

Exploiting Potential Citation Papers in Scholarly Paper Recommendation

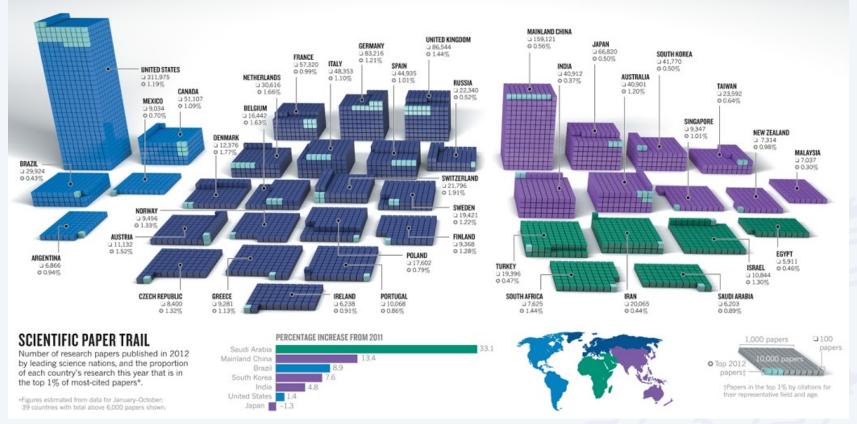
Kazunari Sugiyama,

Min-Yen Kan

National University of Singapore

Introduction

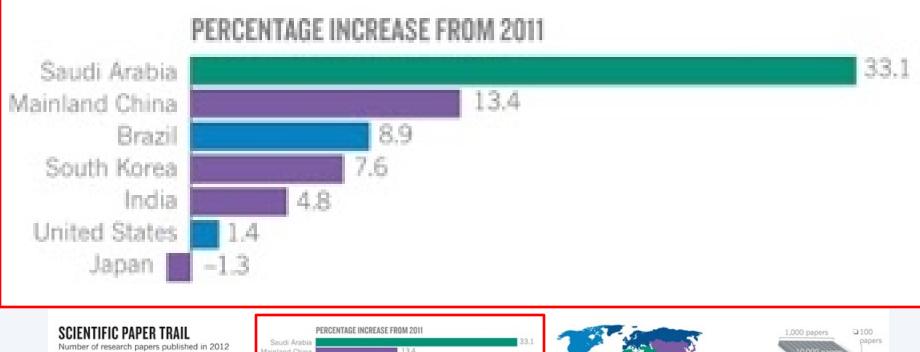
How many papers are published in 2012?



Source: Originally pinned from Nature (http://www.nature.com/news/366-days-2012-in-review-1.12042), with data from Thomson Reuters/Essential Science Indicators.

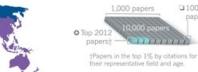
Introduction

How many papers are published in 2012?



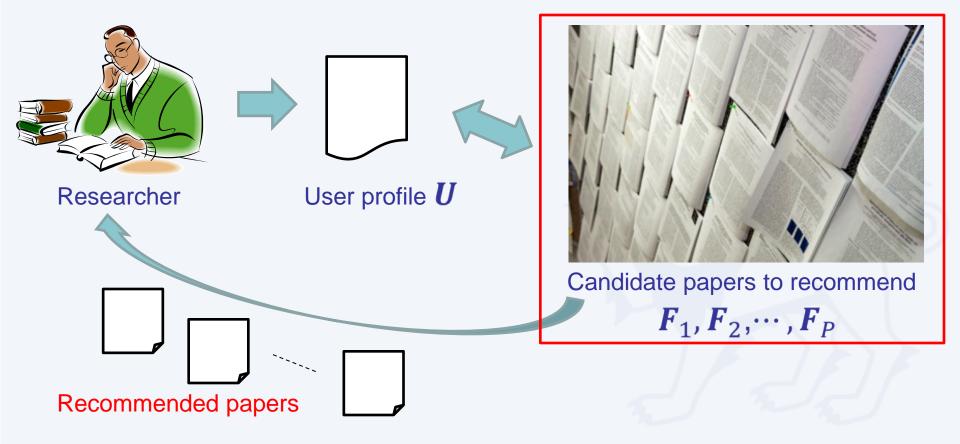
Number of research papers published in 2012 by leading science nations, and the proportion of each country's research this year that is in the top 1% of most-cited papers*.

*Figures estimated from data for January-October; 39 countries with total above 6,000 papers shown. PERCENTAGE INCREASE FROM 2011 Saudi Arabia Mainland China Brazil South Korea India United States Japan -1.3



Source: Originally pinned from Nature (http://www.nature.com/news/366-days-2012-in-review-1.12042), with data from Thomson Reuters/Essential Science Indicators.

Introduction Recommendation System (Especially, content-based system)



Fragments

Exploiting Potential Citation Papers in Scholarly Paper Recommendation

Kazunari Sugiyama National University of Singapore Computing 1, 13 Computing Drive, Singapore 117417 sugiyama@comp.nus.edu.sg

ABSTRACT

To help generate relevant suggestions for researchers, recommendation systems have started to leverage the latent interests in the publication profiles of the researchers themselves. While using such a publication citation network has been shown to enhance performance, the network is often sparse, making recommendation difficult. To alleviate this sparsity, we identify "potential citation papers" through the use of collaborative filtering. Also, as different logical sections of a paper have different significance, as a secondary contribution, we investigate which sections of papers can be leveraged to represent papers effectively.

On a scholarly paper recommendation dataset, we show that recommendation accuracy significantly outperforms state-of-the-art recommendation baselines as measured by nDCG and MRR, when we discover potential citation papers using imputed similarities via collaborative filtering and represent candidate papers using both the full text and assigning more weight to the conclusion sections

Min-Yen Kan^{1,2} ¹National University of Singapore ²NUS Interactive and Digital Media Institute Computing 1, 13 Computing Drive, Singapore 117417 kanmy@comp.nus.edu.sg

to the sum total of human knowledge. While certainly advantageous, this creates a problem of over abundance, commonly known as "information overload": where researchers find an overwhelming number of matches to their search queries, but for which the majority are largely irrelevant to their latent information needs.

Work in recommendation systems is one promising approach to address the information overload. In digital library studies, this approach has been employed to obtain and refine search results to satisfy each user's information needs [10, 18, 3, 23, 13]. However, these approaches do not fully leverage the user's context, largely relving on the idea of session-as-context. This legacy is ported from research in Web search, where session click-through data are used to form the context. To address this problem, in our previous work, we observed that the scholarly context allows us to leverage the role of the searcher-as-author [16]. We modeled a searcher's context in the form of a profile by capturing previous research interests embodied in their past publications, and showed elevated success at scholarly paper recommendation. Our approach in [16] also

Full text

Exploiting Potential Citation Papers in Scholarly Paper Recommendation

Kazunari Sugiyama National University of Singapore Computing 1, 13 Computing Drive, Singapore 117417 sugiyama@comp.nus.edu.sg

ABSTRACT

To help generate relevant suggestions for researchers, recommendation systems have started to leverage the latent interests in the publication profiles of the researchers themselves. While using such a publication citation network has been shown to enhance nce, the network is often marse, making recom milation difficult. To alleviate this sparsity, we identify "potential citation papers" through the use of collaborative filtering. Also, as differ-rnt logical sections of a more hour different logical sections of a paper have different significance, as a sec-ondary contribution, we investigate which sections of papers can be leveraged to represent papers effectively.

On a scholarly paper recommendation dataset, we show that recommendation accuracy significantly outperforms state-of-the-art endation baselines as measured by nDCG and MRR, when we discover potential citation papers using imputed similarities via collaborative filtering and represent candidate papers using both the full text and assigning more weight to the conclusion sections.

Categories and Subject Descriptors

H.3.3 [Information Search and Retrieval]: Information filtering, Search process; H.3.7 [Digital Libraries]: Systems issues, Use

General Terms

Algorithms, Experimentation, Performance

Keywords

Digital library, Information retrieval, Recommendation, Citation analysis, Collaborative filtering

1 INTRODUCTION

Newly discovered knowledge is now largely captured in digital form and archived throughout the world. Archival materials are also being digitized and are increasingly becoming more accessible online. The modern researcher has unprecedented level of access

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies heat made or distributed for profit or commercial advantage and that copies hear this notion and the full citation on the first page. Copyrights for components of this word owned by obsen than ACM must be knowed. Acktuating with cardia is pentitude. To copy otherwise, corresplable, to post on anyone or to realistic the perturbation of the perturbation of the second state of the perturbation of the perturbation of the perturbation and/or a file. Request perturbation from perturbation and/or a file. Request perturbation of the JCDL'13, July 22-26, 2013, Indianapolia, Indiana, USA. Copyright 2013 ACM 978-1-4503-2077-1/13/07 ...\$15.00

model. Their system requires a user to prepare query manuscript without a bibliography that indicates locations where citations are

705-706, 2007. [18] R. Torres, S. M. McNee, M. Abel, J. A. Konstan, and J. Riedl. Enhancing Digital Libraries with TechLens. In

Min-Yen Kansa National University of Singapore NUS Interactive and Digital Media Institute Computing 1, 13 Computing Drive, Singapore 117417 kanmy@comp.nus.edu.sg

tir subanalyz- racy

p before

candi- sing op

3], our baselin ugh the this pa

baseline

0.766*

0.773*

0.770*

0.781* porpora.

0.787*

0.793*

0.495

ion sys-

content

menda

ons are spers to fall tert

discov

to dis-to dis-to dis-till; cre-s better 0.761 dressed 0.756 al com-0.756 0.756 0.756 0.756 0.756 to the sum total of human knowledge. While certainly advanta group, this creates a problem of over abundance, commonly known as "information overload": where researchers find an overwhelming number of matches to their search queries, but for which the oth the MRR majority are largely irrelevant to their latent information needs. Work in recommendation systems is one promising approach to sted the sted the 0.368 remes- 0.772 at on a 0.366 to algo- 0.364 thybrid 0.348 address the information overload. In digital library studies, this approach has been employed to obtain and refine search results to approach are been employed to could and reine statich results to satisfy each user's information needs [10, 18, 3, 23, 13]. However, these approaches do not fully leverage the user's context, largely relying on the idea of session-as-context. This legacy is ported from research in Web search, where session click-through data are used to form the context. To address this problem, in our previous work we observed that the scholarly context allows us to leverage the role of the searcher-as-author [16]. We modeled a searcher's context in the form of a profile by capturing previous research inter-ests embodied in their past publications, and showed elevated suc-

and en-otential MRR ollabocess at scholarly paper recommendation. Our approach in [16] also took advantage of the explicit citation network of publications as a source of knowledge to improve recommendation accuracy. The contents of papers that cite an author's papers as well as the conmodel tents of the works referenced in the papers provide supplementary evidence used in modeling the author's research interests. In this paper, we propose two extensions of [16] that further mine r learnadditional signals from the full text and citation network - using (1) potentially cited papers and (2) their fragments. Citation papers are papers that explicitly cite previous work and often contain a summary of its salient points. Such citation papers may be viewed ibe our 0.438 as an endorsement of the cited namer, and they may help model the target paper more accurately. In addition, fragments are parts of a

Est of paper such as abstract, introduction, conclusion, and so on. Authors of papers also may not cite certain relevant papers in their publications, either purposefully (e.g., to save space) or not h of the ital (e.g., were unaware of the specific relevant work). If we enhance the citation network with such potentially citable papers (hereafter, etween 'nick pc), we hypothesize that we can model the target papers to recomm with mend more accurately to achieve better recommendat tion perfor mance. In our work, we apply collaborative filtering (CF) to find

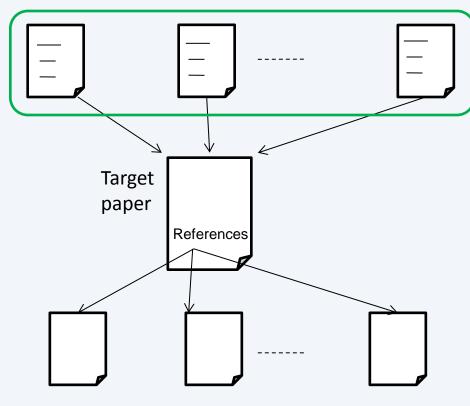
feature Wh.ACM such potential citation papers. While CF is often used to recom-mend items to users directly, we apply CF to discover potential ciand 2, incovery mbina-i views pedia's tation papers that help in representing target papers to recommend. Through a series of experiments on a scholarly paper recommen-dation dataset, we show that proper modeling of potential citation vectors on. In portant sation ise step 7-1106, papers - as well as properly representing papers with both their full text and assigning more weight to the conclusion – improve recommendation accuracy significantly (p < 0.06 or better) as judged by both mean reciprocal rank (MRR) and normalized discounted

merely i inclu-

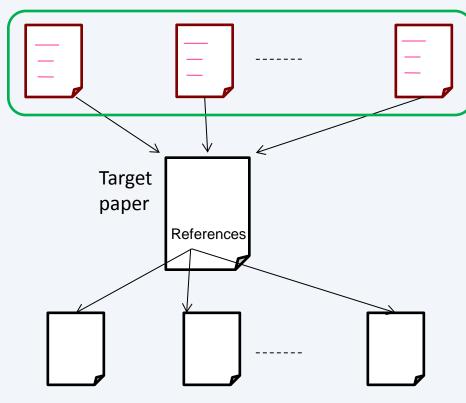
scholarty works it referenced, as well as those works that cite it (see roge Figure 1 (a)). In this past work, we found that when the text of such RES: A

Ranking-Oriented CADAI, Recommender System. In Proc. of the 9th ACM/IEEE Joint Conference on Digital Libraries (JCDI, 2009), pages 203-211, 2009.

Citation and Reference Papers

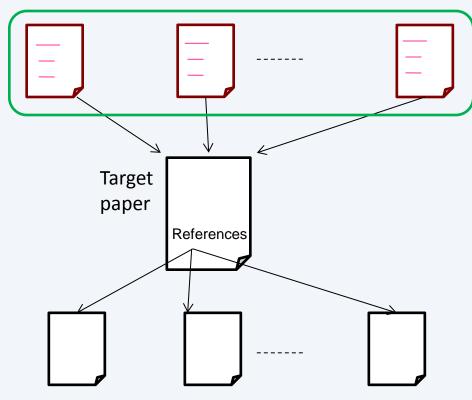


Citation and Reference Papers



Citation papers: Endorsement of the target paper Full text Fragments "abstract," "introduction," "conclusion," ...

Citation and Reference Papers

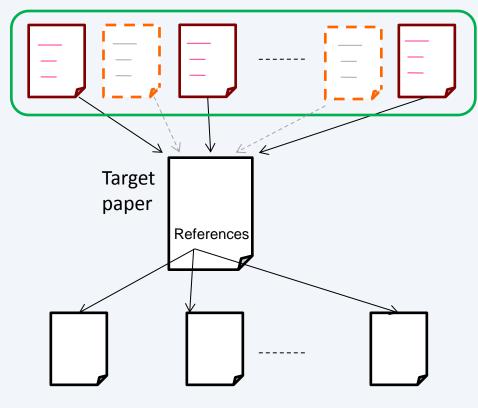


Citation papers: Endorsement of the target paper Full text Fragments "abstract," "introduction," "conclusion," ...

Authors of citation papers

- May not cite relevant papers due to space limit
- Unaware of the relevant papers

Citation and Reference Papers



Citation papers: Endorsement of the target paper Full text Fragments "abstract," "introduction," "conclusion," ...

Authors of citation papers

- May not cite relevant papers due to space limit
- Unaware of the relevant papers

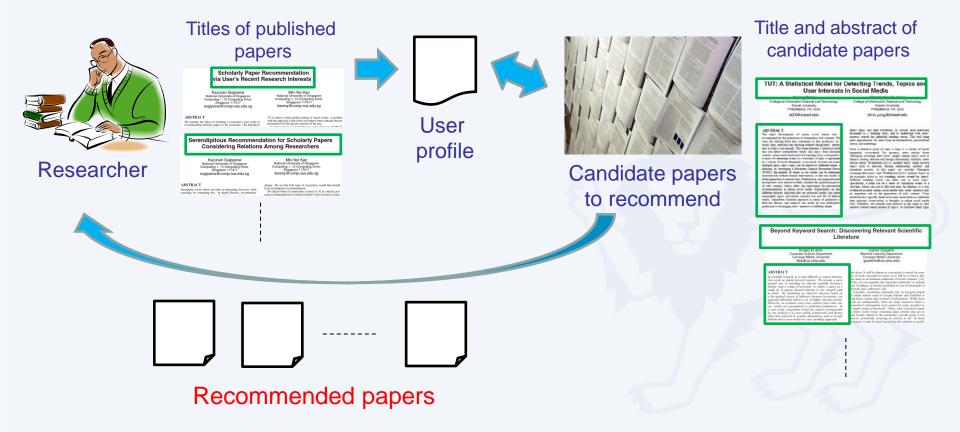
Potential citation papers

Our Goal

- To find potential citation papers to model candidate papers to recommend much better for better recommendation
- To refine the use of citation papers in characterizing candidate papers to recommend using fragments

Related Work Scholarly Paper Recommendation

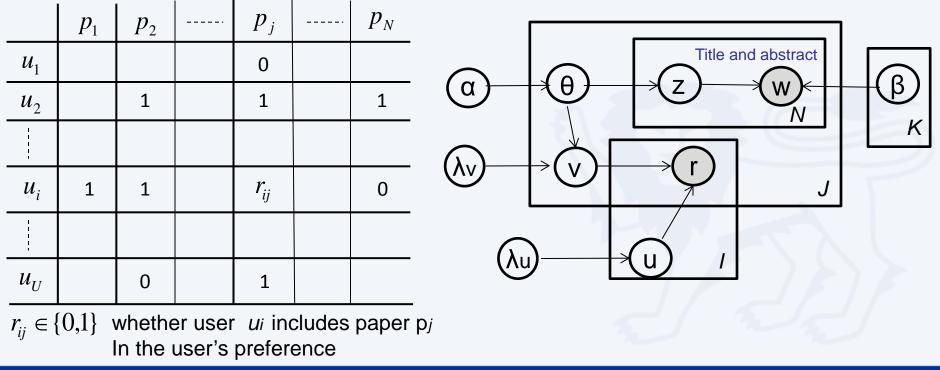
[Nascimento et al., JCDL'11]



Related Work Scholarly Paper Recommendation

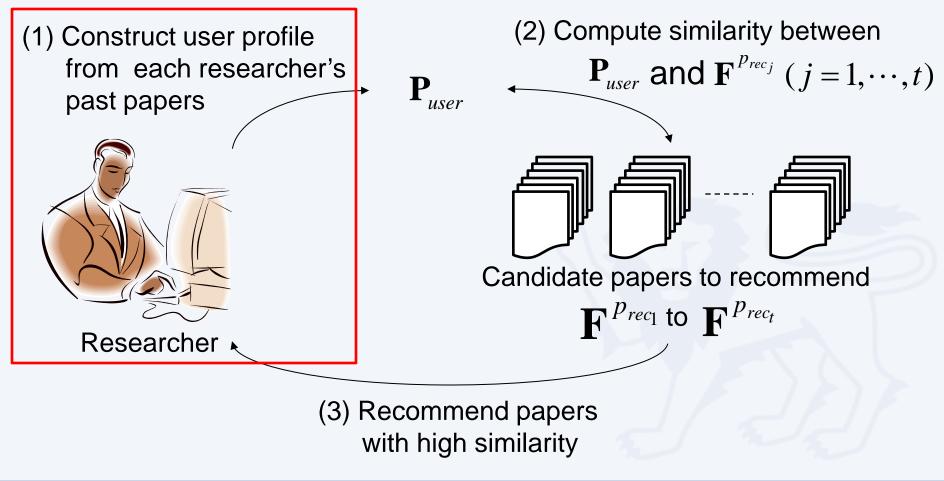
[Wang and Blei., KDD'11]: Collaborative topic regression

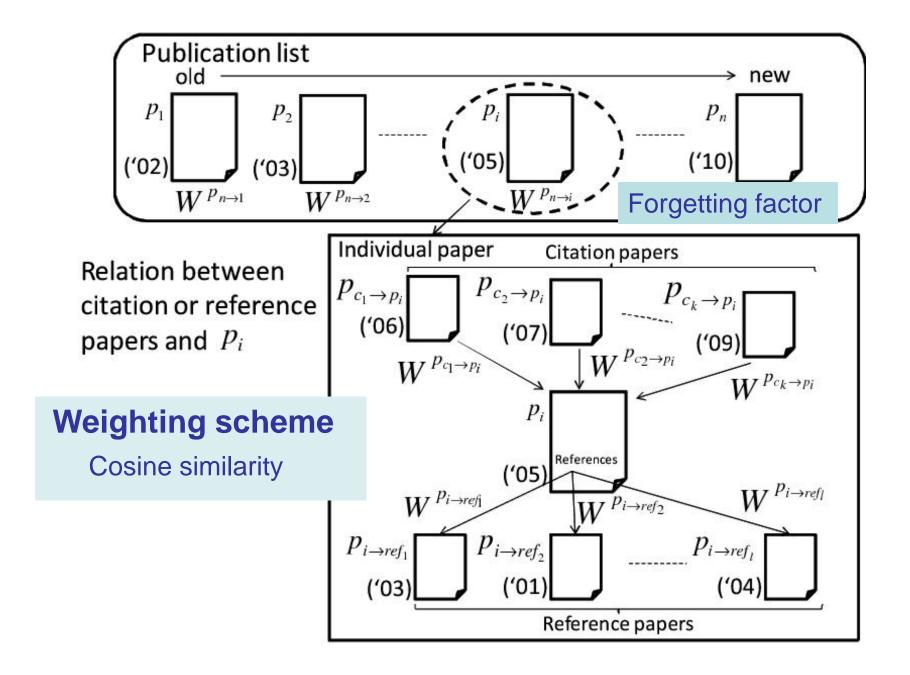
Combines ideas from collaborative filtering and content analysis based on probabilistic topic modeling



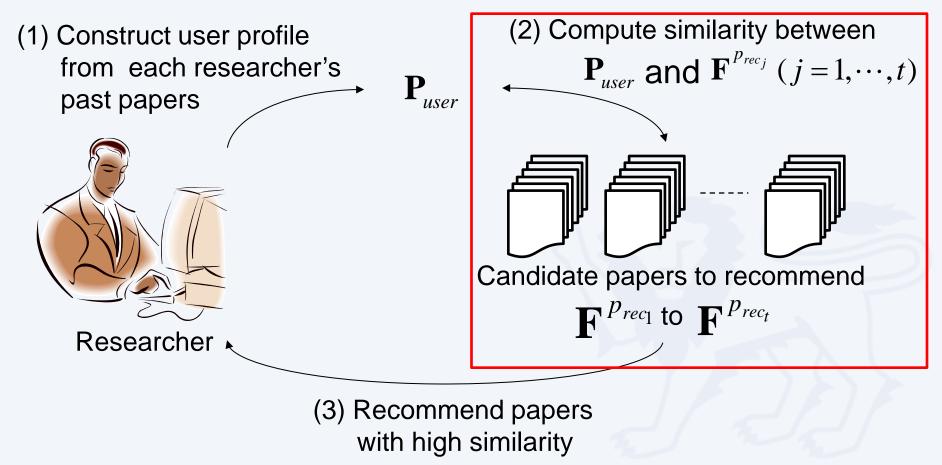
12

Outline of Baseline System [Sugiyama and Kan, JCDL'10]



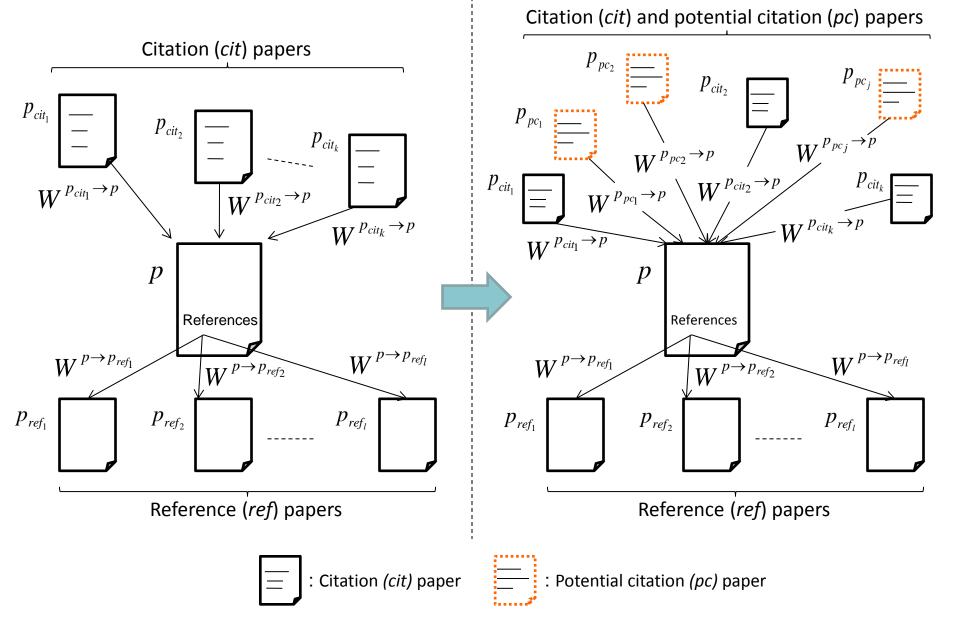


Outline of Baseline System [Sugiyama and Kan, JCDL'10]



[Sugiyama and Kan, JCDL'10]

Proposed Method [Sugiyama and Kan, JCDL'13]



Proposed Method (1) Leveraging Potential Citation Papers

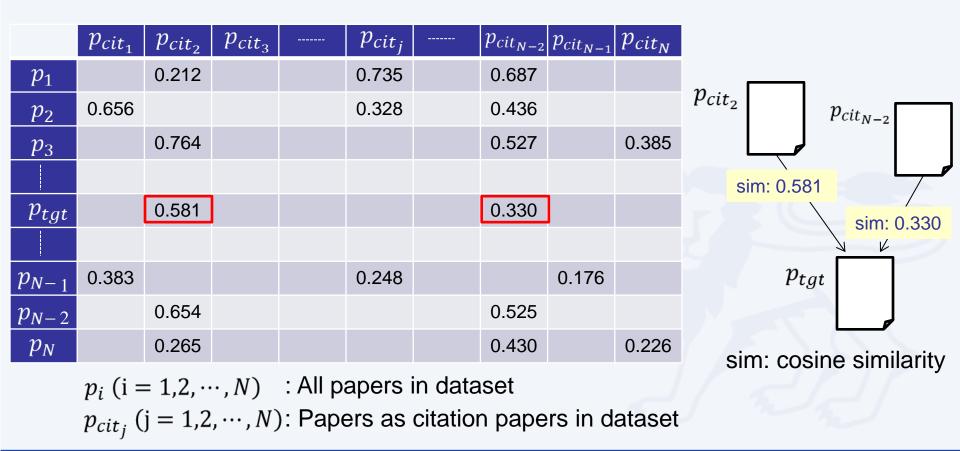
(2) Leveraging Fragments in Potential Citation Papers

Proposed Method

	p_{cit_1}	p_{cit_2}	p_{cit_3}	 p_{cit_j}	 $p_{cit_{N-2}}$	$p_{cit_{N-1}}$	p_{cit_N}
p_1		0.212		0.735	0.687		
p_2	0.656			0.328	0.436		
p_3		0.764			0.527		0.385
p_{tgt}		0.581			0.330		
p_{N-1}	0.383			0.248		0.176	
p_{N-2}		0.654			0.525		
p_N		0.265			0.430		0.226

 p_i (i = 1,2,...,N) : All papers in dataset

 p_{cit_i} (j = 1,2,..., N): Papers as citation papers in dataset

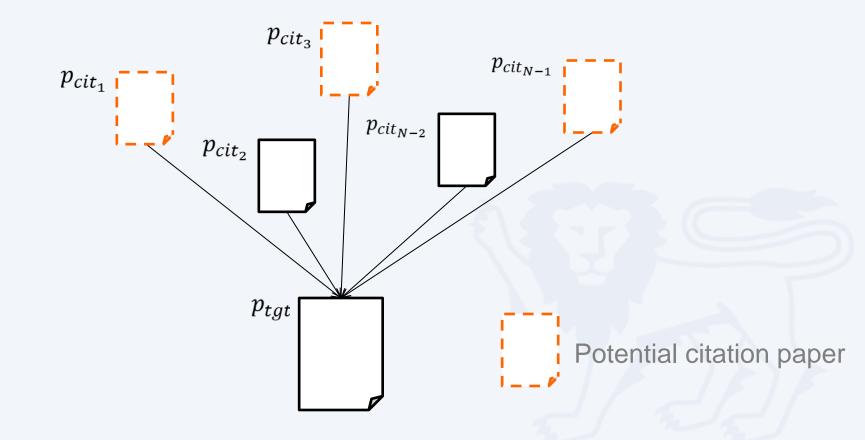


	p_{cit_1}	p_{cit_2}	p_{cit_3}		p_{cit_j}		$p_{cit_{N-2}}$	$p_{cit_{N-1}}$	p_{cit_N}	Pearson correlation
p_1		0.212			0.735		0.687			0.538
p_2	0.656				0.328		0.436			0.216
p_3		0.764					0.527		0.385	0.475
$p_{t,e}$	yt -	0.581					0.330			
p_{N-}	1 0.383				0.248			0.176		0.304
p_{N-}	2	0.654					0.525			0.513
p_N		0.265					0.430		0.226	0.487
	$p_i (i = 1, 2, \dots, N)$: All papers in dataset $p_{cit_j} (j = 1, 2, \dots, N)$: Papers as citation papers in dataset O Neighborhood of the target paper (e.g., set to 4)									

	p_{cit_1}	p_{cit_2}	p_{cit_3}		p_{cit_j}		$p_{cit_{N-2}}$	$p_{cit_{N-1}}$	p_{cit_N}	Pearson correlation
p_1		0.212			0.735		0.687			0.538
р ₂	0.656				0.328		0.436			0.216
p_3		0.764	0.152				0.527		0.385	0.475
p_{tgt}		0.581					0.330			
p_{N-1}	0.383				0.248			0.176		0.304
p_{N-2}		0.654					0.525			0.513
p_N		0.265					0.430		0.226	0.487
p_i (i = 1,2,,N) : All papers in dataset p_{cit_j} (j = 1,2,,N): Papers as citation papers in dataset $(e.g., set to 4)$										

		p_{cit_1}	p_{cit_2}	p_{cit_3}		p_{cit_j}		$p_{cit_{N-2}}$	$p_{cit_{N-1}}$	p_{cit_N}	Pearson correlation
p_1			0.212			0.735		0.687			0.538
p_{z}	2	0.656				0.328		0.436			0.216
p_3	3		0.764	0.152				0.527		0.385	0.475
p_t	gt	0.435	0.581	0.536		0.211		0.330	0.472	0.368	
p_{N}	-1	0.383				0.248			0.176		0.304
p_{N}	-2		0.654					0.525			0.513
p_N	V		0.265					0.430		0.226	0.487
	p_i (i = 1,2,,N) : All papers in dataset p_{cit_i} (j = 1,2,,N): Papers as citation papers in dataset (e.g., set to 3)										

Proposed Method Identified Potential Citation Papers



Proposed Method (1) Leveraging Potential Citation Papers How is the sparsity of matrix is solved?

Proposed Method (1) Leveraging Potential Citation Papers How is the sparsity of matrix is solved?

Original matrix

	p_{cit_1}	p_{cit_2}	p_{cit_3}	p_{cit_4}	p_{cit_5}
p_1		0.233			0.628
p_2	0.233		0.147		
p_3		0.147		0.265	
p_4			0.265		
p_5	0.628				

The values in the cell: Cosine similarity between papers

Imputed matrix

	p_{cit_1}	p_{cit_2}	p_{cit_3}	p_{cit_4}	p_{cit_5}
p_1	1.000	0.233	0.723	0.538	0.628
p_2	0.233	1.000	0.147	0.476	0.156
p_3	0.723	0.147	1.000	0.265	0.521
p_4	0.538	0.476	0.265	1.000	0.268
p_5	0.628	0.156	0.521	0.268	1.000

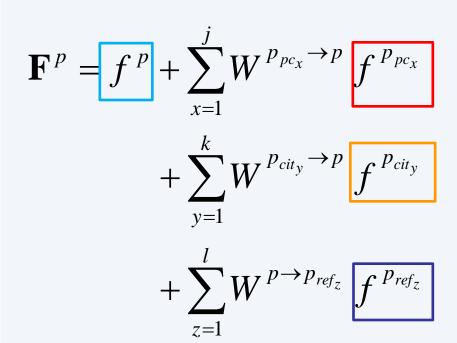
Proposed Method (1) Leveraging Potential Citation Papers How is the sparsity of matrix is solved?

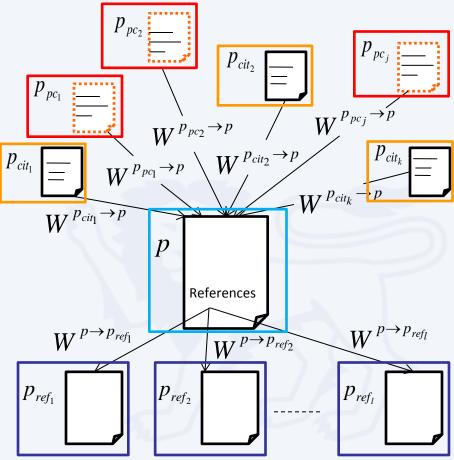
	p_{cit_1}	p_{cit_2}	p_{cit_3}	p_{cit_4}	p_{cit_5}
p_1	1.000	0.233	?	?	0.628
p_2	0.233	1.000	0.147	0.476	0.156
p_4	0.538	0.476	0.265	1.000	0.268
p_5	0.628	0.156	0.521	0.268	1.000

Target paper (p_1) and corresponding Imputed similarities of neighborhood (p_2 , p_4 , and p_5) from "Imputed matrix"

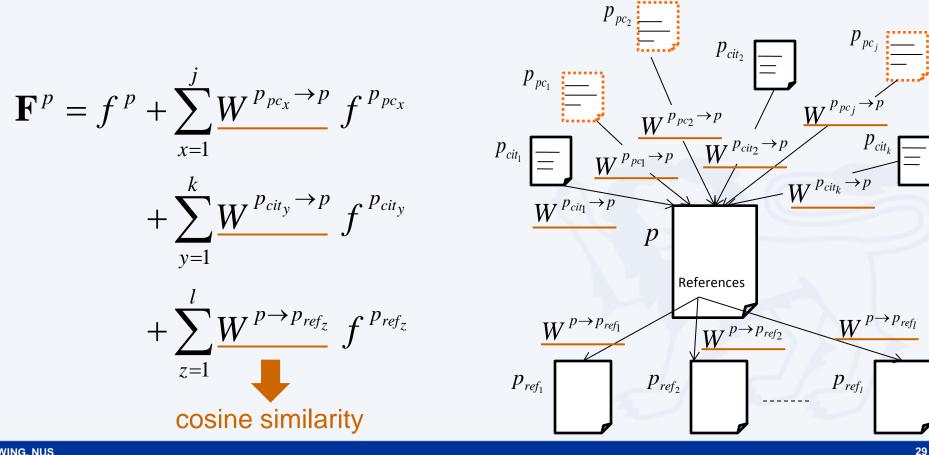
	p_{cit_1}	p_{cit_2}	p_{cit_3}	p_{cit_4}	p_{cit_5}			
<i>p</i> ₁	1.000	0.233	0.682	0.453	0.628			
(e.g., set to 1)								
p _c	it2	<i>p_{cit₃}</i>		p _{cit5}				

Proposed Method (1) Leveraging Potential Citation Papers Feature Vector Construction for Target Papers





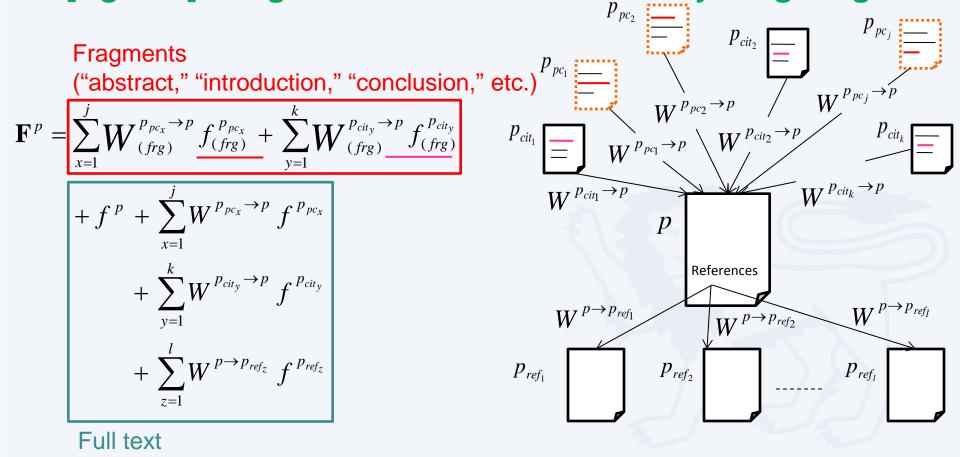
Proposed Method (1) Leveraging Potential Citation Papers **Feature Vector Construction for Target Papers**



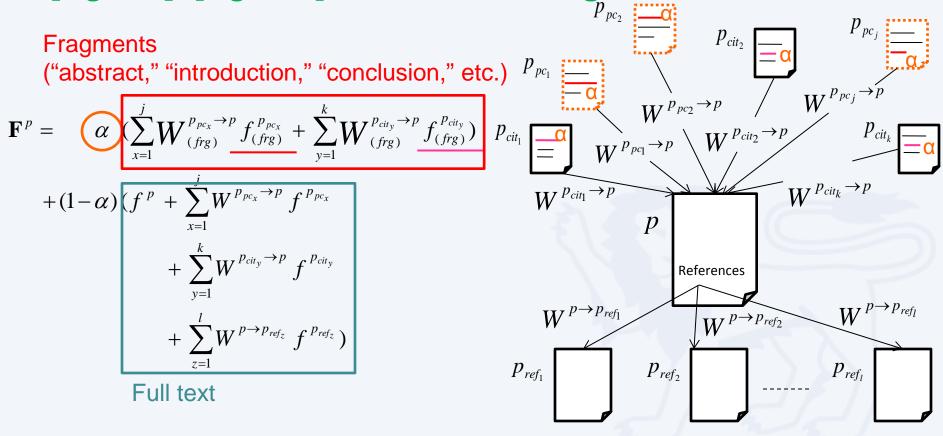
Proposed Method (2) Leveraging Fragments in Potential Citation Papers

- [frg-SIM]: Fragments with cosine similarity weighting
- [frg-TW]: [frg-SIM] with tunable weight

Proposed Method (2) Leveraging Fragments in Potential Citation Papers [frg-SIM]: Fragments with cosine similarity weighting



Proposed Method (2) Leveraging Fragments in Potential Citation Papers [frg-TW]: [frg-SIM] with tunable weight



Experiments Experimental Data

(to be released soon from

http://www.comp.nus.edu.sg/~sugiyama/SchPaperRecData.html)

(a) Researchers (they have publication lists in DBLP)

	Training set	Test set
Number of researchers	25	25
Average number of DBLP papers	10.4	9.6
Average number of relevant papers in our dataset	76.3	74.5
Average number of citations	15.3 (max. 169)	14.4 (max. 145)
Average number of references	15.8 (max. 47)	14.2 (max. 58)

(b) Candidate papers to recommend (constructed from ACM Digital Library)

	Training set	Test set
Number of papers	50,176	50,175
Average number of citations	19.4 (max. 175)	16.5 (max. 158)
Average number of references	15.7 (max. 45)	15.4 (max. 53)

Experiments Evaluation Measure

NDCG@5, 10 [Järvelin and Kekäläinen, SIGIR'00]

- Gives more weight to highly ranked items
- Incorporates different relevance levels through different gain values
 - 1: Relevant search results
 - 0: Irrelevant search results

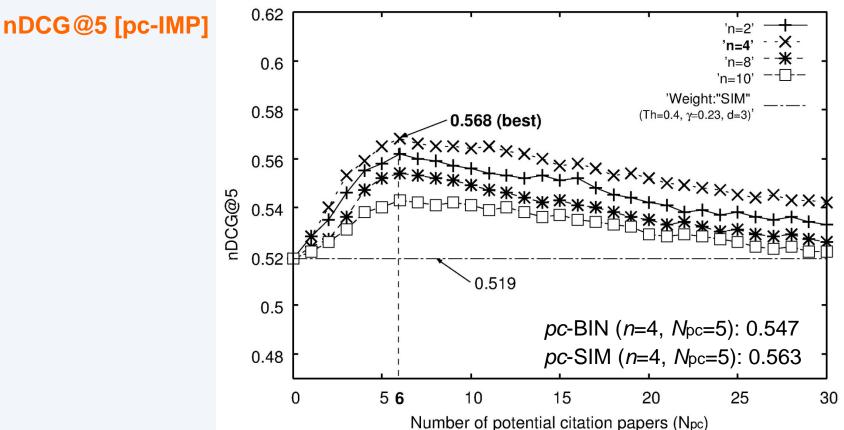
• MRR [Voorhees, TREC-8, '99]

 Provides insight in the ability to return a relevant item at the top of the ranking

Experiments Experimental Results (1) Leveraging potential citation papers [Tune:pc] Parameter tuning to discover potential citation papers (2) Leveraging fragments in potential citation papers [Tune: frg-SIM] Fragments with cosine similarity weighting [Tune: frg-TW] [frg-SIM] with tunable weight

(3) Applying optimized parameters to test set

(1) Leveraging Potential Citation Papers [Tune: pc] Parameter tuning to discover potential citation papers



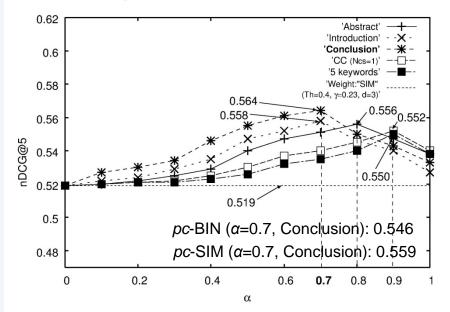
(2) Leveraging Fragments in Potential Citation Papers [Tune: *frg*-SIM]

Fragments with cosine similarity weighting

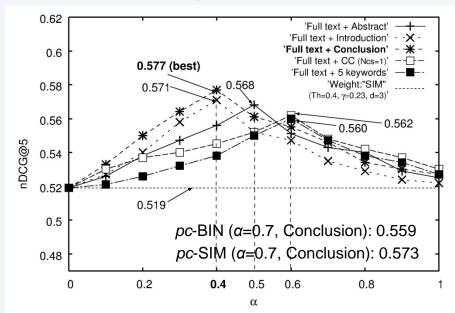
<i>p</i> c-IMP (<i>n</i> =4, <i>Npc</i> =6)	nDCG@5	
Abstract	0.535	
Introduction	0.538	
Conclusion	0.543	
Full text	0.568	_
Full text + Abstract	0.570	
Full text + Introduction	0.569	
Full text + Conclusion	0.574	
<i>pc</i> -BIN (<i>n</i> =4, <i>N_{pc}=5</i>), Full text + Conclusion	0.558	2
<i>pc</i> -SIM (<i>n</i> =4, <i>N_{pc}=5</i>), Full text + Conclusion	0.569	

(2) Leveraging Fragments in Potential Citation Papers [Tune:*frg*-TW] [*frg*-SIM] with tunable weight

nDCG@5 [*pc*-IMP] ("Only fragments")



nDCG@5 [pc-IMP] ("Full text and fragments")



(3) Applying Optimized Parameters to Test Set

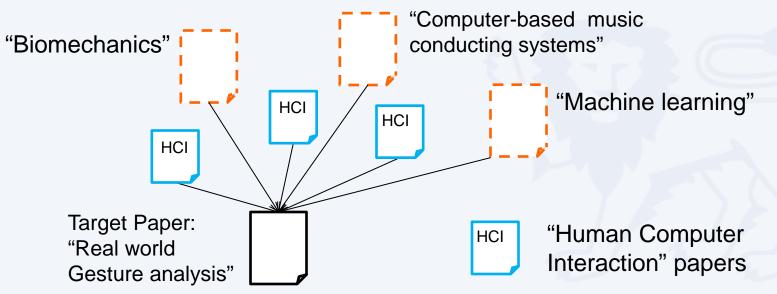
	<i>n</i> DCG@5	MRR
<i>pc</i> -IMP (<i>n</i> =4, <i>Npc</i> =6) <i>frg</i> -SIM (Full text + Conclusion) <i>frg</i> -TW (α=0.4, Full text + Conclusion)	0.572 0.579	0.787 0.793
Baseline system [Sugiyama and Kan, JCDL'10] (Weight "SIM," Th=0.4,γ=0.23,d=3)	0.525	0.751
[Nascimento et al., JCDL'11] ("Frequency of bi-gram" obtained from title and abstract)	0.336	0.438
[Wang and Blei., KDD'11] ("In-matrix prediction" in collaborative topic regression)	0.393	0.495

Microscopic Analysis

 1st Relevant Result in Recommendation List for a "Mobile Computing" Researcher

> [Sugiyama and Kan, JCDL'10]: 52nd [Sugiyama and Kan, JCDL'13]: 1st

• Example of Identified Potential Citation Papers



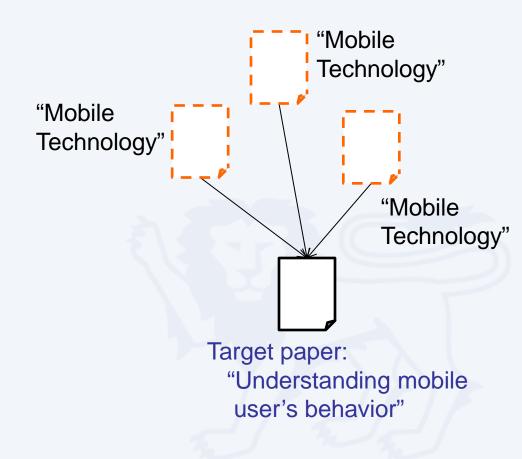
Limitations

"Understanding mobile user's behavior"

- Mobile technology
- User search behavior
- Clustering

Interdisciplinary paper

Identified Potential Citation Papers



Conclusion

To recommend scholarly papers much more relevant to a researcher's interests, we have proposed:

- (1) How to identify potential citation papers
- (2) How to leverage fragments in citation papers

to characterize candidate papers to recommend.

 $(1) \rightarrow$ Collaborative filtering with imputed matrix

 $(2) \rightarrow$ "Full text + Conclusion" with tunable weight

Future Work

We plan to develop methods for:

- Selecting balanced neighborhood for interdisciplinary target papers in collaborative filtering
- Developing a novel term weighting scheme suitable for small-sized text fragments in papers

Thank you very much!