for all (or most) V1 and V2 that are subsets of the vertex set V , facilitating
algorithms that acquires vertices in an incremental manner. In Section 5, we define a benefit function in the
context of classification problems where missing attribute values in test instances may be acquired.

By modeling resource acquisition problems as resource dependency graphs, we have defined our framework
so it can be applied to various problem and solution settings. Our framework does not insist on having a
classifier to classify test instances, as long as we have a benefit function that indicates how useful vertices are.
In the following, we suggest how resource dependency graphs can be constructed for record matching problems
when additional types of resources and attributes are added, and when a variant of the record linkage problem
is encountered.

Term frequencies obtained from web pages. Term frequencies and TF-IDF values from web pages are
commonly used in record matching applications. Here, for a query q, we can add two types of resources:
webpage(q), representing the set of web pages that may be downloaded from the URLs in the top-k search
engine results of search(q); and tf(q), representing the term frequencies of the terms found in the downloaded
web pages webpage(q). Of course, webpage(q) depends on search(q), and tf(q) depends on webpage(q).
The term frequencies in tf(·) can then be used as attribute values in the test instances. If the TF-IDF values are
desired instead, then the tf(q) vertices can be replaced by tfidf(q) vertices, with the document frequencies
pre-calculated during a precomputation phase when the classification model is trained. Yet another alternative
is to compute the cosine similarity between the term frequency or TF-IDF vectors; such cos(a, b) vertices can
be added into the resource dependency graph easily.

Common n-grams. It is possible that the queries formed from a list of records contain many common
contiguous subsequences of tokens, or n-grams. If a particular n-gram is shared by at least k of the queries,
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Figure 3: Alternative structure of example resource dependency graph.

then querying this n-gram may produce results for all these queries, allowing us to save on the number of
queries compared to querying the original queries individually [Tan et al., 2008]. As such, we may construct a
vertex search(g) for each n-gram g that occurs in at least k of the original queries, with additional vertices of
the form value(q, g) for information extracted from search(g) pertaining to the original query q.

Clustering. Another common form of record matching takes in a list L as input and determines which
record pairs (a, b) ∈ L × L are matches. The building of the resource dependency graph is analogous to that
of record linkage. However, instances in clustering problems are symmetric, i.e., xa,b and xb,a are equivalent.
Hence, when constructing an instance xa,b, hitcount(a) and hitcount(b) make poor attribute values because
the equivalent instance xb,a would have the positions of these two attribute values interchanged, confusing
classifiers such as linear support vector machines. Instead, we can create two new vertices for the smaller and
larger of hitcount(a) and hitcount(b), and use them as attribute values instead.

3.2 Observations on Graph Structure
We first make some observations on the structure of resource dependency graphs involving web resources.
These observations inform our proposed acquisition algorithm.

We first observe that a resource dependency graph typically has only 2 to 4 levels. Further, the vertices at
or near the level of root vertices are often the results of costly web queries but with zero benefit value (e.g.,
search(·) and webpage(·)), while the vertices at or near the level of leaf vertices are typically attribute values
that can be extracted from the raw information at negligible costs (e.g., hitcount(·)). As such, many resource
dependency graphs can be restructured as hierarchies with 2 levels, where the root level mainly consists of ver-
tices that are costly to acquire and the leaf level mainly consists of vertices that can be acquired very cheaply.
For example, if the original graph contains the edges search(a)→ webpage(a) and webpage(a)→ tfidf(a),
then we can restructure the edges as search(a) → tfidf(a) and webpage(a) → tfidf(a). This does not
change the problem at all because acquiring tfidf(a) still requires acquiring both search(a) and webpage(a),
and merely acquiring webpage(a) without tfidf(a) is useless and produces a suboptimal solution. As an-
other example, consider the original running example of Figure 2. Because all of hitcount(a), hitcount(b),
hitcount(a ∧ b), and dice(a, b) can be acquired very cheaply given the search engine results, we can col-
lapse these vertices yielding a two-layer graph as shown in Figure 3 that approximates the original with little
difference, since the acquisition costs are dominated by search(a), search(b), and search(a ∧ b).

The next observation is that the vertex out-degree may vary widely, leading to bushy topologies. To illus-
trate this observation we again consider the resource dependency graph in Figure 3. A vertex for search(a∧ b)
typically only have very few child vertices, such as hitcount(a∧ b). On the other hand, a vertex for search(a)
can have at least O(|B|) descendant vertices such as dice(a, b).

4 Solving the Resource Acquisition Problem for Record Matching
The resource acquisition problem is essentially a combinatorial search problem over all subsets of V . However,
a brute-force enumeration of all feasible subsets of V is prohibitively expensive even for a moderate-sized graph
G. For example, in the simple resource acquisition graph of Figure 3, there are 2|A| × 2|B| × 4|A|×|B| possible
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acquisition decisions, even if we only consider the vertices that are attribute values in the test instances. It is
completely infeasible to do an exhaustive search. Therefore, we need to employ some form of heuristic.

In our heuristic search algorithm, we use F (G), the set of feasible subsets of the vertex set V , as our state
space. We denote the current state by V ′, and set V ′ = ∅ as our initial state. However, the unique structure of
the resource dependency graph and the benefit function in record matching problems poses special difficulty
as it is easy for the search algorithm to get stuck in local maxima. As an example consider the resource
dependency graph of Figure 3, where only the leaf vertices have positive benefit value and each of them has
benefit greater than cost. Suppose we start from an empty state V ′ = ∅, and only consider adding only a single
vertex to the current state. Then only search(·) vertices can be added, which only incurs cost but no benefit.
Further, there is no guidance on which search(·) vertex to add. Suppose search(a) (for some a ∈ A) was
added to the current state and one of the best vertex to acquire is hitcount(b) (for some b ∈ B). Then it is easy
for the algorithm to add hitcount(a) into the current state and get stuck in another local maxima. With a large
number of local maxima, it is easy for search algorithms to keep revisiting the states around the local maxima.

A solution must be able to address these topological issues in our web acquisition dependency graphs. We
tackle these issues as follows:

1. We apply a widely-studied metaheuristic search algorithm known as Tabu search [Glover, 1990]. This
search algorithm avoids revisiting the same states, allowing a better exploration of the state space.

2. We define a set of legal moves that are more intelligent. These moves allow the search algorithm to reach
states that includes the leaf vertices faster.

3. We introduce a surrogate benefit function that propagates the benefit values from the leaf vertices up-
wards to the root vertices. This guides the search algorithm towards vertices with the highest benefit
values.

4.1 Application of Tabu Search
We first describe our application of Tabu search, which can be seen as a modification of simple hill climbing
that avoids revisiting states and to escape local maxima. It has been applied successfully in a number of
combinatorial search problems [Glover, 1990]. Like simple hill climbing, Tabu search uses the set of legal
moves to generate neighbors of the current state, and then chooses the move that leads to the neighboring state
with the highest objective value. However, Tabu search also implements a Tabu list, which stores the moves
that are prohibited, or marked as Tabu. More specifically, when a particular move is applied at some iteration,
the move(s) that undo the effect of the applied move will be placed in the Tabu list for a set number of iterations
known as the Tabu tenure. This prevents the search process to repeatedly visit the same states and encourages
exploration of the state space. However, as an exception, Tabu search allows a Tabu move to be applied to the
current state if the resultant state has an objective value that is better than the states that have been visited so
far. This aspiration criterion is applied because the resultant state is obviously an unexplored state. We stop
the Tabu search when a certain number of consecutive iterations have occurred without improvement in the
best objective value. We then acquire the vertices in the state with the highest objective value.

4.2 Legal Moves
The set of feasible legal moves from current state V ′ is often very large – exponential in size. Another key
aspect in our design is to provide a relatively small number of potentially useful legal moves to reduce the
search space in such large resource dependency graphs. For V ′ 6= ∅, let D(V ′) be the set of children vertices
of vertices in V ′ that are also not in V ′. For example, in Figure 3, D({search(a)}) contain the hitcount(a)
vertex and all dice(a, b) vertices. For V ′ = ∅, we let D(V ′) to be the set of root vertices in G instead. The
legal moves in our framework are:

1. Add(v): For a vertex v ∈ D(V ′), add v and all its ancestors to V ′.

2. Remove(v): For a vertex v ∈ V ′, remove v and all its descendants from V ′.
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3. AddType(t): For a vertex type t ∈ T , construct a maximum subset of vertices U ⊆ D(V ′) with vertex
type t, such that the acquisition cost of V ′, U , and the ancestors of U does not exceed budget. Then add
all the vertices in U and their ancestors to V ′.

Note that all of these moves can batch add or remove multiple vertices in one operation. The aim for
defining the Add(v) and Remove(v) this way is to allow the search algorithm to reach the vertices with high
benefit values more easily. For example, in Figure 3, if the current state V ′ has a vertex search(a), it might be
worthwhile to add dice(a, b) as well, but this move would not be possible if we define our legal moves to add
only one vertex at a time unless the current state already contains search(b) and search(a∧b) as well. Finally,
AddType(t) allows as many descendant vertices of the same type to be added as possible, because there are
cases where the true benefit comes from acquiring one costly root vertex and many cheap leaf vertices rather
than one costly vertex and only one cheap leaf vertex. As for the Tabu moves, whenever a move adds a set of
vertices V ′′ to the current state, we add any move that removes any vertex in V ′′ to the Tabu list; and whenever
a move removes a set of vertices V ′′ from the current state, we add any move that adds any vertex in V ′′ to the
Tabu list.

4.3 Surrogate Benefit Function
Having defined the set of legal moves, we now turn to the question of how to choose a move from the current
state V ′. Many of the root vertices share the same acquisition cost and have zero benefit, giving no guidance
on which root vertices lead to the best leaf vertices. Therefore, we propagate benefit values upwards from
the leaf vertices to the root vertices, by repeatedly propagating from vertices to edges and then from edges
to vertices. This allows us to define a surrogate benefit function surr-benefit(V ′, V ′′) for the case when a
subset of vertices V ′′ is added to the current state V ′ that takes into account the benefit values propagated from
the descendant vertices of V ′′. Using this surrogate benefit function, we can then define a surrogate objective
function surr-obj(V ′, V ′′) that we use to select the best legal move to reach the next state.

Definition 7. Let 0 ≤ λ ≤ 1 be a propagation factor and 0 ≤ β ≤ 1 be an aggregation factor. For a
vertex v ∈ V , let pa(v) and ch(v) be the parent and child vertices of v respectively. We define the following
recursively.

The propagated benefit of a vertex v ∈ V is:

prop-benefit(v) = benefit(v) +max-pb(v) + β · rest-pb(v)

where

max-pb(v) = max
u∈ch(v)

prop-benefit(v → u)

rest-pb(v) =
∑

u∈ch(v)

prop-benefit(v → u)−max-pb(v)

The propagated benefit of an edge u→ v ∈ E is:

prop-benefit(u→ v) =
λ · (prop-benefit(v)− cost(v))

|pa(v)|

�

For a leaf vertex v, we have prop-benefit(v) = benefit(v). This allows us to precompute all the prop-
agated utilities as an efficient preprocessing step, using dynamic programming, computing from the leaves
towards the root. The propagation factor λ controls how much of the benefit value is propagated upwards, and
the aggregation factor β controls the balance of aggregating from only the child maximum benefit value versus
aggregating from all children.
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Definition 8. Suppose the current state is V ′ ∈ F (G). Let V ′′ ⊂ V \V ′ be a set of vertices such that V ′∪V ′′ ∈
F (G) is a feasible subset. Let E′(V ′, V ′′) be the set of edges v → u with v ∈ V ′′ and u ∈ V \ (V ′ ∪ V ′′).
Then the surrogate benefit function of adding V ′′ to the current state V ′ is:

surr-benefit(V ′, V ′′) =
∑

v→u∈E′(V ′,V ′′)

prop-benefit(v → u)

�

Our surrogate benefit function surr-benefit(V ′, V ′′) has two arguments V ′ and V ′′ instead of just a single
V ′ argument. This allows the function to “forget” the propagated benefit values of V ′′ when the Tabu search
moves to the new state V ′ ∪ V ′′ when the actual benefit value of V ′′ is zero.

Definition 9. Suppose the current state is V ′ ∈ F (G).
The surrogate objective function of adding a set of vertices V ′′ ⊂ V \V ′ to the current state V ′, such that the

new state V ′∪V ′′ ∈ F (G) is also a feasible vertex set, is defined as surr-obj(V ′, V ′′) = surr-benefit(V ′, V ′′)−
cost(V ′′).

The surrogate objective function of removing a set of vertices V ′′ ⊂ V ′ from the current state V ′, such
that the new state V ′ \ V ′′ ∈ F (G) is also a feasible vertex set, is defined as surr-obj(V ′, V ′′) = cost(V ′′)−
benefit(V ′′). �

Thus, in the current state V ′, the Tabu search algorithm selects a legal move that adds or removes the ver-
tices V ′′ with the maximum surr-obj(V ′, V ′′) from the moves that are either non-Tabu or pass the aspiration
criterion. To encourage exploration of the state space, we allow the Tabu search to enter a state V ′ whose total
cost exceeds the budget, but we subtract from the surrogate objective value and objective value a large penalty
proportional to budget− cost(V ′). When the search process terminates, we acquire the vertex set V ′ with the
maximum objective value obj(V ′, V ′′).

5 A Support Vector Machine based Benefit Function for Record Match-
ing

The final piece of the puzzle is to construct the benefit function for record matching problems where test
instances xa,b are constructed for the record pairs (a, b) ∈ A×B. We operationalize this in the context of the
support vector machine as it has been shown to be effective in many related works. While there is a significant
pool of work in cost-sensitive selective acquisition, many of these use decision trees (e.g., [Ling et al., 2006;
Davis et al., 2006]), which considers acquiring only a single attribute value per iteration and dictates the order in
which values are acquired. The prior work provides no guidance on estimating the reduction in misclassification
cost for acquiring an arbitrary subset of attribute values in a test instance. This motivates our support vector
machine based benefit function, and allow us to apply our work in cost-sensitive acquisition of missing attribute
values in support vector machines [Tan and Kan, 2010]. Specifically, [Tan and Kan, 2010] gives a way to
estimate the misclassification cost for a test instance x, as well as the same instance with an (arbitrary) subset
of its missing attribute values A′ acquired, denoted by E[mc(x)] and E[mc(x+A′)] respectively.

We give a simplified description of E[mc(x)] and E[mc(x + A′)] for a support vector machine using the
linear kernel here, and refer the reader to [Tan and Kan, 2010] for more details. For a support vector machine
using the linear kernel, its decision function is:

f(x) = 〈w,x〉+ b

A trained support vector machine can be extended to provide the posterior probability that a test instance
x belongs to the positive class or negative class, denoted by p+(x) or p−(x) respectively, with p+(x) +
p−(x) = 1 [Platt, 2000]. We assume that prior to classification, each unacquired missing attribute value
xk in a test instance x is replaced by x′k, the mean value of the attribute in the training data. For a test
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instance x with missing attribute values, we can define its modified weight vector w′(x), which is the weight
vector w with the weights corresponding to the missing attribute values of x zeroed out. Let mc+ and mc−
be the misclassification cost for misclassifying a positive and negative instance, respectively. The expected
misclassification cost of a test instance x is defined as:

E[mc(x)] =


(
1− ‖w

′(x)‖2
‖w‖2 ) · p+(x)

)
·mc− if f(x) ≥ 0(

1− ‖w
′(x)‖2
‖w‖2 ) · p−(x)

)
·mc+ otherwise

The expected misclassification cost for x with a subset A′ of its missing attribute values acquired, E[mc(x +
A′)], can be defined in a similar manner. In this paper, we use only the linear kernel, but we note that the
expected misclassification cost of an instance can also be computed for support vector machines using an
arbitrary nonlinear kernel [Tan and Kan, 2010].

GivenE[mc(x)] andE[mc(x+A′)], we can then define our support vector machine based benefit function.
We follow the approach of [Ling et al., 2006] and define the benefit of A′ to be the expected decrease in
misclassification cost of x for acquiring A′.

Definition 10. Let x be a test instance and let A′ be a subset of its missing attribute values. The benefit of
acquiring A′ is defined as:

benefit(x, A′) = E[mc(x)]− E[mc(x+A′)]

�

Here, we assume that the classification of test instances are independent of each other. This assumption
importantly allows us to decompose the benefit function for a set of vertices V ′ into separate benefit functions
for V ′ with respect to different test instances x.

Definition 11. Let G be a resource dependency graph and V ′ be a feasible subset of vertices in G. Let I(V ′)
be the set of test instances that contain one or more vertices in V ′ as attribute values, and let A(V ′,x) denote
the attribute values of the test instance x that are contained in V ′. Then the benefit of V ′ is defined as:

benefit(V ′) =
∑

x∈I(V ′)

benefit(x, A(V ′,x))

�

To illustrate the above definition, consider the resource dependency graph of Figure 1, where the attribute
values for each test instance xai,bj are hitcount(ai), hitcount(bj), hitcount(ai ∧ bj), and dice(ai, bj), for
1 ≤ i, j ≤ 2. Suppose now we want to compute benefit(V ′) for V ′ = {hitcount(a1), hitcount(b1)}. Then
I(V ′) = {xa1,b1 ,xa1,b2 ,xa2,b1}, and we haveA(V ′,xa1,b1) = {hitcount(a1), hitcount(b1)},A(V ′,xa1,b2) =
{hitcount(a1)}, and A(V ′,xa2,b1) = {hitcount(b1)}. Thus, the benefit of V ′ is:

benefit(V ′) =benefit(xa1,b1 , {hitcount(a1), hitcount(b1)})
+ benefit(xa1,b2 , {hitcount(a1)})
+ benefit(xa2,b1 , {hitcount(b1)})

In this paper, we only use linear support vector machines. However, [Tan and Kan, 2010] shows that
E[mc(x)] and E[mc(x + A′)] can be computed when a nonlinear kernel is used as well. Therefore, it is also
possible to compute the proposed benefit function when the support vector machine uses an arbitrary kernel.

This completes the application of our resource acquisition framework to record matching problems where
a support vector machine is used to classify whether record pairs are matches or otherwise.
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Dataset Short forms Long forms Matching pairs Test instances Vertices Edges
GENOMES 307 307 307 23,409 117,657 140,760

Source: http://www.ornl.gov/sci/techresources/Human Genome/acronym.shtml
Query: “〈title〉” genome OR genomes

DBLP 906 920 926 213,444 1,069,068 1,281,588
Source: http://www.informatik.uni-trier.de/˜ley/db/conf/indexa.html
Query: “〈title〉” conference OR conferences OR workshop OR workshops

Table 1: The evaluation datasets.

Figure 4: Structure of resource dependency graph used in the evaluations.

6 Evaluation
We evaluated our algorithm on an important real-world problem of matching short forms to long forms. Both
people and systems are overwhelmed by the increasing number of short forms that appear in literature and
metadata. Biologists struggle to cope with the large number of abbreviations related to DNA, proteins, and
other biological terms. Maintainers of bibliographic databases need to detect and merge duplicate records,
including publication venues where short forms like “KDD” can co-occur with long forms like “Knowledge
Discovery and Data Mining”. Fortunately, many abbreviations can be found on the web, albeit scattered across
various web pages and not presented in a form that facilitates automated extraction. This makes the web a
valuable resource for matching short forms to long forms.

This problem can be seen as a record linkage problem, with input lists SF and LF of short forms and long
forms respectively, with the aim of finding which short forms sf ∈ SF and which long forms lf ∈ LF match.
We used two datasets of different domains, GENOMES and DBLP, with very different characteristics. The
GENOMES dataset consists of abbreviations that are commonly used in the human genomics domain, while
the DBLP dataset consists of computer science conferences and workshops in the DBLP digital library. The
GENOMES dataset, while smaller, is fairly noisy. It contains references to very different kinds of entities, and
some long forms contain abbreviations in an inconsistent manner. As a result, the search engine results for
GENOMES contain all kinds of sources and information. On the other hand, the DBLP dataset is manually
constructed and fairly clean, but is much larger than GENOMES. Unlike the GENOMES dataset, we find a
small number of short forms matching multiple long forms, and vice versa. The search engine results of DBLP
is more homogeneous, mainly conference/workshop web sites and publication pages.

For each dataset, we split each of the short form and long form lists into two equal halves, and use one half
for training the support vector machine classifier and the other half as test data. We construct an instance xsf,lf

for each short form sf and long form lf pair in the training data or test data, with attribute values extracted
from the top-10 search engine results denoted by search(sf), search(lf), and search(sf ∧ lf). The attribute
values for an instance xsf,lf are hitcount(sf), hitcount(lf), hitcount(sf ∧ lf), snippetcount(sf → lf),
snippetcount(sf ← lf), and cosine(sf, lf). The first three are the hit counts of sf , lf , and sf ∧ lf respec-
tively; the next two are the number of snippets from search(sf) containing the lf string and the number of
snippets from search(lf) containing the sf string respectively [Tan et al., 2008]; and the last is computed by
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Figure 5: Results for GENOMES dataset.

hitcount(sf∧lf)√
hitcount(sf)hitcount(lf)

. These are are typical attributes used in related work. The resource dependency graph

is depicted in Figure 4, and information about the graph is shown in Table 1. Note that the graph for DBLP
has over 1 million vertices and 1 million edges. During training, five-fold cross-validation is performed on the
training data to find the optimal support vector machine regularization parameter.

For our experiments, each attribute value and each search engine result acquisition cost is set to 1 and 10
respectively, as search engine queries take significantly longer to execute than extracting a attribute values.
Misclassifying an instance that represents a mismatch as a match (false positive) incurs a set cost of 50, while
false negatives incurs a cost of 500 and 1500 for GENOMES and DBLP respectively, owing to the relative
ratios of matches to mismatches in these two datasets. Following [Ling et al., 2006], we use the total cost of
acquisitions and misclassifications as our evaluation metric.

As our focus is to validate our acquisition framework and not on parameter tuning, we simply selected
parameter values found to be effective. Additionally, we observed that our algorithm is not sensitive to changes
in parameter values. For our Tabu search based algorithm, we use a static Tabu tenure of 7 (used in many
other Tabu search applications), terminate our algorithm when 20 consecutive iterations have occurred without
an increase in our objective value, use a propagation factor λ of 0.5, and an aggregation factor β of 0.1. We
evaluated our algorithm against five baselines:

• Random. This algorithm acquires vertices at random until the budget is reached.

• Least cost. This algorithm acquires the least cost vertices until the budget is reached.

• Best benefit. This algorithm acquires the vertices with the best benefit until the budget is reached.

• Best cost-benefit ratio. This algorithm acquires the vertices with the best benefit to cost ratio until the
budget is reached.

• Best type. This algorithm acquires the maximum number of vertices of one type not exceeding the
budget that maximizes the objective value.

We evaluated each algorithm by starting with a resource dependency graph with no vertices acquired, and
then we execute the algorithm 100 times. Each time, the algorithm will be executed with a budget of 100, and
result in some unacquired vertices being acquired. At the end of each execution, we recorded the cumulative
acquisition cost of all the vertices acquired so far, as well as the misclassification cost of all the instances, and
the total cost of the previous two, giving one data point. Eventually, all the data points for the algorithm are
then plotted on two charts, one showing the misclassification cost over acquisition cost, and the other showing
total cost over acquisition cost. These charts allow us to compare the performance of the different algorithms.
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Figure 6: Results for DBLP dataset.

We also include in these charts a line labeled Manual, which estimates the best possible performance for
any algorithm. This manual process is performed with the knowledge of which attribute value acquisitions
will allow which test instances to be correctly classified by the support vector machine. We manually acquired
vertices that allowed all instances to be correctly classified while keeping acquisition costs as low as possible,
taking advantage of an observation that the required acquisitions for many of the instances fall into a few
patterns. This produces one data point, which we joined with the data point where no resource acquisitions
have taken place. Naturally, this manual process, guided by expert domain knowledge, will outperform any
automated algorithm.

The charts for the GENOMES dataset and the DBLP dataset are shown in Figure 5 and Figure 6 respec-
tively. From these charts, it can be seen that our algorithm consistently and significantly outperforms all the
baseline algorithms we evaluated against. Our algorithm is able to reduce the total cost of acquisitions and
misclassifications as more vertex acquisitions are made.

Next, we consider how much our algorithm improves over the second-best algorithm, by considering the
difference in misclassification cost between the second-best algorithm and the manual process and the dif-
ference in misclassification cost between our algorithm and the manual process. We compute the average
improvement in the difference when our algorithm is used instead of the second-best. This average is com-
puted using interpolated misclassification costs for different acquisition costs, for acquisition costs at or above
1000 in intervals of 100. For the GENOMES dataset, our algorithm makes an average improvement of 49.7%
over best type algorithm, which is the second best. For the DBLP dataset, our algorithm makes an average im-
provement of 49.5% over the least cost algorithm, which is the second best. The average improvement is nearly
50%, a very significant improvement. Importantly, our algorithm consistently holds as the best algorithm over
the entire range of acquisition costs plotted in both figures.

We now consider the test instances that are correctly classified when our acquisition algorithm is used,
and compare it with the case when all the attribute values of these instances are acquired. For both datasets,
we found that our algorithm acquires about 10% of the search(·) vertices, saving about 90% of the search
engine queries. This is because each search(sf) and search(lf) services a large number of test instances,
whereas each search(sf ∧ lf) services only a single test instance. As many of the instances do not require
the information in search(sf ∧ lf) to be classified correctly, our algorithm mostly made search engine calls
of the form search(sf ∧ lf), resulting in significantly lesser queries being made. This is important not only
for saving time, but also allows more work to be done with the search engine in the face of daily quotas or rate
limiting.
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7 Conclusion
Web information is increasingly used for solving various kinds of problems, including record matching prob-
lems, simply because the web provides much more information and much better frequency-based statistics
than any offline corpus or database. However, acquiring web-based resources is slow and can incur other ac-
cess costs, but existing work has largely ignored this issue. The challenge is to decide what data to download, in
order to be scalable. Unfortunately, existing work that deals with selective acquisition of resources fails to put
sufficient emphasis on the hierarchical nature of resource acquisitions. This makes hierarchical cost-sensitive
acquisition of resources an important area of research.

In this paper, we introduced a hierarchical cost-sensitive resource acquisition framework, which models de-
pendencies in resource acquisitions through a resource acquisition graph. Our resource acquisition framework
is versatile, applicable to many different scenarios, as long as a benefit function can be supplied. In the context
of web resource acquisition, we showed that the resource acquisition graphs for record matching problems have
a unique structure. This requires us to devise a search algorithm that can answer the challenges presented by
such resource acquisition graphs. We also proposed a benefit function when the classifier is the support vector
machine, and evaluate our proposed acquisition algorithm for this classifier. Our evaluation on a short form
to long form matching problem shows that our acquisition algorithm significantly outperforms a number of
baseline algorithms.
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