

Scrutinizing Mobile App Recommendation: Identifying Important App-Related Indicators

Jovian Lin, Kazunari Sugiyama, Min-Yen Kan, and Tat-Seng Chua

National University of Singapore

Introduction

Basic Recommendation Systems

- Collaborative Filtering (CF)
 - User's ratings
- Content-based Filtering (CBF)
 - Contents of items

We have proposed mobile app recommendation systems:

- Twitter followers (TWF) [Lin et al., SIGIR'13]
- Version sensitive recommendation (VSR) [Lin et al. SIGIR'14]

Twitter Followers (TWF) [Lin et al., SIGIR'13] Pseudo-documents and pseudo-words

Version Sensitive Recommendation (VSR) [Lin et al., SIGIR'14]

Relationship between version of apps and users

Introduction How about unifying the followings?

- Collaborative filtering (CF)
- Content-based filtering (CBF)
- Twitter followers (TWF)
- Version sensitive recommendation (VSR)

To achieve this, 1. Unify the strengths of the four recommender techniques.

2. Propose a set of specific features (in the app domain) for the unifying framework.

3. Perform in-depth analysis of these features and uncover interesting connections.

Methodology

Feature set

- 1. The app's marketing-related metadata (M)
- 2. The user's <u>h</u>istory-related information (H)
- 3. The <u>r</u>ecommendation scores of different recommender systems (R)
- Each app's feature vector $X_{u,a}$ is composed of the above three types of information.

App's Marketing-Related Metadata (M)

Enrich the app features by including

- # of versions,
- # of Facebook likes,
- # of Twitter followers

User's History-Related Information (H)

The number of times that apps in genre *g* were consumed by user *u*.

Recommendation Scores from Different Recommender Techniques (R)

Include the recommendation scores from the individual recommendation algorithms:

- i) Collaborative filtering (CF)
- ii) Content-based filtering (CBF)
- iii) Twitter followers (TWF)
- iv) Version sensitive recommendation (VSR)

Combining App Features

Employ Gradient Tree Boosting (GTB) to train the model (via "scikit-learn").

Training Phase:

- Give
 - feature vector "X_{u.a} "
 - rating "r" to GTB
- GTB constructs an ensemble of decision tree learnners

Test Phase:

 Given a (testing) feature vector (*i.e.*, X_{u,a}), the learned model predicts "r"

Experiments

Experimental Data

- After retaining only unique users who give
- at least 30 ratings, we obtain the following data:
 - 33,802 apps
 - 16,450 users
 - 3,106,759 ratings

- **Collected from**
 - iTunes App Store
 - App Annie ២
 - Twitter
 - Facebook

Among about 33.8K apps,

- 7,124 (21.1%) have Twitter accounts
- 9,288 (27.5%) have Facebook accounts,
- 10,520 (31.1%) have at least 5 versions.
- 678 (2%) have both Twitter and Facebook accounts.

: App metadata

: Version information

: Rating information

Experiments Comparative Approaches

Individual recommendation techniques

- i) Collaborative filtering (PMF) [Salakhutdinov and Mnih, ICML'08']
- ii) Content-based filtering (LDA) [Blei et al., JMLR'03]
- iii) Twitter followers (TWF) [Lin et al., SIGIR'13]
- iv) Version sensitive recommendation (VSR) [Lin et al., SIGIR'14]

with $X_{u,a} = \{X^{H}_{ua}\}$

Hybrid recommendation techniques

- GTB(R)

_

- GTB(H, **R**)
- M: App's Marketing-related metadata
 - H: User's history-related information
 - R: Recommendation score
- GTB(M, H, **R**)

GTB(M, R)

• Evaluation measure: Recall@50

Comparison of Individual and Hybrid Systems

Comparison of Individual and Hybrid Systems

Comparison of Individual and Hybrid Systems

Ablation Testing for Hybrid Recommendation

Feature	Recall@50	
GTB(M, H, R)	0.403	
GTB(M, H, R), excluding TWF	0.363	1prove by 6.5%
GTB(M, H, R), excluding VSR	0.346	
GTB(M, H, R), excluding collaborative filtering (PMF)	0.292	
GTB(M, H, R), excluding content-based filtering (LDA)	0.237	
TWF	0.082	
VSR	0.141	
Collaborative filtering (PMF)	0.094	
Content-based filtering (LDA)	0.225	

Ablation Testing for Hybrid Recommendation

Feature	Recall@50
GTB(M, H, R)	0.403 🥎 Improve by
GTB(M, H, R), excluding TWF	0.363 11.0%
GTB(M, H, R), excluding VSR	0.346
GTB(M, H, R), excluding collaborative filtering (PMF)	0.292
GTB(M, H, R), excluding content-based filtering (LDA)	0.237
TWF	0.082
VSR	0.141
Collaborative filtering (PMF)	0.094
Content-based filtering (LDA)	0.225

Ablation Testing Using Sufficient Twitter Information

Feature	Recall@50
GTB _{TWF} (M, H, R)	0.446
GTB _{TWF} (M, H, R), excluding VSR	0.412
GTB _{TWF} (M, H, R), excluding collaborative filtering (PMF)	0.390
GTB _{TWF} M, H, R), excluding content-based filtering (LDA)	0.386
GTB _{TWF} (M, H, R), excluding TWF	0.338

Ablating Twitter information results in largest dip, indicating Twitter followers are important by using full twitter information.

Ablation Testing Using Sufficient Version Information

Feature	Recall@50
GTB _{VSR} (M, H, R)	0.418
GTB _{VSR} (M, H, R), excluding TWF	0.396
GTB _{VSR} (M, H, R), excluding content-based filtering (PMF)	0.361
GTB _{VSR} (M, H, R), excluding VSR	0.344
GTB _{VSR} (M, H, R), excluding collaborative filtering (PMF)	0.335

Although VSR does not displace CF, it still results in the second largest dip in recall scores.

Increasingly the Price of Apps is Free

Source: Flurry Analytics and the Apple App Store.

Data is for iOS apps using Flurry Analytics in April of each year, and is weighted by monthly average users.

WING, NUS

Conclusion

- Employ GTB to integrate the features for the unifying recommendation techniques.
- Observe interesting correlations between important feature components and studies from third-party app analytics
- Our studies indicate that mobile app recommendation systems need to
 - Further focus on user and trend analysis in social networks
 - Treat genre information with more importance

Thank you very much!