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ABSTRACT
When a variety of names are used for the same real-world
entity, the problem of detecting all such variants has been
known as the (record) linkage or entity resolution problem.
In this paper, toward this problem, we propose a novel ap-
proach that uses the Web as the collective knowledge source
in addition to contents of entities. Our hypothesis is that
if an entity e1 is a duplicate of another entity e2, and if e1
frequently appears together with information I on the Web,
then e2 may appear frequently with I on the Web. By using
search engines, we analyze the frequency, URLs, or contents
of the returned web pages to capture the information I of
an entity. Extensive experiments verify that our hypothesis
holds in many real settings, and the idea of using the Web as
the additional source for the linkage problem is promising.
Our proposal shows 51% (on average) and 193% (at best)
improvement in precision/recall compared to a baseline ap-
proach.

Categories and Subject Descriptors
H.3.3 [Information Search and Retrieval]: Selection
process; H.3.7 [Information Search and Retrieval]: Dig-
ital Libraries; H.4 [Information Systems Applications]:
Miscellaneous

General Terms
Algorithms, Design, Experimentation

1. INTRODUCTION
Large-scale data repositories often suffer from duplicate

entities that have different identifiers, but refer to the same
real-world object. Part of the problems often stem from
the fact that the chosen identifier is not unique (i.e., bad

∗Contact author. His research was partially supported by
IBM Eclipse Innovation Award (2004, 2006) and Microsoft
SciData Award (2005).

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
WIDM’07, November 9, 2007, Lisboa, Portugal.
Copyright 2007 ACM 978-1-59593-829-9/07/0011 ...$5.00.
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Figure 1: Duplicate names: (a) ten duplicate enti-
ties of the author “J. D. Ullman” in ACM digital li-
brary, and (b) two duplicate titles of the same movie
in IMDB and Wikipedia.

choice of primary key in database jargon). A good example
of this scenario is the use of names as identifiers. Names
of people, movies, or organizations are frequently used as
unique identifiers for its simplicity and intuitive association.
However, due to various reasons, a variety of names may be
used to refer to the same entity.

Example 1. In the ACM digital library, the full name of an
author is used as an identifier (Figure 1(a)) so that in order
to access citations of the author “J. D. Ullman”, one has to
look for his name. However, since the ACM digital library
was constructed by software that extracts metadata (e.g.,
author, title) from articles, it tends to have errors. Therefore
citations of the author “J. D. Ullman” are scattered under
ten duplicate names in the ACM digital library, causing a
confusion. Similarly, Figure 1(b) shows the example where
two repositories use different titles (i.e., names) of the same
movie “Clementine”. Such examples of duplicate entities on
the Web are common, too. For instance, suppose a person
“John Doe” moves from an organization x to y and have
different home pages at each organization, one using “John
Doe” and the other using “J. Doe”. Then, being able to
identify if two home pages are for the same person or not is
an interesting problem. 2

Let us denote that, among the duplicate entities, the sin-
gle authoritative one as canonical entity while the rest as
duplicate entities or duplicates in short. Such a problem
is, in general, known as the (record) linkage or entity



resolution (ER) problem. The linkage problem frequently
occurs in many applications and is exacerbated especially
when data are integrated from heterogeneous sources. Note
that in this paper our focus is on how to detect duplicate en-
tities with similar names. Another important problem that
can arise is the confusion due to homonyms – if two people
have the same name spelling “John Doe”, how to distinguish
them? This problem is often referred to as the name dis-
ambiguation problem and has been extensively studied (e.g.,
[16, 3]). Since two problems are different in nature, we do
not consider the name disambiguation problem any further
in this paper.

With an array of extensive research on the linkage prob-
lem (to be surveyed in Section 5), in general, there are vari-
ous efficient and effective methods to identify duplicate enti-
ties. By and large, previous approaches to the linkage prob-
lem (e.g., [6, 17, 9]) work as follows: (1) the information
(e.g., name, metadata, or contents) of an entity, e, is cap-
tured in a data structure, D(e), such as a multi-attribute
tuple or an entropy vector; (2) a distance function that
takes two inputs, f , is prepared; (3) the distance of two
entities, e1 and e2, is measured as that of the correspond-
ing data structures, D(e1) and D(e2), using the function f :
dist(e1, e2) = f(D(e1), D(e2)); and (4) finally, if the result,
r = dist(e1, e2), is less than certain threshold, φ, then the
two entities are deemed to be duplicates: r < φ→ e1 ∼ e2.
Although this works well in many scenarios, this approach
often suffers when the entity e in question does not have
enough information or has only poor information for link-
age.

How can one determine then if two entities are the same or
not if the data to compare are not sufficient to decide? One
solution is to ask people what they think. If many people
collectively agree that two entities are the same, then two
entities are probably the same. We argue that the Web is
a good representation of what people think. That is, we
propose to seek for additional information of an entity from
the Web. Our hypothesis is the following:

Hypothesis 1. If an entity e1 is a duplicate of another en-
tity e2, and if e1 frequently appears together with informa-
tion I on the Web, then e2 may appear frequently with I on
the Web, too.

Therefore, by measuring how the information I appears to-
gether with e2 on the Web, we can determine if e2 is a dupli-
cate of e1 or not. In particular, we propose various methods
to capture the information I of an entity from the Web.
Since our methods rely on search engines such as Google or
MSN to draw additional information of an entity, compared
to a baseline method, it is our hope that ours be simpler and
more practical.

The contribution of our work is: (1) we propose the idea
of using the Web as a source for additional knowledge of an
entity for the linkage problem, (2) to capture the additional
information of an entity returned from a search engine, we
propose various methods such as using the frequency of rep-
resentative terms, URL information or the content of re-
turned web pages, and (3) we empirically validate our hy-
pothesis with extensive experiments.

2. OVERVIEW OF THE PROBLEM
To make the presentation simple, let us assume that our

problem setting has a single canonical entity ec and the goal

Table 1: Notations used.
Notation Description

e1, e2, .. an entity
ec a canonical entity
E an entity set

t1, t2 .. token
tf term frequency

tf*idf term freq.* inverse document freq.
w tf*idf web information based tf ∗ idf
name(ei) name of entity ei
token(ei) all tokens of entity ei’s content
data(ei) representative data piece of entity ei’s content
count(x) number of pages returned by query string “x”
hostk(x) top-k host names returned by query string “x”
x ∩ y equivalent to “x AND y” in a query string
x ∪ y equivalent to “x OR y” in a query string

is to find all duplicate entities of ec. Formally, the linkage
problem in our setting is defined as follows:

Given a set of entities, E, where each entity ei has a
name and information I(ei) (e.g., contents, affiliation,
social network knowledge), for each canonical entity,
ec (∈ E), identify all duplicate entities, ev (∈ E) by
consulting the collective knowledge of the Web, such
that sim(I(ec), I(ev)) > φ, where φ is a pre-set thresh-
old.

A naive algorithm with O(|E|2) running time for the general
linkage problem is:

for each entity ec ∈ E:
for each entity ev ∈ E, where ec 6= ev:
if sim(I(ec), I(ev)) > φ, then ev ≈ ec

Note that what we study in this paper is not the algorith-
mic improvement of the general linkage problem. Rather, we
study how to devise better similarity function, sim(), uti-
lizing additional information I from the Web. Throughout
the paper, we use the notation in Table 1.

3. WEB BASED LINKAGE
The basic framework of our approach is as follows. Con-

sider a canonical entity ec and a candidate entity e1 that is
potentially a duplicate of ec. Name descriptions of entities
are available as name(ec) and name(e1). Then,

1. We identify the information I as the best representa-
tive data piece of ec. This data piece could be anything
– from as simple as a single token of ec to tuple(s) or
as long as the entire contents of ec. Suppose we get
such a data piece from ec, called data(ec).

2. We acquire a collective knowledge of people to see how
“often” data(ec) is used together with name(e1). If e1
is a duplicate of ec, it should have a frequent appear-
ance with data(ec) on the Web. To check this, we
submit two queries to a search engine and collect the
results.

3. By analyzing the returned pages in various aspects
(e.g., frequency, URLs, documents), then we measure
how similar e1 is to ec.



3.1 Representative Data of an Entity
Suppose one wants to determine if an author “John Mc-

Carthy” is a duplicate entity of an author “McCarthy, N.
J.”. Depending on the context, this task may not be easy
to resolve. However, if one knows that the representative
data of “John McCarthy” is, say, “LISP” or “Time Sharing”,
then one may measure how often “McCarthy, N. J.” is used
together with “LISP” or “Time Sharing” on the Web, and
conclude that “McCarthy, N. J.” is not a duplicate of “John
McCarthy”. Therefore, the first step of our framework is to
identify the representative data of an entity e, denoted as
data(e).

Ideally, data(e) helps discriminate duplicates of e. If data(e)
itself occurs too often on the Web, then it does not help link
duplicates. On the other hand, if data(e) itself occurs too
rarely on the Web, then its discriminating power might be
too weak to be used, and can be easily influenced by noise.
We use a single token for data(e) in our experiments.

By adopting conventional approaches in information re-
trieval, we propose to use three measures to select the best
representative token of an entity as follows:

• tf : One may assume that the more frequently a token
appears in an entity, the more representative the token
gets. Therefore, we may use the traditional term fre-
quency (tf) as a metric1, and use the token that occurs
most frequently as the representation.

• tf*idf : When the token selected by tf too common like
“computer” or “web”, its discriminating power dimin-
ishes. Even if we get relevant web pages for an entity e,
such a common token may also frequently appear with
many other candidate entities, and thus may not help
find the actual duplicates. Hence the popular term
frequency * inverse document frequency (tf*idf) [29]
scheme is more appealing since it can find more dis-
criminative tokens in an entity’s data contents2.

• w tf*idf : Finally, we propose a web based scheme called
w tf*idf, which resembles tf*idf but gets the frequency
information from the Web. It is defined as:

w tf ∗ idf (e, ti) =
count(name(e) ∩ ti)

count(ti)

where e is an entity, ti is a token from e’s contents,
and count(x) is a function returning the number of
occurrences of the term x on the Web. That is, w tf*idf
is based on the observation that the more ti appears
with e and the less ti independently appears on the
Web, the more valuable ti gets to discriminate e.

Our experiments in section 4 show that using a single to-
ken, if selected carefully, could be very effective to uniquely
discriminate the appearance of an entity name on the web.
There are abundant possibilities for utilizing more than one
token towards a better solution for the problem. We also
show the effect of using multiple tokens in our current frame-
work in section 4.
1From the corpora (i.e., contents or metadata of entities),
we first remove all stop-words (e.g., “a” or “the”).
2Even further, probabilistic topic models such as LDA [7]
can be used on the content to discover a pre-specified number
of latent topics, each of which has a particular probability of
emitting a specific token. Then one or more of such topics
could be utilized as a representative data for the entity in
question. We leave this exploration as future work.

3.2 Knowledge Acquisition from the Web
Once one representative token tc is selected for a canonical

entity ec, suppose we want to determine if another candidate
entity ei is a duplicate entity of ec or not. Then, we form
two queries Q1 and Q2 to submit to a search engine:

Q1: “name(ec) AND tc” and Q2: “name(ei) AND tc”

In return, we receive two separate search engine result pages
(for Q1 and Q2) of relevant web pages that contain both
entity names and the representative token in question.

3.3 Interpreting the Collective Knowledge
We propose three methods to analyze the returned results

to unearth the collective knowledge of the Web.

(1) Page Count . Search engines return the number of web
pages that satisfy the constraints of the query. Suppose an
entity e2 is a duplicate of an entity e1, but e3 is not. Fur-
ther, assume that a token ti is selected as the representative
of e1. Then it is plausible that the appearance of e1 ∩ ti
and e2∩ ti on the Web will be relatively similar than that of
e1∩ ti and e3∩ ti. That is, |count(e1∩ ti)−count(e2∩ ti)| �
|count(e1 ∩ ti) − count(e3 ∩ ti)|. Formally, sim(ec, ei) = 1
if count(name(ec) ∩ tc) = count(name(ei) ∩ tc), and oth-
erwise sim(ec, ei) = 1

|count(name(ec)∩tc)−count(name(ei)∩tc)| ,

where tc is the best representative token of ec.

(2) URL. From top-k results returned from search engines,
we extract host addresses of the URLs, and calculate the
Jaccard similarity as the similarity:

sim(ec, ei) =
|hostk(name(ec) ∩ tc)

⋂
hostk(name(ei) ∩ tc)|

|hostk(name(ec) ∩ tc)
⋃
hostk(name(ei) ∩ tc)|

where hostk(x) is the collection of host names of top-k URLs
returned for the search query x.

(3) Web Pages. If one views the results of Q1 and Q2

as virtual documents, then their similarity can be computed
using document to document similarity measures. Then, de-
pending on the virtual document is created among a set of
returned web pages, a variety of alternatives can be used.
Table 2 lists a set of heuristics that we used to create a vir-
tual document. Suppose we created two virtual documents,
Di and Dj , using one of approaches in Table 1. Then, we
propose to use three methods to measure the similarity of Di
and Dj – Jaccard, cosine, and language models, as follows.

First, Jaccard similarity of Di and Dj is the ratio be-
tween intersected vs. unioned token sets of two documents:
simjaccard(Di, Dj) =

|tokens(Di)
⋂
tokens(Dj)|

|tokens(Di)
⋃
tokens(Dj)| . Second, co-

sine similarity of Di and Dj uses the cosine of the angle be-
tween two m-dimensional vectors where m is the number of
distinct tokens in corpora) as the similarity: simcosine(Di, Dj)

=
∑n

k=1 tokenk(Di)tokenk(Dj)

‖Di‖‖Dj‖
. Finally, probabilistic language

models have been successfully applied to the ad-hoc IR tasks
such as [35]. In the language model approach, each doc-
ument is represented by a unigram word distribution θd.
Then, the Kullback-Leibler divergence can be used to mea-
sure how the language models of two documents differ:

KL(θi‖θj) =
∑
k p(k|θi)log

p(k|θi)
p(k|θj)

. Here, θd can be found by

the maximum likelihood estimation (MLE): P (tokeni|D) =
tf(tokeni,D)∑

tokenj
tf(tokenj ,D)

. In [35], authors use the KL divergence

on document models to detect the novelty of relevant docu-
ments in an adaptive filtering system and report promising



Table 2: Heuristics to create a virtual document v from top-k returned web pages.
Notation Description
D(m) Top m (≤ k) documents are concatenated

D(sim,m)
m of the top-k web pages where the contents have the highest similarity with the current contents of the
entity in question (i.e., publication information available in the data set)

T (1, n) Top n (∈ {50, 100, 200, 1000}) tokens with the highest tf*idf weight from the top ranked web page
T (all, n) Top n (∈ {100, 200, 400, 1000, 10000}) tokens with the highest tf*idf weight from all top-k web pages
T (each, n) Top n (∈ {10, 20, 40, 100}) tokens with the highest tf*idf weight from each of top-k web pages

T (common, p) Common tokens in at least p (∈ {2, 3, 4}) documents from top-k web pages

T (common, p, n) Common tokens in the top-n (∈ {10, 20, 50}) tokens with the highest tf*idf weight of at least p (∈ {2, 3, 4})
documents from top-k web pages

S(m,n) A set of sentences of the top-m ranked web pages such that the sentence contains one of the top-n (∈
{100, 200}) tokens with the highest tf*idf weight

Snippet(m) Snippets of top-m (≤ k) web pages (i.e., short summary-like information provided by search engines) are
concatenated

Table 3: Summary of data sets. Numbers in paren-
thesis represent average # of elements (i.e., cita-
tions, movie titles, etc.) for each entity

Data set # of ec avg. # of ev avg. # of duplicates
ACM 43 (14.2) 21 (3.1) 1.8 (6.7)
ArXiv 64 (3.4) 9 (8.1) 1.3 (27)
IMDB 50 (24) 20 (24) 1 (23.5)

results compared to a simple content overlap based met-
ric like Jaccard. For our language model based measures,
we may adopt the same approach by measuring the nov-
elty of canonical entity’s virtual document, Di(ec), against
each candidate entity’s virtual document, Dj(ev). Then,
the lower the novelty score of (Di(ec), Dj(ev)) is, the higher
the similarity between two entities ec and ev. Moreover, we
adopt to use the two smoothing techniques to adjust the
MLE to assign non-zero probabilities to unseen tokens to
make KL-based measure more appropriate as used by [35]:

• Bayesian Smoothing using Dirichlet Priors. This tech-
nique uses the conjugate prior for a multinomial dis-
tribution (i.e., the Dirichlet distribution) with param-
eters: (λp(token1), ..., λp(tokenn)). Then, the model is

given by Pλ(tokeni|D) = tf(tokeni,D)+λp(tokeni)∑
tokenj

(tf(tokenj ,D)+λp(tokenj))
.

In consistent with [35], in our experiments, if tokeni ∈
D, then we set λp(tokeni) = 0.5, and 0 otherwise.

• Smoothing using Shrinkage. This technique models
each document from the language model of the docu-
ment θD MLE and a model for general English θE MLE

built from the tokens in all documents of the data set,
by: θD = λDθD MLE+λEθE MLE , where λD+λE = 1.
We experimentally determine optimal value for λD and
λE .

4. EXPERIMENTAL VALIDATION
In experiments, we seek to answer the following questions:

• Q1: Is Hypothesis 1 valid? That is, how do web based
linkage schemes perform?

• Q2: Which of the proposed web based linkage schemes
performs the best? Which variations?

• Q3: Which method to interpret the collective knowl-
edge is better?

• Q4: How do results change for different search engines?

All experimentation was done using MySQL Server 5.0 on
a desktop with AMD Opteron 2GHZ and 4GB RAM. As
search engines for the web knowledge, we used both Google
and Microsoft Live Search.

4.1 Set-up
We used three data sets, as summarized in Table 3 –

ACM Digital Library for computer science authors with each
authors respective citation list, ArXiv Digital Library for
general science authors with her citation list, and Internet
Movie Database (IMDB) for actors with movie-related data
in which she stars. In this context, the linkage problem is
to identify duplicate author entities in ACM and ArXiv and
actor entities in IMDB.

For each canonical entity ec, to find its duplicates, com-
paring ec to each entity ev in E (ec 6= ev) is prohibitively
expensive (recall the naive algorithm in Section 2). There-
fore, often, a pre-processing step, called blocking, pre-filters
entities in E into a small set of candidate entities, called a
block. In the experiments, we used a heuristic blocking rule
that showed good performance for name-related entity res-
olution problem in [27] – i.e., all (author or actor) entities
that share the same last name as the canonical entity are
clustered into the same block. Then, duplicate entities are
injected into the block. This block may contain as small
as a few dozen entities to as large as hundreds of entities,
depending on the last name in question. Hence, the goal
is that for each block, a scheme is to detect all duplicates
correctly.

Case I. From the ACM Digital Library, we have randomly
gathered 43 real cases of duplicate names (thus 43 blocks).
These real cases include duplicates as simple as “Dongwon
Lee” vs. “D. Lee” (i.e., abbreviation) and “Alon Levy” vs.
“Alon Halevy” (i.e., last name change) to as challenging as
“Shlomo Argamon” vs. “Sean Engelson” (i.e., little similar-
ity) or even ten duplicates of “Jeffrey D. Ullman”. All 43
cases were verified by directly asking authors themselves or
checking their home pages.

Case II. Second, we gathered 64 real cases from the ArXiv
Digital Library. To make the case more challenging, for each
block, we selected an author entity with the smallest number
of citations as the canonical entity. One important difference
from ACM case is that each entity block in ArXiv case tends
to have larger number of citations.

Case III. Here we attempt to simulate a scenario in which



Figure 2: (a) ACM test case (using Google as search engine). Page count-1,2,3 – use tf, tf*idf and w tf*idf for
token selection, respectively. URL-10, 50 – use tf*idf for token selection and evaluate host names of top-10
and 50 URLs returned, respectively. (b, c) Effect of using multiple (k = 2, 3, 4, 5) tokens on Page count-2 and
URL-10, respectively.

entities have large associated contents but they are not dis-
criminative enough to help linkage. For this, we collected
50 real actor names and the titles of movies they appeared
in from Internet Movie Database (IMDB). Since IMDB is
a commercial database, it has little errors or noise, com-
pared to ACM and ArXiv data sets. Therefore, we created
50 test cases such that each actor (i.e., canonical entity)
has exactly one “a.k.a.” name (i.e., duplicate entity). Since
“a.k.a.” name usually does not have any contents in IMDB,
we randomly split the original contents of the actor, and as-
sign each to an actor and her “a.k.a.” entity. Due to the
nature of the data set, the intersection of the two halves
sharing the same content might be small – i.e., movie titles
of an actor do not generally have a common theme.

In this context, the linkage problem is to identify dupli-
cate author entities in ACM and ArXiv and actor entities
in IMDB. Note that similar data sets have been used in the
related work (e.g., [31, 27]).

Evaluation Metrics. We use traditional precision/recall
with the window size equal to the number of duplicates.
For instance, for a canonical entity ec, suppose that there
are k duplicates in the block. When a scheme returns top-
k candidate duplicates, consider that only r of them are
correct duplicates and the remaining k − r candidates are
false positives. Then, the precision and recall become the
identical and are calculated as: Precision = Recall = r

k
.

As a baseline approach for the linkage problem, we use the
Jaccard similarity that measure the overlapping ratio of the
contents of two entities ([27] reported that although simple,
Jaccard similarity showed good performance among various
standard distance functions):

simjaccard(ec, ei) =
|token(ec)

⋂
token(ei)|

|token(ec)
⋃
token(ei)|

For the first two cases, our study focuses on three attributes
of citations only – co-author, title, and venue – since (1)
too many tokens from too many attributes slow down the
process, (2) recent study [16] shows these three play a ma-
jor role, and (3) other attributes have often missing values.
Since ArXiv is a pre-print repository, it often does not have
venue information. In the IMDB case, we only use the movie
title attribute.

Figure 4: Results on the ACM title attribute using
Microsoft Live Search as search engine.

4.2 Accuracy
Results of Page Count and URL Methods. Using
the ACM data set, we first experiment with variations of
the first two basic web based linkage methods: page count
and URL methods. Figure 2(a) shows the results of these
methods using Google against Jaccard metric on all three
attributes of the ACM data set individually. All five vari-
ations of the basic methods performs better than the base-
line Jaccard metric. Among three token selection schemes
used by page count based methods, w tf*idf yields better
performance compared to the other two schemes, finding
more discriminative tokens for entities. The two URL based
methods show stable and near top performance on all cases
probably due to the large volume of information used and
the quality of the top returned documents by search engine.
Figures 2(b,c) show the effect of using multiple tokens on
the methods page count-2 and URL-10, respectively. Here,
for each token selected in the top-k tokens of an entity, an
experiment is run, and the similarity is calculated by aver-
aging the individual similarities of all k experiments. The
results are mostly parallel, and do not show significant im-
provement.

2. Web Page Based Methods. All experiments for the
web page based methods were done using top-10 results from
Google as the search engine. For the token selection method,
we use tf*idf only, since it usually shows better discriminat-
ing power than tf, and w tf*idf adds up extra time cost al-
though it may have a better performance. Web page based



Figure 3: Results on the (a) ACM title, (b) ACM coauthor, (c) ACM venue, (d) ArXiv coauthor, (e) ArXiv
title, and (f) IMDB title attributes (all using Google as search engine and tf*idf scheme for token selection).

methods are based on the creation of a virtual document
from the web page results for each entity and then com-
paring these virtual documents to make a decision for the
linkage. To create a virtual document, we defined a number
of heuristics and their variations as listed in Table 2. Due
to space constraints, we will only show a few variations for
each experiment.

To determine which one to use, Figure 3(a) shows the re-
sults of 10 variations of our web page based heuristics on
the title attribute of the ACM data set. In Figures 3(a-f),
note that the baseline jaccard (i.e., the straight line) is the
overlapping ratio of the “contents” of two entities while the
plain jaccard is the overlapping ratio of the “virtual docu-
ments” of two entities. In our extensive experimentation, for
the majority of cases, we saw that top − 3 returned pages
are usually the most relevant ones and effective if used in
virtual document creation. In other cases, using as many as
returned web pages helped to achieve better precision/recall.
Therefore, among the various heuristics, we selected D(3),
Snippet(3), D(sim,3) due to their good performance. We
also included one more variation of the first heuristic, D(k),
to illustrate the performance when all returned documents
are used.

Figures 3(a-c) show the ACM results on the title, coau-
thor, and venue attributes, respectively. The baseline method
performs well on the coauthor attribute but degrades on the
other two. The reason for the degradation is that there
are usually many tokens in the title attribute of an entity
content, and for the venue field there are many common
tokens like “conference”, “ieee”, which increase the false pos-
itive rate. On the other hand, all of our variations perform
better and show around 60-70% recall on all attributes. Our
methods show the best on the coauthor attribute too, due to
the a more discriminative token selection coming from the
last names of the author’s collaborators.

Figures 3(d,e) show the results of the ArXiv data set on
the coauthor and title attributes, respectively. The base-
line Jaccard performs around 50% recall on both attributes.
Note that most entities to be linked in this set have larger
content and a lesser number of candidates in each block (Ta-

ble 3), compared to the ACM case. Therefore, it should be
easy for any metric to perform well. However, we here at-
tempt to simulate a case where the canonical entities do not
have much content and select the canonical entities from
each block accordingly, explaining the mediocre recall value
of the baseline approach. Although not as good as in the
ACM case, our web based linkage schemes can still have a
better recall than the baseline approach, yielding 72% recall
at best for coauthor attribute. The smaller improvement
on the title attribute stems from undesirable token selection
from a small and not-so-good representative title tokens for
the entities.

Figure 3(f) show the IMDB result on the movie title at-
tribute. Expectedly, the baseline method shows very low
performance having a poor recall value of 32%. Although
each actor has enough content (about 24 titles), such con-
tent does not well identify an actor. However, this problem
does not apply for the web based linkage methods which
yield 94% recall at best implying that the approach is very
promising for such cases.

3. Using A Different Search Engine. Our proposed
web based linkage of using the collective knowledge from the
Web is a general approach. As long as it can acquire such
knowledge through a search engine, it can have a promising
result on the linkage problem. Thus, we tested how results
would change if we use different search engines – Microsoft

Live Search instead of Google. For this set of experiments,
we again use the ACM data set and tested the performance
on the title attribute using MSN. Figure 4 shows the new
results. The results of the heuristics are consistent with
those of Google. While being relatively smaller, all four
sets of experiments still outperform the baseline Jaccard.
The results indicate that as long as we have access to some
portion of the Web, we can utilize it to some extend as a
collective knowledge source for the linkage problem.

4.3 Scalability
Since our methods rely on the knowledge acquired from

the Web, each linkage decision process may incur a large



Table 4: Running times of the experiments on the ACM data set using the tf scheme on the title attribute.
Methods Recall Running time # of Web accesses

Baseline - jaccard on the current content 0.405 0.09 min 0
Web based scheme - cosine using D(3) and Google 0.653 290.44 min 7951
Web based scheme - jaccard using D(3) and Google 0.711 289.32 min 7951
Web based scheme - lang. model 1 using D(3) and Google 0.573 289.29 min 7951
Web based scheme - lang. model 2 using D(3) and Google 0.756 289.47 min 7951
Web based scheme - cosine using D(3) and the local snapshot 0.463 9.53 min 0
Web based scheme - jaccard using D(3) and the local snapshot 0.443 9.38 min 0
Web based scheme - lang. model 1 using D(3) and the local snapshot 0.457 9.37 min 0
Web based scheme - lang. model 2 using D(3) and the local snapshot 0.494 9.39 min 0

number of Web accesses. Therefore scalability is a crucial
problem. Apart from the computation time, the time spent
on accessing the Web information introduces a considerable
lag. As an example, the statistics of response time and the
number of required web accesses of an experiment using the
ACM data set and the tf scheme to select a representa-
tive token are shown in Table 4. Furthermore, the response
time may be affected by many factors – network traffic, load
of search engines, and web sites, etc. One solution is to
reduce the time to access search engines – i.e., instead of
using external search engines (i.e., Google or MSN), we can
use local ones. As long as the local search engines have
sufficient coverage of the Web, their behavior may paral-
lel external search engines. To validate this idea, we use
the WebBase data set [18] which contains about 100 million
pages from 50,000 web sites. We built a local search engine
using Apache Nutch from 3.5 million web pages after filter-
ing out irrelevant 96.5 million pages. Then, all requests to
external search engines are re-directed to this “local” search
engine. Table 4 highlights the difference. Although the run-
ning time of the same experiments decreased dramatically,
the recall of the web based linkage idea is still better than
the baseline results, approximately 6% higher. Consider-
ing the small size of the local snapshot, however, the local
search engine result proves that a sufficient performance can
be achieved in a reasonable time once a reasonable size of
data sources are used as the collective knowledge source like
the Web.

5. RELATED WORK
The general linkage problem has been known as various

names in many disciplines – record linkage (e.g., [14, 6]), ci-
tation matching (e.g., [26]), identity uncertainty (e.g., [28]),
merge-purge (e.g., [17]), object matching (e.g., [9]), entity
resolution (e.g., [30, 2]), authority control (e.g., [34, 19]),
and approximate string join (e.g., [15]) etc.

Bilenko et al. [6] have studied name matching for informa-
tion integration using string-based and token-based meth-
ods. Cohen et al. [12] have also compared the efficacy of
string-distance metrics, like JaroWinkler, for the name match-
ing task. [22] experimented with various distance-based al-
gorithms for citation matching, with a conclusion that word
based matching performs well. [27] conducted an in-depth
study on the split entities case from the blocking point of
view.

Unlike the traditional methods exploiting textual similar-
ity, Constraint-Based Entity Matching (CME) [31] examines
“semantic constraints”in an unsupervised way. They use two
popular data mining techniques, Expectation-Maximization
(EM) and relaxation labeling for exploiting the constraints.

[4] presents a generic framework, Swoosh algorithms, for the
entity resolution problem. The recent work by [13] proposes
an iterative linkage solution for complex personal informa-
tion management. Their work reports good performance for
its unique framework where different linkage results mutu-
ally reinforce each other (e.g., the resolved co-author names
are used in resolving venue names).

The recent trend in the linkage problem shows similar di-
rection to ours (e.g., [6, 5, 20]). Although each work calls its
proposal under different names, by and large, most are try-
ing to“exploit additional information beyond string compar-
ison.” For instance, [20] presents a relationship-based data
cleaning (RelDC) which exploits context information for en-
tity resolution, sharing similar idea to ours. RelDC con-
structs a graph of entities connected through relationships
and compares the connection strengths across the entities on
the graph to determine correspondences. A more extensive
and systematic study is needed to investigate the usefulness
and limitations of the context in a multitude of the linkage
problem. The main difference from ours to these approaches
lies in the simplicity of our idea of using the Web to extract
additional information.

Finally, to overcome the data incompleteness problem,
several recent studies use the Web through search engines,
similar to our proposal. Among those, [33] uses the statisti-
cal data by querying the Web for recognizing synonyms, and
in [24], syntactic patterns are searched in the Web by using
the Google API in order to acquire background knowledge
for anaphora resolution. In addition, in [1], related texts are
crawled from the Web to enrich a given ontology. In [11],
another approach is employed to find the best concept for an
unknown instance in a given ontology. [25] uses page counts
to determine the strength of relations in a social network. A
formal study by [10] defines a semantic distance metric be-
tween two terms using page counts from the Web. Similarly,
[8] exploits the usage of page counts and lexical patterns
from search engine snippets to measure semantic similarity
between words. In [32], authors tackle another type of entity
resolution problem known as “mixed citation problem” [23]
using URL information. Finally, [21] independently explores
the similar idea of using the Web to augment incomplete in-
formation for entity resolution. Since their focus is more
on theoretical framework called “resource-bounded informa-
tion gathering,” our study on various methods to find the
best representative tokens or scalability via local caching is
complementary to their findings.

6. CONCLUSION
In this paper, we propose a novel approach toward the

(record) linkage problem to identify duplicate named enti-



ties with insufficient description or contents. Unlike other
approaches that use textual similarity of contents or name,
our proposal unearths the hidden knowledge from the Web.
Experimental results verify that our proposal improves the
recall as high as 193% at best, and outperforms the baseline
approach for a majority of test cases.

Our proposal relies on the information on the Web. As
the Web evolves, we expect the information to get better.
However it does not mean that it can always find reliable
information. Moreover, the main limitation is that entities
to be linked should have a good presence on the Web. Oth-
erwise, even if the Web based linkage is used, the lack of
information deters improvement.

Many directions are ahead for the future work. The pro-
posed methods can be tested on more and larger data sets.
More sophisticated approaches such as Information Gain,
Chi-square etc., can be used to find better representative
tokens or key phrases from contents of canonical entity or
both entities to be linked. Using multiple representative
data pieces, individual decisions or rankings can be com-
bined to make a more accurate linkage decision by different
schemes, i.e., voting, correlation etc. It is also important to
be able to quantify the signal to noise ratio in selecting mul-
tiple information and combining them in queries to acquire
the most representative data.
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