

Combining Coherence Models and Machine Translation Evaluation Metrics

for Summarization Evaluation

Min-Yen Kan¹

¹ National University of Singapore ² SAP Research

Hwee Tou Ng¹

0.8

0.7

0.6

Responsiveness Readability 0.5

Introduction

- · A good machine-generated summary should have high content coverage and linguistic quality
- · State-of-the-art summarization systems: Extraction-based, focusing on content
- Current AESOP task focuses on: tent, readability, and overall responsiveness
- · Lin et al. (2011) used a discourse model to discern original text from its permutation
- → Adapt the model to evaluate readability Parallel between evaluations of MT and
- summarization
- → Adapt a state-of-the-art MT evaluation metric to evaluate summary conter
- Combine 2 models to evaluate responsiveness with a trained regression model

TESLA-S: Evaluating Summary Content

TESLA: MT Evaluation Metric (Liu et al. 2010, Dahlmeier et al. 2011)

- Extends BLEU with linear programming-based matching
- · Uses linguistic resources
- Considers both precision and recal
- · Align 2 BNGs to maximize overall similarity

Adapting TESLA for summarization

- Mimic ROUGE-SU4: construct 1 matching problem between unigrams and 1 between skip bigrams with a window size of 4, average to give a final score
- · Do not match synonyms and POS, since most systems are extraction-based
- · Significance test: Koehn's bootstrap resampling
- Tested on AESOP 2011
- Evaluated against:

Pearson's r, Spearman's p, Kendall's t

Experiments

· Initial summarization task: outperforms all metrics on all correlations Significantly better than R-2 on Pearson

 Update summarization task: ranks 2nd, 1st, and 2nd Significantly better than R-SU4 on Pearson

		Initial		Update			
	Р	S	K	Р	S	K	
R-2	0.9606	0.8943	0.7450	0.9029	0.8024	0.6323	
R-SU4	<u>0.9806</u>	0.8935	0.7371	0.8847	0.8382	0.6654	
BE	0.9388	0.9030	0.7456	0.9057	<u>0.8385</u>	<u>0.6843</u>	
4	0.9672	0.9017	0.7351	0.8249	0.8035	0.6070	
6	0.9678	0.8816	0.7229	0.9107	<u>0.8370</u>	0.6606	
8	0.9555	0.8686	0.7024	0.8981	0.8251	<u>0.6606</u>	
10	0.9501	0.8973	<u>0.7550</u>	0.7680	0.7149	0.5504	
11	0.9617	0.8937	0.7450	0.9037	0.8018	0.6291	
12	<u>0.9739</u>	0.8972	0.7466	0.8559	0.8249	0.6402	
13	0.9648	0.9033	<u>0.7582</u>	0.8842	0.7961	0.6276	
24	0.9509	0.8997	<u>0.7535</u>	0.8115	0.8199	0.6386	
TESLA-S	0.9807	0.9173	0.7734	0.9072	0.8457	0.6811	

DICOMER: Evaluating Summary

Readability

Chang Liu¹

Ziheng Lin 1,2

- · A readable text should be coherent
- · An incoherent text will result in low readability
- →A coherence model can also measure readability

Lin et al. (2011)'s Coherence Model

- Japan normally depends heavily on the Highland Valley and Cananea mines as well as the Bougainville mine in Papua New Guinea.
- Recently, Japan has been buying copper elsewhere
- But as Highland Valley and Cananea begin operating, they are expected to resume their roles as Japan's suppliers S_{3.1} S_{3.2}
- According to Fred Demler, metals economist for Drexel S4
- Burnham Lambert, New York,
- S_{4.3} S_{4.3} "Highland Valley has already started operating

Discourse role transition prob of length 2 and 3: e.g., Comp.Arg2→Exp.Arg2 = 2/25 = 0.08

Predicting Readability Scores

- Human judges score each model/candidate summary with a readability score from 1 to 5 → List of training instances
- SVM^{light} preference ranking
- Trained on AESOP 2009 2010, tested on 2011 .

Experiments

- · LIN: outperforms all metrics on both tasks Better results on ranking-based Spearman and Kendall due to the ranking model
- Either new feature source improves all scores
- DICOMER: adding both gave the best performance for all scores

Koehn's significance test								
		Initial			Update			
	vs.	Р	S	K	Р	S	K	
LIN	4	*	**	**	**	**	**	
LIN+C		**	**	**	**	**	**	
LIN+E		**	**	**	*	**	**	
DICOMER		**	**	**	**	**	**	
DICOMER	LIN	-	*	*	*	-	-	

		Initial		Update			
	Р	S	K	Р	S	K	
R-2	0.7524	0.3975	0.2925	0.6580	0.3732	0.2635	
R-SU4	0.7840	0.3953	0.2925	0.6716	0.3627	0.2540	
BE	0.7171	0.4091	0.2911	0.5455	0.2445	0.1622	
4	0.8194	0.4937	0.3658	0.7423	0.4819	0.3612	
6	0.7840	0.4070	0.3036	0.6830	0.4263	0.3141	
12	0.7944	0.4973	0.3589	0.6443	0.3991	0.3062	
18	<u>0.7914</u>	<u>0.4746</u>	0.3510	0.6698	0.3941	0.2856	
23	0.7677	0.4341	0.3162	0.7054	0.4223	0.3014	
LIN	0.8556	0.6593	0.4953	0.7850	0.6671	0.5008	
LIN+C	0.8612	0.6703	0.4984	0.7879	0.6828	0.5135	
LIN+E	0.8619	0.6855	0.5079	0.7928	0.6990	0.5309	
DICOMER	0.8666	0.7122	0.5348	0.8100	0.7145	0.5435	

0.6

0.5

0.4

- Initial task: correlations for content are consistently slightly higher than responsiveness
- Update task: correlations for content and responsiveness are overlapping
- Correlations for readability are much lower than those for content and readability: a gap of ~ 0.2
- → much room for improvement for readability
- Correlations are always better on initial task → eval metric needs to consider update factor

Two New Feature Sources

Whether a relation is Explicit or Non-Explicit Explicit and Non-Explicit have different distribution on each relation, e.g.:

Comp.Ara2 to E.Comp.Ara2 Exp.Arg1 to N.Exp.Arg1

Whether one relation is embedded in another

Important to know how well-structured a summary is Represented by multiple discourse roles in each cell Introduce intra-cell bigrams to capture these:

e.g., in $C_{cananea,S3}$, Comp.Arg2 $\leftarrow \rightarrow$ Exp.Arg1

CREMER: Evaluating Overall Responsiveness

We applied SVM^{light} to train a regression model with TESLA-S and DICOMER scores as features

- · 3 kernels: linear, polynomial, radial basis
- Trained on AESOP 2009 2010, tested on 2011

Experiments

- · Initial task: RBF outperforms all AESOP metrics: 1.71%, 3.86%, 4.60% on Pearson, Spearman, and Kendall
- Update task: all 3 models do not perform as well
- Koehn's sig test: CREMER_{RBF} significantly outperforms ROUGE-2 and -SU4 on initial task

		Initial		Update				
	Р	S	K	Р	S	K		
R-2	0.9416	0.7897	0.6096	0.9169	0.8401	0.6778		
R-SU4	0.9545	0.7902	0.6017	0.9123	0.8758	0.7065		
BE	0.9155	0.7683	0.5673	0.8755	0.7964	0.6254		
4	0.9498	0.8372	0.6662	0.8706	<u>0.8674</u>	0.7033		
6	0.9512	0.7955	0.6112	0.9271	<u>0.8769</u>	<u>0.7160</u>		
11	0.9427	0.7873	0.6064	<u>0.9194</u>	0.8432	0.6794		
12	0.9469	0.8450	<u>0.6746</u>	0.8728	0.8611	0.6858		
18	0.9480	0.8447	0.6715	0.8912	0.8377	0.6683		
23	0.9317	0.7952	0.6080	0.9192	0.8664	0.6953		
25	0.9512	0.7899	0.6033	0.9033	0.8139	0.6349		
CREMER _{LF}	0.9381	0.8346	0.6635	0.8280	0.6860	0.5173		
$CREMER_{PF}$	0.9621	0.8567	0.6921	0.8852	0.7863	0.6159		
CREMER _{RBF}	0.9716	0.8836	0.7206	0.9018	0.8285	0.6588		