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MRC

SQuAd, RACE, NarrativeQA, CoQA, QuAC etc.



Multiparty Dialogue MRC

A dialog from Molweni dataset.

jimcooncat: installing acroread gives me a 404 on

maverick -- what to do ? 𝑈1
jrib: where are you installing acroread from ? 𝑈2
elfranne: people in the same local network ? 𝑈3
llutz: not network , on local computer 𝑈4
elfranne: so its only available for `` localhost '' and

not others on the same local network 𝑈5
jimcooncat: thank you , i had forgot to update 𝑈6
llutz: yes , `` other users on localhost ‘‘ 𝑈7

Q1: Why does jimcoonact meet the error? 

A1: forgot to update 

Q2: Where does llutz install acroread?  

A2: on local computer 

Q3: How did erUSUL create a new partiton table?

A3: NA.    



Background

• Discourse structure of multiparty dialogue.

jimcooncat: installing acroread gives me a 404 on

maverick -- what to do ? 𝑈1
jrib: where are you installing acroread from ? 𝑈2
elfranne: people in the same local network ? 𝑈3
llutz: not network , on local computer 𝑈4
elfranne: so its only available for `` localhost '' and

not others on the same local network 𝑈5
jimcooncat: thank you , i had forgot to update 𝑈6
llutz: yes , `` other users on localhost ‘‘ 𝑈7

𝑈1 𝑈2 𝑈3 𝑈4 𝑈5 𝑈6 𝑈7
Q-Elab Expl.QAP QAP

Ack.

Ack.

Q-Elab



Background

• Discourse structure has been successfully applied to QA and MRC.

Sachan et al. Learning Answer-Entailing Structures for Machine Comprehension. EMNLP 2015.



Background

• Graph structure has been proven to effectively represent dialogs.

Hu et al. GSN: A Graph-Structured Network for Multi-Party Dialogues. IJCAI 2019.



Hypothesis

Discourse structure informs multiparty dialogue MRC performance in 

modeling long-term dependencies. 



Method: DADgraph

Sequential Context Encoding Discourse Graph Modeling MRC
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Method

• Sequential context modelling

• The pretrained BERT model is used to

represent the utterance to get 𝑢𝑖.

• The sequence structure of dialogue is

modeled by GRU.

• Finally, the utterance representation 𝑔𝑖

of fusion context is obtained;

Sequential Context Encoding

𝑢1 GRU 𝑔1

𝑢2 GRU 𝑔2

𝑢3 GRU 𝑔3

𝑢4 GRU 𝑔4

𝑢5 GRU 𝑔5



Method

• Discourse graph modelling

• The utterance representation 𝑔𝑖

obtained in the previous step is taken

as the input;

• GCN is used to model discourse

structure of dialogue.

• The updated representation ℎ𝑖 of

fusion discourse structure is obtained;

GCN

Discourse Graph Modeling
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Method

• MRC module

• First, let the ℎ𝑖 attend with each

word in the input dialogue.

• Weighted sum of utterances

representations and obtains 𝑡𝑖.

• Predict the probability of the span (i,

j) via 𝑡𝑖 and 𝑡𝑗.

𝑡𝑖𝑡1 𝑡𝑚… …𝑡𝑗…

𝑞

ℎ1 ℎ2 ℎ3 ℎ4 ℎ5

+

𝑤1 𝑤𝑖 𝑤𝑚𝑤𝑗… … …

∙

WS

𝑓1 𝑓𝑖 𝑓𝑚𝑓𝑗… … …

∙

𝑐1 𝑐𝑖 𝑐𝑚𝑐𝑗… ……

WS：weighted sum



Experiments

• Dataset: Molweni corpus.

Train Dev Test Total

Dialogs 8,771 883 100 9,754

Utterances 77,374 7,823 845 86,042

Questions 24,682 2,513 2,871 30,066

Li et al. Molweni: A Challenge Multiparty Dialogues-based Machine Reading Comprehension Dataset with Discourse Structure. 

COLING 2020.



Experiments

• Main results 

EM F1

BiDAF 22.9 39.8

DocQA 42.5 56.0

BERT 45.3 58.0

DialogueRNN 45.4 60.9

DialogueGCN 45.7 61.0

DADgraph (Our) 46.5 61.5

Human performance 64.3 80.2



Experiments

• Ablation results 

EM F1

DADgraph 46.5 61.5

- w/o discourse relations 44.9 60.6

- w/o discourse structure 44.7 60.5



Experiments: case study



Conclusion

• Propose DADgraph model for multiparty dialogue MRC task.

• Prove the discourse structure can help understand the dialogue.

Thank you!


