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Abstract. Redundant call elimination has been an important program optimisation process as it can
produce super-linear speedup in optimised programs. In this paper, we investigate use of the tupling
transformation in achieving this optimisation over a first-order functional language. Standard tupling
technique, as described in [6], works excellently in a restricted variant of the language; namely,
functions with single recursion argument. We provide a semantic understanding of call redundancy,
upon which we construct an analysis for handling the tupling of functions with multiple recursion
arguments. The analysis provides a means to ensure termination of the tupling transformation. As the
analysis is of polynomial complexity, it makes the tupling suitable as a step in compiler optimisation.

1. Introduction

Source-to-source transformation can achieve global optimisation through specialisation for recursive
functions. Two well-known techniques are partial evaluation [18] and deforestation [33]. Both tech-
niques have been extensively investigated [29, 17] to discover automatic methods and supporting analy-
ses that can ensure correct and terminating program optimisations.

Tupling is a less known but equally powerful transformation technique. The basic technique works
by grouping calls with common arguments together, so that their multiple results can be computed si-
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multaneously. When successfully applied, redundant calls can be eliminated, and multiple traversals of
data structures combined.

As an example, consider the Tower of Hanoi function.

hanoi(0,a,b,c) = []
hanoi(n+1,a,b,c) = hanoi(n,a,c,b)++[(a,b)]++hanoi(n,c,b,a)

The call hanoi(n,a,b,c) returns a list of moves to transfer n discs from pole a to b, using c as a spare
pole. (Note that ++ denotes list catenation.) The first parameter is a recursion parameter which strictly
decreases, while the other three parameters are permuting parameters which are bounded in values. (A
formal classification of parameters will be given later in Section 4.) This definition contains redundant
calls. For instance, the following two call sequences initiating from the call hanoi(4,’A’,’B’,’C’)
will reach an identical call:

hanoi(4,’A’,’B’,’C’)

↙ ↘
hanoi(3,’A’,’C’,’B’) hanoi(3,’C’,’B’,’A’)

↘ ↙
hanoi(2,’A’,’B’,’C’)

It would be desirable to eliminate such call redundancy. By gathering each set of overlapping calls
(which will be defined formally in Section 4.2) appearing in the definition of hanoi, the tupling method
introduces two new functions ht2 and ht3 to capture tuples of function calls, as follows:

ht2(n,a,c,b) = (hanoi(n,a,c,b), hanoi(n,c,b,a))
ht3(n,a,b,c) = (hanoi(n,a,b,c), hanoi(n,b,c,a), hanoi(n,c,a,b))

It then transforms hanoi to the following :

hanoi(n+1,a,b,c) = let (u,v) = ht2(n,a,c,b) in u++[(a,b)]++v
ht2(0,a,c,b) = ([],[])
ht2(n+1,a,c,b) = let (u,v,w) = ht3(n,a,b,c)

in (u++[(a,c)]++v,w++[(c,b)]++u)
ht3(0,a,b,c) = ([],[],[])
ht3(n+1,a,b,c) = let (u,v,w) = ht3(n,a,c,b) in

(u++[(a,b)]++v,w++[(b,c)]++u,v++[(c,a)]++w)

The transformed function can run in linear time, assuming a constant-time implementation of the ++
operation [23].

Despite a significant loss in modularity and clarity, the resulting tupled function is desirable as all
call redundancies have been eliminated, and their better performance can be mission critical. Though
the benefits of tupling are clear, its wider adoption is presently hampered by the difficulties of ensuring
that its transformation always terminates. This problem is crucial since it is possible for tupling to
meet infinitely many different tuples of calls, which can cause infinite number of tuple functions to be
introduced.

Consider the following contrived function definition:
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f(n+2,m+4,y) = C2(f(n+1,m+2,C(y)),f(n,m+1,C(C(y))))
f(n,m,y) = y

Here, C and C2 are unary and binary data constructor respectively. The first two parameters of the nested
f-calls are sub-expressions of their formal counterpart in f; this makes these two parameter recursion
arguments. The third parameters of both the nested f-calls are syntactically larger than the correspond-
ing third formal parameter; we call the third parameter an accumulating parameter. Redundant calls
exist during invocation of f, but typical tupling process fails to terminate when it is performed on f.
Specifically, tupling process will encounter the following tuples of calls, which are increasing in size:

1. (f(n+1,m+2,C(y)),f(n,m,C(C(y))))
2. (f(n1+1,m1+2,C(C(y))),f(n1,m1,C(C(C(C(y))))))
3. (f(n2+1,m2+2,C(C(C(y)))),f(n2,m2,C(C(C(C(y))))),

f(n2+1,m2+2,C(C(C(C(y))))))
4. (f(n3+1,m3+2,C(C(C(C(y))))),f(n3,m3,C(C(C(C(y))))),

f(n3+1,m3+2,C(C(C(C(C(y)))))), f(n3,m3,C(C(C(C(C(C(y))))))))
...

Why does typical tupling fail to stop in this case? Informally, it is because the calls of f overlap, but
tupling fails to capture the synchronisation between their recursion parameters n and m and the accumu-
lating parameter y.

To avoid the need for parameter synchronisation, previous proposals in [7, 16] restrict tupling to
only functions with a single recursion parameter, and without any accumulating parameters. However,
this blanket restriction also rules out many useful functions with multiple recursion and/or accumulating
parameters that could be tupled. Consider:

repl(Leaf(n),xs) = Leaf(head(xs))
repl(Node(l,r),xs) = Node(repl(l,xs),repl(r,sdrop(l,xs)))
sdrop(Leaf(n),xs) = tail(xs)
sdrop(Node(l,r),xs) = sdrop(r,sdrop(l,xs))

Functions repl and sdrop are used to replace the contents of a tree by the items from another list,
without any changes to the shape of the tree. Redundant sdrop calls exist, causing repl to have a time
complexity of O(n2) where n is the size of the input tree. Each of the two functions has a recursive
first parameter and an accumulating second parameter. For the calls which overlap, the two parameters
synchronise with each other (see Section 6 later). Hence, we can gather repl(l,xs) and sdrop(l,xs)
to form the following function:

rstup(l,xs) = (repl(l,xs),sdrop(l,xs))

Applying tupling algorithm to rstup yields an efficient O(n) definition:

rstup(Leaf(n),xs) = (Leaf(head(xs)),tail(xs))
rstup(Node(l,r),xs) = let (u,v)=rstup(l,xs) ; (a,b)=rstup(r,v)

in (Node(u,a),b)
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In this paper, we begin our investigation by describing, in Section 3, a standard tupling technique
which works well on function with single recursion argument. We call this technique SRP-tupling.
Through the standard tupling, we illustrate the termination issue pertaining to the tupling technique, and
provide the reader with the first treatment of such issue. Next, we describe, in Section 4, an extension
of SRP-tupling to handle functions with multiple recursion arguments and accumulating arguments. We
call the extended technique MRP-tupling. In Section 5, we elevate the issue of call redundancy to the
semantics level, and investigate the scope and safeness of any analysis that aims at detecting call redun-
dancy. The result lays a semantics foundation upon which a synchronisation analysis is built (Section 6).
With this new analysis, we show the solution to the termination problem pertaining to MRP-tupling.
Specifically, we show how the function f defined above can be transformed into the following tupled
version:

f(n+2,m+4,y) = let z = C(y) ; (u,v) = f tup(n,m,z) in C2(u,v)
f(n,m,y) = y
f tup(n+1,m+2,y) = let z = C(y) ; (u,v) = f tup(n,m,z)

in (C2(u,v),u)
f tup(n,m,y) = (y,C(y))

In Section 7, we compare our work to the state of the art research in call-redundancy elimination,
before concluding our presentation in Section 8.

For lack of space, we do not include proofs to various theorems in this paper. Readers may refer to
the technical report [10] for further detail.

2. Language and Notation

We consider a simple (uncurried) first-order functional language with call-by-value semantics. To sim-
plify our presentation, we consider a program to be a single set of mutual-recursive functions:

Definition 2.1. (A Simple Language)
A program in our simple language comprises a set of mutual-recursive functions:

P ∈ Prog — Program is a set of mutual-recursive functions

P ::= D1 ; · · · ; Dn
D ∈ Defn — Function definition is a set of equations

D ::= f(p11, . . . , p1m) = tk ; · · · ; f(pk1, . . . , pkm) = tk

t ∈ Expr — Expressions

t ::= v | C(t1, . . . , tn) | f(t1, . . . , tn) | let p = t in t1 | Error
p ∈ Pat — Patterns

p ::= v | C(p1, . . . , pn)

Functions are defined by sets of equations, each of which are distinguished by the set of parameters it
can receive. Parameters are written in pattern format. By treating booleans as patterns of 0-ary constant
true and false, we can express conditional expressions using equations.
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The expressions allowed at the right-hand side (RHS) of an equation include variable (v), construc-
tion of data via a constructor (C), call to a function (f), let construct, and a keyword (Error) for
undefined/error value. Note that the tuple constructor, (t1, . . . , tn), is regarded as an instance of the
more general data constructor, C(t1, . . . , tn).

Each function must have a “complete” set of equations in the following sense:

1. Pattern parameters from all the equations cover all eventualities (ie., they are exhaustive);

2. Pattern parameters between any pair of the equations do not overlap (ie., they are exclusive) unless
the pattern parameter is a pattern variable.

As an illustration, we show a “complete” definition for null function.

null(Nil) = true
null(Cons(x,xs)) = false

We can also express a function definition in a more succinct way, as follows:

f
def= {(pi1, pi2, . . . , pim) ⇒ ti}ki=1

We shall abbreviate a list of expressions t1, . . . , tn by ~t, so that a function call f(t1, . . . , tn) could be
abbreviated as f(~t). Moreover, multiply nested let expressions can be abbreviated:

(let v1 = e1 in · · · in let vn = en in e)
≡ (let v1 = e1 ; · · · ; vn = en in e)

Given two expressions t1 and t2, we write (t1 � t2) to express the fact that t1 is a sub-expression
of t2. A predicate IsVar defined over expressions checks if an expression is a variable. Similarly, a
predicate IsConst checks if an expression is a constant (ie., a variable-free constructor expression).

We distinguish between two classes of function definitions: instantiating and non-instantiating func-
tions. A non-instantiating function (abbr. NI-function) is defined using only a single equation without
pattern matching:

f(v1, v2, . . . , vn) = t

Other functions have patterns as the first parameter in their equation, and are referred to as instantiating
functions (abbr. I-functions). A predicate IsNI determines if a function is an NI-function.

Multiple-Hole Context We introduce a special context notation with multiple holes. To begin with,
we define a hole, #m, as a special variable labelled with a number, m.

Definition 2.2. (Context with Multiple Holes)
A context, ζ , is an expression with holes, defined by the following grammar:

ζ ::= v | #m | C(ζ1 . . . ζn ) | f(ζ1 . . . ζn ) | let p = ζ in ζ1
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Each expression t can be decomposed into a context ζ and a sequence of sub-expressions t1, . . . , tn
using the notation ζ 〈t1, . . . , tn〉. This notation is equivalent to [t1/#1, . . . , tn/#n](ζ ) which stands for
the substitution of sub-expressions, t1, . . . , tn, into their respective holes, #1, . . . ,#n, in the context ζ .

In expressing our tupling transformation, we often need to pick out all calls, as opposed to arbitrary
expressions, to the functions in a set. We express this by naming the set as F, and denote the extraction
of calls by the following notation:

t = ζF〈f1( ~t1), .., fn( ~tn)〉

For example, consider the expression (x + sum(xs), 1 + length(xs)). In order to abstract out the calls
to functions in the set F = {sum, length}, we use ζF〈sum(xs), length(xs)〉, where ζ = (x+#1, 1+#2).
Note that in case of nested calls, the context notation will always pick out all outermost calls. To extract
the inner calls, we have to use a let construct to separate out the inner calls before extraction. For
simplicity, we assume that the calls are never nested.

3. SRP-Tupling

In this section, we provide a formal account of the tupling transformation which was prevalently used.
We name this transformation SRP-tupling, for the reason that it works effectively on a set of functions
classified as SRP-functions (cf., Definition 3.1.) We describe the termination issue associated with this
transformation, and highlight the challenges pertaining to the handling of multiple recursion arguments
during tupling.

Tupling is a transformation based on the well-known fold/unfold transformation rules invented by
Burstall and Darlington [5]. It can be used to merge loops together by combining multiple recursive calls
and also to eliminate redundant calls for a class of functional programs. The clever (and difficult) step,
frequently called a eureka step, of this transformation method is to find appropriate sets (in the format of
tuples) of calls which would allow each set of calls to be computed recursively from its previous set.

A classical example to illustrate the ability of the tupling transformation is the transformation of
fibonacci function:

fib 0 = 1
fib 1 = 1
fib (n+2) = fib(n+1) + fib(n)

A call to this function can cause many identical subsidiary (recursive) fib calls to be evaluated. Such
redundant calls are often analysed using the dependency graph (DG) of function calls [4]. A DG of a
function call is a compressed representation of the evaluation tree; all syntactically different calls occur
only once in the DG. A DG for the fib function is illustrated in Figure 1. Nodes in the DG represent
subsidiary calls, while arcs represent function calling relationships. Redundant calls can have more than
one arc pointing to them in the DG.

In the case of the fib definition, the redundant calls cause the time-complexity (in terms of reduction
steps) of fib(n) to be O((1+

√
5

2
)n) where n is the initial argument value. A suitable tuple of calls to help

remove redundant calls is (fib(n+1), fib(n)), as captured in the following new function definition.
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fib(n)

fib(n-1)
fib(n-2)

fib(n-2) fib(n-3) fib(n-3) fib(n-4)

fib(n)

fib(n-1)

fib(n-2)

fib(n-3)

fib(n-4)

Figure 1. Dependency Graph for fib Calls and Its Compressed Representation

fib tup(n) = (fib(n+1), fib(n))

Unfold/fold transformation can be applied as follows:

Instantiate n=0
fib tup(0) = (fib(0+1), fib(0)) ; unfold fib calls

= (1, 1)
Instantiate n=n+1
fib tup(n+1) = (fib(n+2), fib(n+1)) ; unfold fib(n+2)

= (fib(n+1)+fib(n), fib(n+1)) ; abstract fib calls
= let (u,v)=(fib(n+1),fib(n)) ; fold fib tup

in (u+v,u)
= let (u,v) = fib tup(n) in (u+v,u)

The end-result is the following recursive function with O(n) time-complexity.

fib tup(0) = (1,1)
fib tup(n+1) = let (u,v)=fib tup(n) in (u+v,u)

Duplicate calls to fib have been eliminated by forcing re-use, instead of re-computation, of the
function calls stored in the tuple. fib tup function can be used to provide a new fib function that has
linear-time complexity, as follows:
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fib (n+2) = fib(n+1) + fib(n) ; abstract fib calls
= let (u,v) = (fib(n+1),fib(n)) ; fold fib tup

in u+v
= let (u,v) = fib tup(n) in u+v

3.1. SRP-Function

In order to ensure termination of our tupling, we focus on a class of functions, called SRP-functions.
Consequently, our tupling transformation is called SRP-tupling.

Definition 3.1. (SRP-Functions)
Consider a program comprises of a set of mutual-recursive functions M. An equation definition of a
function fi is said to be an SRP-equation if it has the form:

fi(p, v1, . . . , vn) = ζM〈f1(t̃1), .., fm(t̃m)〉

such that

1. the pattern p of the first parameter of an equation is a simple pattern; ie., p is of the form:
p ::= v0 | C(v1, . . . , vn), and all remaining parameters are variables;

2. each extracted call in ζM〈f1(t̃1), .., fm(t̃m)〉 has the form fj(tj0, ~tj) and satisfies RpCond(p, tj0),
where

RpCond(p, t) = (IsVar(t)) ∧ (t � p)

A function f is said to be an SRP-function if all its equation definitions are SRP-equations.

Note that in an SRP-function, each equation has only one non-variable pattern parameter, namely
the first parameter (p). This parameter, for convenience sake, always appears as the first parameter.
Condition RpCond states that the first argument (tj0) of each mutual-recursive call must be a variable
taken from this parameter (p). Consequently, the function has only a single recursion parameter.

The restriction on using simple patterns, with a single constructor each, does not lose generality.
There exist pattern-matching translation techniques [2] which can convert functions with arbitrary con-
structor patterns to equivalent functions of the above restricted form. For example, the fib function with
nested constructor patterns can be translated to the following mutual-recursive SRP-functions : (Note
that we regard (n + k) where k is a constant as a peano-style non-negative integer constructor.)

fib(0) = 1
fib(n+1) = fib’(n)
fib’(0) = 1
fib’(n+1) = fib’(n) + fib(n)

The corresponding tupled version of fib′ is as follows (fib tup has been defined in Page 7):



Chin, Khoo, Jones / Redundant Call Elimination via Tupling 9

fib’(0) = 1
fib’(n+1) = let (u,v) = fib tup(n) in u+v

The recursion parameter is always assumed to be in the position of the first parameter. In addition,
we make explicit use of pattern-matching notation to identify recursion parameters. This facilitates the
application of fold/unfold transformation, and the tupling of calls with identical recursion arguments.

Following are examples of SRP-equations. f1 may cause non-termination during execution; f2 and
f3 are mutually-recursive:

f1(v,x) = ζ1 〈f1(v,x)〉
f2(C1(v1,v2),x) = ζ2 〈f2(v1,v2),f3(v1,x)〉
f3(C1(v1,v2),x) = ζ3 〈f2(v1,C3(x))〉

but not the following (with the offending sub-expressions underlined):

f4(v,x) = ζ4 〈f4(x,x)〉
f5(C1(v1,v2),x) = ζ5 〈f5(C2(v1),C3(v2))〉

In the case of f4, the recursion argument, x, of the recursive call is not taken from the recursion pa-
rameter, v; hence it does not satisfy the predicate RpCond. f5 also violates RpCond because it has a
constructor as its recursion argument, rather than just a simple variable.

3.2. Algorithm for SRP-Tupling

We present a tupling transformation algorithm based on fold/unfold rules. Formally, it is a meta-function
of the type:

T F :: Expr → Prog → Defn → (Expr ,Eqns)

T F is parameterised by a set of functions F, the calls of which are to be abstracted for tupling. Prog is
the original program, Defn is the set of new function definitions introduced, Expr is the expression to
be transformed, while (Expr, Eqns) contains a transformed expression and new equations generated. To
simplify our presentation, we shall frequently focus on the main input and output (ignoring the auxiliary
parameters and result) by regarding T as type:

T :: Expr → Expr

Associated with T F is a mutual-recursive counterpart T ◦ F, which takes a sequence of calls (of type
[Expr]) to transform:

T ◦ F :: [Expr ] → Prog → Defn → (Expr ,Eqns)

The major operations performed by these two functions are identified by labels; these are: {u, g} for
T F and {t , d , f } for T ◦ F. The functions are defined in Figures 2 and 3. Specifically, T F transforms a
single expression, while T ◦ F handles a tuple of I-function calls with common recursion argument.

The first step of T F identifies the existence of calls to NI-functions. It calls unf (labelled (u)) when
there exist NI-function calls; otherwise, it calls tup (labelled (g)) to handle calls to I-functions.
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T F[[ζF〈f1( ~t1), . . . , fn( ~tn)〉]] fs ps =
let J = {j | j ∈ 1 ..n, IsNI (fj)}
in if (J �= ∅) then unf ([[ζF〈f1( ~t1), . . . , fn( ~tn)〉]], J , fs, ps)

else tup ([[ζF〈f1( ~t1), . . . , fn( ~tn)〉]], fs , ps)

(u) unf ([[ζF〈f1( ~t1), . . . , fn( ~tn)〉]], J , fs, ps) =
let ( ~vj, ej) = (par(fj), rhs(fj)) ∀j ∈ {1..n}

dj = if (j ∈ J) then [ ~tj/ ~vj](ej) else fj( ~tj) ∀j ∈ {1..n}
in (T F[[ζ〈d1, . . . , dn〉]] fs ps , ∅)

(g) tup ([[ζF〈f1( ~t1), . . . , fn( ~tn)〉]], fs , ps) =
let (dcalls, ρd) = MkDistinct [f1( ~t1), . . . , fn( ~tn)]

([(seqI, vsI)]rI=1, ρs) = MkSplit (dcalls)
(~vI, (eI, fsI)) = (MkTuple (vsI), T ◦ F[[seqI]] fs ps) ∀ I ∈ 1..r

in (let {~vI = eI}r
I=1 in (ρs ◦ ρd)(ζ〈#1 , . . . , #n〉),

⋃r
I=1 fsI)

Note: Auxiliary functions are described in Section 3.2.1 on page 12.

Figure 2. Tupling Transformation Algorithm – Part 1

In Rule (u), NI-function calls are unfolded without instantiation. This transformation continues until
only I-function calls remain.

In Rule (g), subsets of I-function calls with the same recursion argument are gathered to form tuples.
This is also called the abstraction step. The tuples formed are then subject to transformation by T◦ F.

T ◦ F is applied on each tuple formed in the previous rule (g). If the tuple is found to contain at most
one function call, the operation on this tuple will be terminated, as it is only profitable to tuple two or
more calls. This decision to terminate operation is labelled by (t).

If a tuple contains more than one I-function call, function fold (labelled (f )) is called to check if the
tuple has appeared in an earlier stage of the transformation. If that is so, this tuple of calls must have
been kept as a folding point in the set ps . The existing tuple is then replaced by the call to the tuple
function identifying this folding point, and the operation on this tuple terminates.

When the tuple does not appear in any earlier stage of transformation, function dfn (labelled (d)) is
invoked. First, it defines a new tuple function to replace the tuple of I-calls. This new tuple definition
is then kept in ps as a new folding point. A folding pont consists of a tuple of I-function calls, and a
name for the new tuple definition. Next, the new tuple definition is further transformed by simultaneously
unfolding (with instantiation) all its I-function calls. Function TF is then recursively invoked to transform
each new RHS of the tuple function.

Example 1. To illustrate the tupling algorithm, consider the following program with two SRP-functions
deepest and depth.

data Tree a = Leaf a | Node(Tree a, Tree a)
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(t) T ◦ F[[[f1( ~t1), . . . , fn( ~tn)]]] fs ps =
if (n ≤ 1) then (MkTuple [f1( ~t1), . . . , fn( ~tn)], ∅)
else let (pcalls, ρp) = MkPermute [f1( ~t1), . . . , fn( ~tn)]

in if (∃ (tcalls, f′) ∈ ps . (MatchTuple (pcalls, tcalls))) then

fold ([[[f1( ~t1), . . . , fn( ~tn)]]], pcalls, f′, ρp)
else dfn ([[[f1( ~t1), . . . , fn( ~tn)]]], fs , ps)

(f) fold ([[[f1( ~t1), . . . , fn( ~tn)]]], pcalls, f′, ρp) =
let (pcalls, ρp) = MkPermute [f1( ~t1), . . . , fn( ~tn)]

[v1, . . . , vn] = newNames (n)
[u0, ~u] = varList pcalls

e = (([vk/#k]nk=1) ◦ ρp)(#1, . . . , #n)
in (let (v1, . . . , vn) = f′ (u0,�u) in e, ∅)

(d) dfn ([[[f1( ~t1), . . . , fn( ~tn)]]], fs , ps) =
let calls = [f1( ~t1), . . . , fn( ~tn)]

[fNEW] = newNames (1)
ps ′ = ps ∪ {(MkTuple (calls), fNEW)}
[u0, ~u] = varList calls

{(pk, ~vk) ⇒ ek}m
k=1 = calls �� fs

(e′k, fs
′
k) = T F[[ek]] fs ps ′ ∀k ∈ 1..m

fs0 ′ = {fNEW def= {(pk, ~vk) ⇒ e′k}m
k=1}

in (fNEW (u0, ~u), fs0 ′ ∪ (
⋃m

k=1 fs ′k))

Note: Auxiliary functions are described in Section 3.2.1 on page 12.

Figure 3. Tupling Transformation Algorithm – Part 2

deepest(Leaf(a)) = [a]
deepest(Node(l,r)) = if depth(l) > depth(r) then deepest(l)

else if depth(l) < depth(r)
then deepest(r)
else deepest(l)++deepest(r)

depth(Leaf(a)) = 0
depth(Node(l,r)) = 1+max(depth(l),depth(r))

In addition to the fact that a quadratic number of calls to depth are redundant, the Tree data structure
is also traversed multiple times by depth and deepest. Here, F={deepest,depth}, we can apply TF

to the RHS of the second equation of deepest, as shown below:

deepest(Node(l,r)) = T F[[ζF〈depth(l),deepest(l),depth(r),deepest(r)〉]]
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= (g)-rule
let (u,v)=T ◦ F[[[depth(l), deepest(l)]]]

(a,b)=T ◦ F[[[depth(r), deepest(r)]]]
in ζF〈u,v,a,b〉

= (d), (f)-rules
let (u,v)=d tup(l)

(a,b)=d tup(r)
in ζ〈u,v,a,b〉

Define
d tup(t) = (depth(t),deepest(t))

Case t=Leaf(a)
d tup(Leaf(a)) = T F[[(1, [a])]]

= (t)-rule
(1,[a])

Case t=Node(l,r)
d tup(Node(l,r)) = T F[[ (1 + max(depth(l), depth(r)),

ζF〈depth(l),deepest(l),depth(r),deepest(r)〉)]]
= (g)-rule

let (u,v)=T ◦ F[[[depth(l), deepest(l)]]]
(a,b)=T ◦ F[[[depth(r), deepest(r)]]]

in (1+max(u,a),ζF〈u,v,a,b〉)
= two applications of (f)-rule

let (u,v)=d tup(l)
(a,b)=d tup(r)

in (1+max(u,a),ζF〈u,v,a,b〉) ��

For convenience, we have assumed that folding points (ps) are passed from one T application to an-
other to avoid the creation of any duplicate tuple function definitions. We have also ignored the plumbing
caused by shuffling the auxiliary inputs and outputs of T (and T◦), concentrating just on the main input
and output.

3.2.1. Auxiliary Functions

We describe the auxiliary meta-functions used in the tupling algorithm here. Since an NI-function f is
defined by just one equation, its definition can be written as: f

def= {(�v) ⇒ e}. Given such a definition,
we use function par to retrieve its parameter list �v and function rhs to retrieve its RHS expression e.

Functions MkTuple , MkDistinct and MkSplit are used in (g)-rule. MkTuple converts a sequence
of expressions to a tuple of expressions. MkDistinct ensures that all duplicate calls are detected and
shared, while MkSplit is used to split a sequence of calls to separate sub-sequences based on common
recursion arguments. As examples,

MkTuple [e1, . . . , en] = (e1, . . . , en)
MkDistinct [depth(l),depth(r),depth(l),

deepest(l),depth(r),deepest(r)]
= ([depth(l),depth(r),deepest(l),deepest(r)],

[#1/#1,#2/#2,#1/#3,#3/#4,#2/#5,#4/#6])
MkSplit [depth(l),depth(r),deepest(l),deepest(r)]



Chin, Khoo, Jones / Redundant Call Elimination via Tupling 13

= ([([depth(l),deepest(l)],[v1, v2]),
([depth(r),deepest(r)],[v3, v4])],[v1/#1, v2/#3, v3/#2, v4/#4])

Function MkPermute arranges calls in a tuple in an order that facilitates folding, while MatchTuple
checks if a tuple of calls exactly-matches (modulo variable renaming) another tuple of calls. For example,
in order to allow a sequence of calls, [fib(m),fib’(m)], to fold with a previous eureka tuple, say
(fib’(n),fib(n)), we first apply:

MkPermute [fib(m),fib’(m)] = ((fib’(m),fib(m)),[#2/#1,#1/#2])

in order to allow MatchTuple((fib’(m),fib(m)),(fib’(n),fib(n))) to succeed.
The meta-operator �� is used in (d)-rule to apply simultaneous unfolding (with instantiation) of a set

of I-function calls. For example, simultaneous unfolding of sum(xs), length(xs) can be achieved by:

[sum(xs),length(xs)] �� defn =
{ Nil ⇒ (0,0); Cons(x’,xs’) ⇒ (x’+sum(xs’),1+length(xs’))}

where defn = [ sum ={Nil ⇒ 0; Cons(x’,xs’) ⇒ x’+sum(xs’)},
length={Nil ⇒ 0; Cons(x’,xs’) ⇒ 1+length(xs’)} ]

Lastly, newName(n) is used to generate n new identifiers, while (varList calls) is used to extract
free variables from the tuple of calls, calls . In doing so, the common recursion argument is returned as
the first free variable.

3.3. Tuple Derivation

The entire SRP-tupling transformation process can be viewed as a tree of derivation for tuples of F calls.
Each node is a tuple of calls (to functions in F), coupled with a possibly empty list of variable substitution.
A directed link exists between two nodes if transforming the tuple at the source node results immediately
in another tuple of calls at the sink node.

Since every link indicates an application of a particular rule in TF, it is labelled with the name of the
rule used. In the case where the link is labelled with d , the variable substitution list associated with the
sink of the link describes the substitution performed during the application of (d)-rule.

A particular path in the tree of transformation is called a sequence of derivation. In particular, we
call a sequence of transformations an n-step derivation if the sequence consists of n links. An n-step
derivation can be expressed diagrammatically as follows:

[ ](f10( �t10), . . . , fa0( �ta0))
γ1
↪→ ρ1(f11( �t11), . . . , fb1( �tb1))

γ2
↪→ · · · γn

↪→ ρn(f1n( �t1n), . . . , fdn( �tdn))

where ∀k ∈ {1, . . . , n}. ρk �= [ ]→ γk ≡ d ∧ ρk = [ ] → γk ∈ {u, g, t, f}. We shall omit labels attached to
links when it is clear from the context, and omit the substitution list associated with a tupe when the
former is empty. The above n-step derivation can be abbreviated as:

(f10( �t10), . . . , fa0( �ta0))
γ1
↪→ • γ2

↪→ • · · · • γn
↪→ ρn(f1n( �t1n), . . . , fdn( �tdn))
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Such derivation sequences have been used to model transformation algorithms by [30] in their excellent
comparison of partial evaluation, deforestation and supercompilation. We use derivation sequence to
model the tupling process, focusing on tuples of SRP-calls. As an example, the tree of derivation of TF
on the RHS of the second equation of fib’ function defined in Page 8 is given below.

(fib(n), fib’(n))
g

↪→ (fib(n), fib’(n))
d

↪→ [0/n]()
(t)
↪→ •

d
↪→ [m + 1/n](fib’(m), fib(m), fib’(m))

g
↪→ (fib(m), fib’(m))

f
↪→ •

We use indentation to illustrate branching. The symbol • denotes the end of a particular derivation
sequence. Also, we shall internalise those (g)-steps which result in only a single sub-tuple, omit se-
quences which result in empty tuples, and eliminate all duplicate calls; so that above derivation can be
shortened to:

(fib(n), fib’(n))
d

↪→ [m + 1/n](fib(m), fib’(m))
f
↪→ •

3.4. Two Restrictions to Ensure Termination

The present tupling algorithm could go into a non-terminating loop for certain SRP-functions. Two
possible causes of non-termination are:

• The (u)-rule could be repeated indefinitely.

• An infinite subsequence of (d)-steps could occur (via infinitely many different tuples).

To avoid the above problems, we identify the following two simple restrictions which guarantee
termination of the tupling algorithm:

• descending-RP restriction (to avoid infinite (u)-rule applications)

• bounded-argument restriction (to avoid infinite (d)-rule applications)

3.4.1. Descending RP-Restriction

(u)-rule is used to unfold (without instantiation) each NI-function call until none remains. The objective
is to obtain only I-function calls for the eureka tuples.

A problem could occur when an F-set of functions has a subset of NI-functions which enters a cycle
without ever decreasing its recursion parameter. An example is the following M-set in which f is an
NI-function:

f(xs,y) = ζf〈f(xs,y),g(xs,y)〉
g(Nil,y) = ζg1〈〉
g(Cons(x,xs),y) = ζg2〈f(xs,1),g(xs,y),g(xs,2)〉
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If we apply T M to the RHS of f, a non-terminating derivation involving repeated applications of (u)-rule
is encountered, as follows:

(f(xs,y),g(xs,y))
u
↪→ (f(xs,y),g(xs,y),g(xs,y))
u
↪→ (f(xs,y),g(xs,y),g(xs,y),g(xs,y))

u
↪→ · · ·

To avoid this problem, we require that every SRP-function satisfies a descending recursion parameter
(or descending-RP) restriction. This ensures that every cycle around the recursive functions has at least
one I-function to decrease the recursion parameter. This helps ensure that infinite unfolding (without
instantiation) of NI-function calls cannot occur.

Definition 3.2. (Descending-RP Restriction)

Given an M-set of SRP-functions, f1, .., fn with its compressed dependency graph, G. This M-set of
functions is said to satisfy the descending-RP restriction iff there are no cycles of solely NI-function
calls in G.

With the descending-RP restriction, our tupling algorithm will never encounter infinite applications
of (u)-rule, as shown below.

Proposition 3.1. (Termination Ensured by the Descending-RP Restriction)
Consider a tuple of both I-function and NI-function calls from an M-set of descending-RP functions. It
will take a finite number of (u)-steps to transform this tuple to yield a tuple of only I-function calls.

3.4.2. Bounded-Argument Restriction

It is possible for a sequence of derivation by T to be infinite due to the presence of infinitely many
different eureka tuples encountered by the (d)-rule. Infinitely many different eureka tuples can occur
when:

1. the number of distinct calls in each eureka tuple is unbounded, and/or

2. the size of each call is unbounded.

To avoid an unbounded growth of eureka tuples, we introduce the following restriction on the SRP-
functions.

Definition 3.3. (Bounded-Argument Restriction)

Consider an M-set of SRP-functions whose equations are each of the form:

fi(p, ~v) = ζi
M〈f1(t10, ~t1), . . . , fm(tm0, ~tm)〉

This equation is said to satisfy the bounded-argument restriction if for each SRP-call, fj(tj0, ~tj), oc-
curring in its RHS, we have:

∀ t ∈ { ~tj}. IsConst(t) ∨ (t ∈ {~v})

A SRP-function is said to adhere to the bounded-argument restriction if all its equations are bounded-
argument SRP-equations.
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In the above definition, it is understood that there are only a finite number of constant arguments in
an M-set of functions.

Note that each non-recursion argument (from mutual-recursive calls) must either be a constant or a
variable from the original set of non-recursion parameters, {~v}. Examples of bounded-argument SRP-
functions are:

g1(v,x) = ζ1 〈g1(v,x)〉
g2(C1(v1,v2),x,y,z) = ζ2 〈g2(v1,3,y,y),g2(v2,3,2,z)〉

but not the following:

g3(C2(v),x) = ζ3 〈g3(v,w),g3(v,2)〉
g4(C1(v1,v2),x,y,z) = ζ4 〈g4(v1,v2,w,y),g4(v1,x,y,acc(z))〉

where w is a local variable. The sub-expressions which violate the bounded-argument restriction are
underlined. If we apply T M to the RHS of g3, we would encounter a non-terminating derivation involving
infinite sub-sequence of (d)-rule, as follows:

(g3(v, w), g3(v, 2))
d

↪→ [C2(v1)/v](g3(v1, w1), g3(v1, 2), g3(v1, w1a))
d

↪→ [C2(v2)/v1](g3(v2, w2), g3(v2, 2), g3(v2, w2a), g3(v2, w2b))
d

↪→ · · ·

SRP-functions with the bounded-argument restriction do not have this problem, as shown in the
following proposition.

Proposition 3.2. (Termination Ensured by the Bounded-Argument Restriction)
Consider an M-set of mutual-recursive SRP-functions which adhere to the bounded-argument restriction.
The number of different tuples formed during TM from the I-function calls is finite. Hence, the number
of different (d)-rule applications in any derivation sequence is finite.

The above proposition states that the tupling algorithm will always encounter a bounded number
of eureka tuples for SRP-functions with the bounded-argument restriction. However, this upper bound,
2n×sm

, is still potentially a very large number. Though this upper bound is theoretically very large, we
believe that the number of tuples actually encountered in practice will often be much smaller. This has
been so for all the examples we investigated.

As an example, consider the Tower of Hanoi function shown in Section 1, the definition of which is
repeated below:

hanoi(0,a,b,c) = []
hanoi(1+n,a,b,c) = hanoi(n,a,c,b)++[(a,b)]++hanoi(n,c,b,a)

There are one I-function, three non-recursion parameters and three initial variables. Hence, the
maximum number of different eureka tuples which could be encountered is 21×33

= 227. Fortunately,
this is only a theoretic limit. In actual transformation, only two eureka tuples are encountered; they are
underlined in the following tree of derivation.
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(hanoi(n,a,c,b),hanoi(n,c,b,a))
d

↪→
[m+1/n](hanoi(m,a,b,c),hanoi(m,b,c,a),hanoi(m,c,a,b),hanoi(m,a,b,c))

g
↪→

(hanoi(m,a,b,c),hanoi(m,b,c,a),hanoi(m,c,a,b))
d

↪→
[s+1/m](hanoi(s,a,c,b),hanoi(s,c,b,a),hanoi(s,b,a,c))

f
↪→ •

To link the above derivation to the transformed program of hanoi shown in Page 2, we see that the first
underlined tuple defines the function ht2 and the second defines ht3. Their definitions are repeated
below:

hanoi(n+1,a,b,c) = let (u,v) = ht2(n,a,c,b) in u++[(a,b)]++v
ht2(0,a,c,b) = ([],[])
ht2(n+1,a,c,b) = let (u,v,w) = ht3(n,a,b,c)

in (u++[(a,c)]++v,w++[(c,b)]++u)
ht3(0,a,b,c) = ([],[],[])
ht3(n+1,a,b,c) = let (u,v,w) = ht3(n,a,c,b) in

(u++[(a,b)]++v,w++[(b,c)]++u,v++[(c,a)]++w)

Note that function ht2 is an intermediate non-recursive function which can be unfolded away after
transformation, leaving behind the recursive function ht3 in the optimised program.

On a different note, Liu et al. in [22] have derived an incremental program for hanoi, which consists
of a recursive function definition, denoted by ˜hanoi . ˜hanoi serves similar function as ht3.

3.5. Safe SRP-Tupling

We now propose a theorem which guarantees termination of the tupling transformation for a sub-class of
SRP-functions with the proposed restrictions.

Theorem 3.1. (Safe SRP-Tupling Theorem)
Given an M-set of mutual-recursive SRP-functions which adhere to the descending-RP and the bounded-
argument restrictions, the SRP-tupling transformation via TM on any expression (with M-function calls)
always terminates.

3.6. Limitation of SRP-Tupling

There are currently a number of shortcomings in the SRP-tupling method. Firstly, the method does not
directly handle higher-order functions. To handle higher-order functions in general, we have proposed
a higher-order removal technique [8] which could convert high percentage of higher-order programs to
their first-order equivalent. Where successfully converted, this technique indirectly allows the tupling
method to be applied to higher-order functions.

Secondly, the SRP-tupling method is unable to handle functions with multiple recursion parameters
(MRP). An example is the following definition of function f, extracted from the definition given in
Page 3:

f(n+2,m+4,y) = ζ 〈f(n+1,m+2,C(y)),f(n,m,C(C(y)))〉
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During the execution of a call such as f(a,b,C(d)), there can be multiple redundant call invoca-
tions. However, the SRP-tupling method can only handle SRP-functions. In the rest of the paper, we will
describe a fairly sophisticated semantics-based analysis, which will extend the SRP-tupling to handle
functions with multiple recursion parameters.

4. MRP-Tupling

To expand the application domain of tupling, we now discuss an extension to the standard tupling method
to handle functions with multiple-recursion parameter (MRP). We call this tupling MRP-tupling, for
obvious reason.

4.1. Operations on Arguments

Safety of MRP-tupling relies on the ability to determine systematic change in the arguments of successive
function calls. Such systematic change can be described with appropriate operators, as defined below:

Definition 4.1. (Argument Operators)

1. Descend operators: Each data constructor C of arity n in the language is associated with n de-
scend operators, which are data destructors. Notation-wise, let C(t1,. . .,tn) be a data structure,
then any of its corresponding data destructors is denoted by C−i, and defined as C−i C(t1,. . .,tn)
= ti.

2. Constant operators: For each constant denoted by c in our program, a constant operator c always
return that constant upon application.

3. Identity: An identity, id, is the unit under function composition.

4. Selectors: For any n-tuple argument (a1,. . .,an), the ith selector, �i, is defined as �i(a1,. . .,
an) = ai.

5. Accumulating operators: An accumulating operator is any operator that is not defined above.
For instance, a data constructor, such as C described in item 1 above, is an accumulating operator;
and so is the tuple constructor (op1,. . .,opn). ��

Composition of operators is defined by (f ◦ g) x = f (g x), where f and g are two argument
operators. A composition of argument operators forms an operation path, denoted by op. It describes
how an argument is changed from a caller to a callee through call unfolding. This can be determined
by examining the relationship between the parameters and the call arguments appearing in the RHS of
the equation. For instance, consider the equation g(x) = ζg〈g(C(x, 2))〉. C(x,2) in the RHS can be
constructed from parameter x via the operation path : C ◦ (id, 2). To see this, we apply x to the path
:

(C ◦ (id, 2)) x = C ((id,2) x) = C(x,2)
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Changes in an n-tuple argument can be described by an n-tuple of operation paths, called a segment,
and denoted by (op1,. . .,opn). For convenience, we overload the notion id to represent an identity
operation as well as a segment containing tuple of identity operation paths.

Segments can be used in function graphs to show how function arguments are changed:

Definition 4.2. (Labelled Call Graph)
The labelled call graph of a set of mutual-recursive functions F, denoted as (NF, EF ), is a graph
whereby each function name from F is a node in NF ; and each caller-callee transition is represented by
an arrow in EF , labelled with the segment information. ��

Figure 4 depicts the labelled call graph of the function hanoi defined in Section 1. Readers may
refer to Figure 6 in Page 24 for an example of a labelled call graph for mutual-recursive functions.

�
���

���

�
���

���
hanoi

((+1)−1 ◦ �1, �2, �4, �3)

((+1)−1 ◦ �1, �4, �3, �2)

Figure 4. Labelled Call Graph of hanoi defined in Section 1.

We use segments to characterise function parameters. This characterisation stems from the way that
parameters are changed across labelled call graph of mutually recursive functions.

Definition 4.3. (Characterising Parameters/Arguments)
Given an equation of the form f(p1,...,pn) = t,

1. A group of f’s parameters are said to be bounded parameters if their corresponding arguments in
each recursive call in t are derived via either constants, identity, or application of selectors to this
group of parameters.

2. The ith parameter of f is said to be a recursion parameter if it is not bounded and the ith argument
of each recursive call in t is derived by applying a series of either descend operators or identity to
the ith parameter.

3. Otherwise, the f’s parameter is said to be an accumulating parameter. ��

Correspondingly, an argument to a function call is called a recursion (resp. accumulating) argument
if it is located at the position of a recursion (resp. accumulating) parameter.

As examples, the first parameter of function hanoi is a recursion parameter, whereas its other pa-
rameters are bounded. In the case of functions repl and sdrop (also defined in Section 1), both their
first parameters are recursion parameters, and their second parameters are accumulating.

We partition a segment according to the kind of parameters it characterise:
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Definition 4.4. (Projections of Segments)
Given a segment s characterising the parameters of an equation, we write πR(s)/πA(s)/πB(s) to denote
the (sub-)tuple of s, including only those operation paths which characterise the recursion/accumulating/
bounded parameters. The sub-tuple preserves the original ordering of the operation paths in the segment.
Moreover, we write πB(s) to denote the sub-tuple of s excluding πB(s). ��

Our analysis of segment assumes certain restrictions on the parameters and its relationship with the
arguments, as described below:

Definition 4.5. (Restrictions on Parameters)

1. A set of mutual-recursive functions (including their recursive auxiliary functions) has the same
number of recursion/accumulating parameters but can have an arbitrary number of bounded pa-
rameters.

2. Given an equation, the ith recursion/accumulating argument of any recursive call in the RHS is
constructed from the ith parameter of the equation. ��

The second restriction above enables us to omit the selector operation from the operation paths de-
rived for recursion/accumulating parameters. All examples in this paper conform to this restriction,
except the following three functions:

b1(C(l,r),n) = ζb1〈b1(l, n), b2(l)〉
b2(C(l,r)) = ζb2〈b2(l), b2(r)〉
b3(C(x,xs),C(y,ys)) = ζb3〈b3(xs, ys), b3(ys, xs)〉

Function b1 has a recursion and a bound arguments. b2 has a recursion argument. Both of them com-
bined violate the first restriction. Function b1 has two recursion arguments, and violates the second
restriction. Though restrictive, these requirements can be selectively lifted by pre-processing transfor-
mation and/or improved analysis. The details are described in a technical report [10].

4.2. Algorithm for MRP-Tupling

As we have seen, the tupling technique generally works by collecting related calls in tuples. In the
context of MRP-tupling, these calls have overlapping recursion and accumulating arguments. Redundant
calls may arise during executing of a function f when two (or more) calls in f’s RHS have overlapping
recursion arguments. We define the notion of overlapping below:

Definition 4.6. (Call Overlapping)

1. Two recursion arguments are said to overlap each other if they share some common variables.

2. Two accumulating arguments are said to overlap each other if one is a substructure of the other.

3. Two calls overlap if each corresponding pairs of recursion and accumulating arguments overlap.
Otherwise, they are disjoint. ��
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For example, if two functions f1 and f2 have only recursion arguments, then f1(C1(x1, x2), C2(x4,
C1(x5, x6))) and f2(C2(x2, x3), C2(x5, x7)) have overlapping recursion arguments, whereas f1(C1(x1,
x2), C2(x4, C1(x5, x6))) and f2(x2, x7) are disjoint.

If two calls overlap, the call graphs initiated from each of them may overlap, and thus may contain
redundancy. Hence, during tupling transformation, we gather overlapping calls into a common func-
tion body with the intention to eventually detect and eliminate the resulting redundant calls. Once all
redundant calls are eliminated, the new RHS will contain only disjoint calls.

(uM) Similar to (u), with calls to T replaced by calls to M.

(gM) tup ([[ζF〈f1( ~t1), . . . , fn( ~tn)〉]], fs , ps) =
let (dcalls, ρd) = MkDistinct{[f1( ~t1), . . . , fn( ~tn)]

([(seqI, vsI)]
r
I=1, ρs) = MkSplit (dcalls)

~uI = MkTuple (vsI) ∀ I ∈ 1..r

(seq′
I, ldefsI) = AbsAcc (seqI) ∀ I ∈ 1..r

(e′I, fs ′I) = M◦ F[[seq′
I]] fs ps ∀I ∈ 1..r

in ( let ldefs1; · · · ; ldefsr; ~u1 = e′1; · · · ; ~ur = e′r in(ρs ◦ ρd)(ζ〈#1 , . . . , #n〉),⋃r
I=1 fs ′I)

(tM) Similar to (t), with calls to T ◦ replaced by calls to M◦.

(fM) Similar to (f), with calls to T ◦ replaced by calls to M◦.

(dM) dfn ([[[f1( ~t1), . . . , fn( ~tn)]]], fs , ps) =
let calls = [f1( ~t1), . . . , fn( ~tn)]

[fNEW] = newNames (1)
ps ′ = ps ∪ {(MkTuple (calls), fNEW)}
[u0, ~u] = varList calls

{(pk, ~vk) ⇒ ek}m
k=1 = calls ��M fs

(e′k, fs
′
k) = MF[[ek]] fs ps ′ ∀k ∈ 1..m

fs0 ′ = {fNEW def= {(pk, ~vk) ⇒ e′k}m
k=1}

in (fNEW (u0, ~u), fs0 ′ ∪ (
⋃m

k=1 fs ′k))

Note: Auxiliary functions are described in Section 3.2.1 on page 12 and this section (Page 22).

Figure 5. MRP-Tupling Algorithm

The algorithm for MRP-tupling is very similar to that for SRP-tupling, except for some modifications
at the rules (g) and (d). We thus provide special name for these rules: (gM) and (dM). They are
depicted in Figure 5.

To recall, rule (g) is an abstraction step. It gathers each subset of I-function calls to F with the same
recursion argument into a tuple. In rule (gM), similar abstraction step is performed. Because accumu-
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lating arguments are allowed in the calls, their sizes may grow as calls are being unfolded. To avoid such
a growth, and to maintain these arguments at finite size, the arguments need to be abstracted. The meta-
function AbsAcc therefore takes in a tuple of overlapping calls, and for each accumulating argument at
a specific position across all these calls, abstracts (by providing a local definition) a maximal subexpres-
sion that occurs in all these accumulating arguments. For example, consider the two overlapping calls
occurring in the definition of f below:

f(n+2,m+4,y) = ζ 〈f(n+1,m+2,C(y)),f(n,m,C(C(y)))〉

The substructure C(y) occurs in the accumulating argument of both the calls to f, and it is thus replaced
by a new variable z.

AccAbs [f(n+1,m+2,C(y)),f(n,m,C(C(y)))] =
([f(n+1,m+2,z),f(n,m,C(z))],[z = C(y)])

Next, we consider modification of the rule (d). It defines a new tuple function to replace tuple of
I-function calls. The body of this tuple function is obtained by unfolding, with instantiation, the calls in
the tuple via the meta-operator ��. As the SRP-tupling was defined to operate on functions with simple-
pattern parameters, all recursion arguments in the tupled calls are variables. Consequently, �� unfold all
the tupled calls by instantiating these variables.

In the modified rule (dM), a generalised version of ��, named ��M is used. Here, not all the
tupled calls might get unfolded with instantiation, because different calls may have different recursion
arguments. Thus, instantiating the recursion arguments of a tupled call may not cause the recursion
arguments of the other tupled calls to be sufficiently instantiated. Consider the tupled calls to f again:
f(n+1,m+2,z) and f(n,m,C(z)). During the operation of ��M, only the first call will be instantiated
and unfolded:

[f(n+1,m+2,z), f(n,m,C(z))] ��M defn =
{ (n’+1,m’+2,y’) ⇒ (ζ 〈f(n’+1,m’+2,C(y’)),f(n’,m’,C(C(y’)))〉,

f(n’+1,m’+2,C(y’))) ; · · · }
where defn = [f = { (n’+2,m’+4,y’) ⇒

ζ 〈f(n’+1,m’+2,C(y’)),f(n’,m’,C(C(y’)))〉; · · · } ]

Since each tupled call can have different data structures in its recursion arguments, it is natural to ask
which call will be targeted for instantiation and unfold. Among the calls available, we choose to unfold
any call having maximal recursion arguments; that is, the recursion arguments, treated as a tree-like data
structure, is deepest in depth among the calls.

Example 2. A formal application of MF to a RHS of f is shown below, with F = {f}.

f(n+2,m+4,y) = MF[[ζ〈f(n+1,m+2,C(y)), f(n,m,C(C(y)))〉]]
= (gM)-rule

let z = C(y) ; (u,v) = M◦ F[[[f(n + 1, m + 2, z), f(n, m, C(z))]]]
in ζ〈u,v〉

= (dM), (fM)-rules
let z = C(y) ; (u,v) = f tup(n,m,z) in ζ〈u,v〉

Define
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f tup(n,m,y) = (f(n+1,m+2,y),f(n,m,C(y)))
Case (n,m)= (n+1,m+2)
f tup(n+1,m+2,y)) = MF[[ (ζ〈f(n+1,m+2,C(y)),f(n,m,C(C(y)))〉,

f(n+1,m+2,C(y)) ]]
= (gM)-rule

let z = C(y) ; (u,v)=M◦ F[[[f(n + 1, m + 2, z), f(n, m, C(z))]]]
in (ζ〈u,v〉, u)

= (fM)-rules
let z = C(y) ; (u,v)=f tup(n,m,z) in (ζ〈u,v〉, u)

The final result after MRP-tupling is as follows:

f(n+2,m+4,y) = let z = C(y) ; (u,v) = f tup(n,m,z) in ζ〈u, v〉
f tup(n+1,m+2,y) = let z = C(y) ; (u,v) = f tup(n,m,z) in (ζ〈u, v〉,u)

��

The equation of f above is interesting in that it contains two recursion arguments – both being con-
sumed at different rate – as well as an accumulating argument. The computation of call f(n,m,C(C(y)))
is repeated in the computation of f(n+1,m+2,C(y)). This makes the computational complexity of f ex-
ponential.

Although effective in eliminating redundant calls, execution of the algorithm M may not terminate
in general due to one of the following reasons: (1) repeatedly applying rule (uM) results in unfolding
(without instantiation) calls indefinitely; (2) repeatedly applying rule (dM) may introduce infinitely
many new tuple definitions.

We address the first termination issue (infinite unfolding without instantiation) in the following sec-
tion (Section 4.3), and we leave the second termination issue (infinite generations of new tuple defini-
tions) to Section 6, after we have understood the semantics behind call redundancy.

4.3. Preventing Indefinite Unfolding

We provide a simple condition to prevent MRP-tupling from admitting indefinite unfolding when apply-
ing rule (uM). This condition is similar to the “descending-RP restriction” defined in Definition 3.2.
Here we rephrase it using segment notation, and extend it to cover multiple-recursion arguments.

We first define a simple cycle as a simple loop (with no repeating node, except the first one) in a
labelled call graph. Example 3 illustrates the notion of simple cycle:

Example 3. Consider the following set of equations:

f1(x1,y1) = ζ1〈f2(x1, y1), f3(x1, y1)〉
f2(C(x1,x2),C(y1,y2)) = ζ2〈f2(x2, y1), f3(C(x1, x2), C(y1, y2))〉
f3(x1,C(y1,y2)) = ζ3〈f1(x1, C(y1, y2)), f1(x1, y1), f3(x1, y2)〉

The labelled call graph is depicted in Figure 6. A simple loop in a labelled call graph is called a simple
cycle. For the above set of equation, the simple cycles as well as their corresponding (compacted)
segments are as follows:



24 Chin, Khoo, Jones / Redundant Call Elimination via Tupling

f1
a→ f2

d→ f3
e→ f1 (id,id)

f1
a→ f2

d→ f3
f→ f1 (id,C−1)

f1
g→ f3

e→ f1 (id,id)

f1
g→ f3

f→ f1 (id,C−1)

f2
b→ f2 (C−2,C−1)

f3
c→ f3 (id,C−2)
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a. (id, id)

b. (C−2,C−1)

d. (id, id)

e. (id,id)

f. (id,C−1)

g. (id,id)

c. (id,C−2)

f2

f1 f3

Figure 6. Simple Cycles in a Labelled Call Graph

The set of segments corresponding to the simple cycles in a labelled call graph (N ,E ) is denoted as
SCycle(N ,E ). This can be computed in time of complexity O(|N ||E |2) [19].

Theorem 4.1. (Preventing Indefinite Unfolding)
Let F be a set of mutual-recursive functions, each of which has non-zero number of recursion parameters.
If ∀ s ∈ SCycle(N F,E F), πR(s) �= {id}, then given a call to f ∈ F with arguments of finite size,
there exists a number N > 0 such that the call can be successively unfolded (without instantiation) not
more than N times.

5. Semantics of Call Redundancy

The effectiveness of the MRP-tupling relies on its ability to eliminate redundant calls. As we have seen
in earlier examples, although two calls may be invoked with different arguments, call redundancy can
still exist during some nested invocation of calls. In this section, we provide a semantics treatment of
call redundancy, with the goal of understanding the scope and safeness of any call-redundancy analysis.
Furthermore, by being able to detect call duplication, the analysis also guarantees termination of the
MRP-tupling process. This is because call duplication can ensure successful folding of call tuples to
some existing functions.
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To facilitate explanation, we assume that each call occurring in a program text is associated with a
unique call label. Notationally, we write c : f → g or f

c→ g just in case there exists an equation of f of
form:

f(p1, . . . , pn) = . . . g(t1, . . . , tn) . . .

and the call to g has been assigned a call label c.
Thus, a call sequence is a finite, possibly empty, sequence cs = c1c2 . . . cn where there exist function

names fi such that
f1

c1→ f2
c2→ · · · fn

cn→ fn+1

We also write cs : f1 → fn+1 or f1
cs→ fn+1.

Semantically, we assume the context of a single given program pgm, containing a set of function
definition. We use the meta-variables u , v , w , · · ·, to denote values drawn from a set Value of constants.
Thus, every constant, including structured data such as C(1, 2), has a corresponding denotational value
[[C(1,2)]] ∈ Value.

The computation of a program is defined by an operational semantics that adheres to the strict se-
mantics of the language. Notation-wise, we write the judgment

Γ � t ⇒ v

to express the fact that the expression t is evaluated to a denotation v if all the free variables in t have
their denotations captured in the environment Γ . We omit the detail operational semantics here, just
pointing out that it adheres to the strict semantics of the language.

We use the notion of states to capture the semantics of a call, and that of a call sequence. A state σ
is a member of the set of all states, or the states for one function f appearing in pgm :

σ ∈ Statef = {(f, �v) | �v ∈ Valuear(f)}
σ ∈ State =

⋃
{Statef | f is a function in pgm}

where ar (f) denotes the arity of function f .
Given a call labeled with c : f → g, a function call invocation of g at c can be expressed as

c : σ ⇒ σ′ if

1. σ′ = σ ∪ {( g, ṽ) | ṽ ∈ Valuear (g)} ,

2. there exists ( f, ũ) ∈ σ such that application of f with arguments ũ leads to the application of g
with arguments ṽ .

A function call invocation is also considered a 1-step transition. Consequently, a call-sequence transi-
tions is associated with a call sequence cs : σ ⇒n σ′, or simply σ ⇒n σ′, where n = |cs|. We may
also write cs : σ ⇒ σ′ with the same meaning, since the number n ≥ 0 of steps involved is given by
|cs|. Conventionally, the transitive closure of ⇒ is denoted by σ ⇒� σ′.

Definition 5.1. (Call Space)
The call space for state σ is a directed graph CS(σ) = (V ,E ), where (V ,E ) is the smallest graph such
that
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• σ ∈ V

• If σ1 ∈ V and σ1
c⇒ σ2, then σ2 ∈ V and σ1

c⇒ σ2 ∈ E .

Definition 5.2. (Call Redundancy)
Program pgm has call redundancy from state σ iff CS(σ) is not a tree.

The following definition is the direct result of Definitions 5.1 and 5.2.

Lemma 5.1. (Call Redundancy)
Program pgm has call redundancy from state σ iff there exist states σ1, σ2, σ3 such that σ

c1⇒ σ1 ⇒n1 σ3

and σ
c2⇒ σ2 ⇒n2 σ3, where c1, c2 are distinct calls, and n1, n2 ≥ 0.

A restricted version of call-redundancy problem is to limit the definition of call redundancy to syn-
tactic call redundancy.

Definition 5.3. (Syntactic Transfer Function)
The syntactic transfer function strans(cs) : Exprar( f) → Exprar( g) for call sequence cs : f → g is
a partial function defined as follows:

1. If c : f → g because the definition of f has the form

f(p1, . . . , pn) = · · · c : g(t1, . . . , tm) · · ·

then
strans(c)(t′1, . . . , t

′
n) = (θt1, . . . , θtm)

where θ = [p1 �s t ′1, . . . , pn �s t ′n ]. Here, the notation p �s t indicates that variables in p
are assigned the corresponding subexpressions in t , provided that both p and t are of the same
type; otherwise, the function has no result.1

2. strans(ε) = id (on Expr domain).

3. strans(c cs) = strans(cs) ◦ strans(c).

That the syntactic transfer function describes a form of (semantic-based) call-sequence transition
defined earlier can be shown in the following lemma:

Lemma 5.2. (Syntactic Transfer function)
Suppose strans(cs)( p1, . . . , pn) = ( t1, . . . , tm) where cs : f → g, then there exists (u1, . . . , un) ∈
Valuen , (v1, . . . , vm ) ∈ Valuen such that if cs : ( f, ũ) ⇒ ( g, ṽ), then

{p1 � u1, . . . , pn � un} � ti ⇒ vi ∀i ∈ {1, . . . ,m}

where p � v indicates that variables in p are assigned the corresponding components of the denotable
value v , provided that both p and t are of the same type; otherwise, the function has no result.

Using syntactic transfer function, we can define syntactic call redundancy as follows:

1We ignore the presence of let expression in this discussion, for ease of presentation.
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Definition 5.4. Program pgm has syntactic call redundancy if

strans(cs)(p1, . . . , pn) = strans(cs′)(p1, . . . , pn)

for two distinct call sequences cs, cs′ : f → g.

The following theorem states that there is no syntactic call redundancy in a SRP-tupled functions.

Theorem 5.1. (Call-Redundancy-Free of SRP-Tupled Functions)
Consider an M-set of mutual-recursive SRP-functions which adhere to the descending-RP and bounded-
argument restrictions, if these functions are successfully SRP-tupled, then the resulting tupled functions
do not contain syntactic call redundancy.

Undecidability of the Call-Redundancy Problem

Given a program pgm, we would like to detect if call redundancy exists. The following lemma shows that
the problem is undecidable, which can be proven by reduction from Post’s Correspondence Problem.

Lemma 5.3. (Undecidability of Call Redundancy)
It is undecidable whether there exist redundant calls from a function f to a function h .

This Lemma indicates that that the call-redundancy problem is undecidable even if we restrict the
problem to syntactic restrict the definition of call redundancy to two calls having syntactically identical
argument. The task at hand is therefore to find a safe and effective call-redundancy analysis that is a
safe approximation of the actual set of call redundancy. In the next section, we will demonstrate such an
analysis, which is based on detecting syntactically identical call arguments.

6. Termination of MRP-Tupling

The study of call-redundancy problem in Section 5 lays a semantics foundation upon which we under-
stand the scope and limitation of detecting call redundancy. From the semantics, we understand that
call redundancy can be detected by examining sequences of operators applying to function parameters.
Therefore, we begin our investigation with the development of an algebra of operators.

6.1. Algebra of Segments

A set of segments forms an algebra under concatenation operation.

Definition 6.1. (Concatenation of Operation Paths)
Concatenation of two operation paths op1 and op2, denoted by op1 ; op2, is defined as op2 ◦ op1. ��

Definition 6.2. (Concatenation of Segments)
Concatenation of two segments s1 and s2, denoted by s1;s2, is defined component-wise as follows:

s1 = ( op1,. . .,opn ) ∧ s2 = ( op′1,. . .,op
′
n ) ⇒ s1 ; s2 = ( op1;op′1,. . .,opn;op′n ). ��

A concatenated segment can be expressed more compactly by applying the following reduction rules:
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1. For any operator O , id ◦ O reduces to O , and O ◦ id reduces to O .

2. ∀ O1, . . . , On and O , (O1 ◦ O , . . . , On ◦ O) reduces to (O1, . . . , On) ◦ O .

Applying the above reduction rules to a segment yields a compacted segment. On the other hand,
by viewing these reduction rules as bi-directional conversions of segments, we can define an equivalence
relation among a set of segments. Specifically, two segments are said to be equivalent if and only if
they can be converted to one another under these conversion rules. In this respect, compacted segment
is a canonical representation of an equivalence class of segments. Henceforth, we deal with compacted
segment, and use the term “segment” and “compacted segment” interchangeably to mean the latter,
unless stated otherwise.

Lastly, concatenating a segment, s, n times is expressed as sn . Such repetition of segment leads to
the notion of factors of a segment, as described below:

Definition 6.3. (Factorisation of Segments)
Given segments s and f . f is said to be a factor of s if ∃n > 0.s = fn . We call n the power of s wrt f .
��

We note that if s1 = (op1, . . . , opn ) has a factor of power k , then each opi , for i ∈ 1 . . . n , has a
factor of power k too.

For example, (C−2, id) is a factor of (C−2◦ C−2◦ C−2, id), since (C−2, id)3 = (C−2◦ C−2◦ C−2,
id). Every segment has at least one factor – itself. On the other hand, when a segment has exactly one
factor, it is called a prime segment. An example of prime segment is (C−1

1 ◦ C−1
2 , id).

The following lemma shows that any compacted segment has a unique prime factorisation. This
results is critical to the success of detecting synchronisation among call arguments.

Lemma 6.1. (Uniqueness of Prime Factorisation)
Let s be a compacted segment, there exists a unique prime segment f such that s = fk for some k > 0.

6.2. Synchronisation Analysis

We now present an analysis that prevents the MRP-tupling from generating infinitely many new tuple
functions at the application of rule (dM). Our analysis ensures the finiteness of syntactically different
(modulo variable renaming) tupled calls. As a group of bounded arguments can only be obtained from
itself by the application of either selectors, identity or constants operators, it can only have finitely many
different structures. Consequently, bounded arguments do not cause the MRP-tupling to loop infinitely.
Hence, we focus on determining the structure of recursion and accumulating arguments in this section.
Specifically, we can safely ignore bounded arguments in our treatment of segments.

Since syntactic changes to call arguments are captured by series of segments, differences in call
arguments can be characterised by the relationship between the corresponding segments. We discuss
below a set of relationships between segments.

Definition 6.4. (Levels of Synchronisation)
Two segments s1 and s2 are said to be :
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1. level-1 synchronised, denoted by s1 �1 s2, if

∃s′1, s
′
2.(s1;s′1 = s2;s′2).

Otherwise, they are said to be level-0 synchronised, or simply, unsynchronised.

2. level-2 synchronised (s1 �2 s2) if

∃s′1, s
′
2.((s1;s′1 = s2;s′2) ∧ (s′1 = id ∨ s′2 = id)).

3. level-3 synchronised (s1 �3 s2) if

∃s.∃n,m > 0.(s1 = sn ∧ s2 = sm).

4. level-4 synchronised (s1 �4 s2) if s1 = s2. ��

Examples of different levels of synchronisation is given below:

(C−1
1 ◦ C−1

1 ◦ C−1
1 , C−1

2 ) �1 (C−1
1 , C−1

2 ◦ C−1
2 ) (C−1

1 ◦ C−1
1 , C−1

2 ) �2 (C−1
1 , C−1

2 )
(C−1

1 ◦ C−1
1 , C−1

2 ◦ C−1
2 ) �3 (C−1

1 , C−1
2 ) (C−1

1 , C−1
2 ) �4 (C−1

1 , C−1
2 )

Levels 1 to 4 of synchronisation form a strict hierarchy, with synchronisation at level i implying syn-
chronisation at level j if i > j. Together with level-0, these help identify termination property of the
MRP-tupling.

Why does synchronisation play an important role in termination of the MRP-tupling? Intuitively, if
two sequences of segments synchronise, then calls following these two sequences will have finite variants
of argument structures. This thus enables folding (in the (dM) rule) to take effect, and eventually
terminates the transformation.

6.3. MRP-Tupling Termination at Different Synchronisation Levels

In this section, we provide an informal account of some of the interesting findings pertaining to the MRP-
tupling, as implied by the different levels of synchronisation.

Finding 1. Transforming two calls with identical arguments but following level-0 synchronised segments
will end up with disjoint arguments.2

Example 4. Consider the following two equations for functions g1 and g2 respectively:

g1(C1(x1, x2), C2(y1, y2)) = ζg1〈g1(x1, y1)〉
g2(C1(x1, x2), C2(y1, y2)) = ζg2〈g2(x1, y2)〉

2Sometimes, two apparently level-0 synchronised may turn into synchronisation of other levels when they are prefixed with
some initial segment. Such initial segments may be introduced by the argument structures of the two initially overlapping calls.
Such hidden synchronisation can be detected by extending the current technique to handle ”rotate/shift synchronisation” [11].
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The segment leading to the call g1(x1, y1) is (C−1
1 , C−1

2 ), whereas that leading to the call g2(x1, y2)
is (C−1

1 , C−2
2 ). These two segments are level-0 synchronised. Suppose that we have an expression con-

taining two calls, to g1(u,v) and g2(u,v) respectively, with identical arguments. The MRP-tupling
transforming these two calls will create a tuple function:

g tup(u,v) = (g1(u,v),g2(u,v))

This then transforms (through instantiation) to the following:

g tup(C1(u1, u2), C2(v1, v2)) = (ζg1〈g1(u1, v1)〉, ζg2〈g2(u1, v2)〉)

As the arguments of the two calls in the RHS above are now disjoint, the MRP-tupling terminates.
However, the effect of MRP-tupling is simply an unfolding of the calls. Thus, it is safe (with respect to
termination of the MRP-tupling transformation) but not productive to transform two calls with identical
arguments if these calls follow segments that are level-0 synchronised. ��

Finding 2. Tuple of calls with identical arguments that follow level-4 synchronised segments will lead to
a tuple of identical structures.
This has already manifested in the example of repl and sdrop in Section 1; each of these function has
one recursion parameter and one accumulating parameter. There, initial calls gathered are of identical
arguments (repl(l,xs) and sdrop(l,xs)).

Finding 3. Level-4 synchronisation is a strong assurance for termination of the MRP-tupling, even when
the calls gathered are overlapping but not identical. (This fact is a consequence of Theorem 6.2.)

Example 5. Consider two overlapping calls

h2(C1(u1, u2), v1) and h2(u1, C2(v1, v2))

appearing in the definition of h1, as follows:

h1(C1(u1, u2), C2(v1, v2)) = ζh1〈h2(C1(u1, u2), v1), h2(u1, C2(v1, v2))〉
h2(C1(x1, x2), C2(y1, y2)) = ζh2〈h2(x1, y1)〉

The two calls in the first equation follow the same segment ( C−1
1 , C−1

2 ) when there are unfolded; their
segments are therefore level-4 synchronised. The MRP-tupling first groups them in the tuple definition
h tup1 :

h tup1(u1, u2, v1, v2) = (h2(C1(u1, u2), v1), h2(u1, C2(v1, v2)))

The transformation terminates and yields the following new equations (and functions) :

h tup1(u1, u2, C2(v11, v12), v2) = let (u,v) = h tup2(u1, v11, v12, v2)
in (ζh2〈u〉, v)

h tup2(C1(u11, u12), v11, v12, v2) = let (u,v) = h tup1(u11, u12, v11, v12)
in(ζh2〈u〉, ζh2〈v〉)

Effectively, multiple traversal of data structures arisen from the two initial h2-call invocation has
been eliminated via the MRP-tupling. ��
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Finding 4. Applying the MRP-tupling on calls that follow level-2 synchronised segments may not termi-
nate.

Example 6. Consider the binomial function defined below:

bin(0,k) = 1
bin(n+1,0) = 1
bin(n+1,k+1) = if k≥n then 1 else bin(n,k)+bin(n,k+1)

The segments leading to the two calls bin(n,k) and bin( n,k+1) are ((+1)−1,(+1)−1) and ((+1)−1,
id) respectively. They are level-2 synchronised. Performing the MRP-tupling on (bin(n,k), bin(n,
k+1)) will keep generating new set of overlapping calls in rule (dM), as shown below:

1. (bin(n,k),bin(n,k+1))
2. (bin(n1+1,k),bin(n1,k),bin(n1,k+1))
3. (bin(n1,k1),bin(n1,k1+1),bin(n1,k1+2))
4. (bin(n2+1,k1),bin(n2,k1),bin(n2,k1+1),bin(n2,k1+2))

...

Hence, the MRP-tupling fails to terminate. ��

The non-termination behaviour of transforming functions such as bin can be predicted from the
synchronisability of its two segments — Given two sequences of segments, s1 = ((+1)−1, (+1)−1) and
s2 = ((+1)−1, id). If these two sequences are constructed using only s1 and s2 respectively, then it is
impossible for the two sequences to be identical (though the calls they represent remain overlapping).

This tupling failure may be used to suggest more advanced but expensive techniques, such as vector-
based [9] or list-based [25] memoisations.

Since level-2 synchronisation implies level-1 synchronisation, Finding 4 above applies to calls that
follow level-1 synchronised segments as well.

However, if two segments are level-3 synchronised, then it is always possible to build from these seg-
ments two sequences that are identical; thanks to the following Prop. 6.1 about level-3 synchronisation.

Property 6.1. (Properties of Level-3 Synchronisation)

1. Let f1 and f2 be the prime factors of s1 and s2 respectively, then s1 �3 s2 ⇔ f1 = f2.

2. Level-3 synchronisation is an equivalence relation over segments (ie., it is reflexive, symmetric,
and transitive).

Informally, for level-3 synchronised segments, their common prime factor acts as a common gen-
erator, from which synchronised segments are generated. This idea of common generator was first
mentioned by Cohen in [12]. Different from [12], we allow co-existence of multiple common generators
to classify different classes of synchronisable segments. Common generator, and thus level 3 synchroni-
sation, provides an opportunity for the termination of the MRP-tupling. Indeed, the following theorem
highlights such an opportunity.
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Theorem 6.2. (Termination Induced by Level-3 Synchronisation)
Let F be a set of mutual-recursive functions with S being the set of segments corresponding to the edges
in (NF,EF). Let C be an initial set of overlapping F-calls to be tupled. If

1. ∀s ∈ SCycle(NF,EF).πR(s) �= {id},

2. ∀s1, s2 ∈ S .πB (s1) �3 πB(s2).

then performing the MRP-tupling on C terminates. ��

The notion πB (s) was defined in Definition 4.4. The first condition in Theorem 6.2 prevents infinite
number of unfolding, whereas the level-3 synchronisation condition ensures that the number of different
tuples generated during transformation is finite.

Example 7. Consider the equation of f defined in Example 2:

f(n+2,m+4,y) = ζf〈f(n+1,m+2,C(y)),f(n,m,C(C(y)))〉

Although the recursion arguments in f(n+1,m+2,C(y)) and f(n,m,C(C(y))) are consumed at differ-
ent rates, the argument consumption (and accumulating) patterns for both calls are level-3 synchronised.
Subjecting the calls to the MRP-tupling yields the following result:

f(n+2,m+4,y) = let y1 = C(y) ; (u,v) = f tup(n,m,y1) in ζf〈u, v〉
f tup(n+1,m+2,y) = let y2 = C(y) ; (u,v) = f tup(n,m,y2)

in (ζf〈u, v〉, u) ��

Finally, since level-4 synchronisation implies level-3 synchronisation, Theorem 6.2 applies to segments
of level-4 synchronisation as well.

In situation where segments are not all level-3 synchronised with one another, we describe here a
sufficient condition which guarantees termination of the MRP-tupling. To begin with, we observe from
Prop. 6.1(b) above that we can partition the set of segments S into disjoint level-3 sets of segments. Let
ΠS = {[s1], . . . , [sk ]} be such a partition. By Prop. 6.1(a), all segments in a level-3 set [si ] share a unique
prime factor, fi say, such that all segments in [si ] can be expressed as {f p1

i , . . . , f pni
i }. We then define

HCF ([si ]) = f d
i where d = gcd(p1, . . . , pni ) is the greatest common divisor of p1, . . . , pni . HCF ([si ])

is thus the highest common factor of the level-3 set [si ].

Definition 6.5. (Set of Highest Common Factors)
Let S be a set of segment. The set of highest common factors of S , HCFSet(S ), is defined as

HCFSet(S) = { HCF ([si]) | [si] ∈ ΠS }.

The following theorem states a sufficient condition for preventing infinite definition (ie., infinite
application of (dM)-rule) during the MRP-tupling3

3It is possible to extend Theorem 6.3 further by relaxing its premises. In particular, we can show the prevention of infinite
definition in the presence of segments that are level-2 synchronisation, provided such segment can be broken down into two
sub-segment, of which one is level-3 synchronised with some of the existing segments, and the other is level-0 synchronised
[19].
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Theorem 6.3. (Preventing Infinite Definition)
Let F be a set of mutual-recursive functions. Let S be the set of segments correspond to the edges in
(NF,EF). Let C be a set of overlapping calls occurring in the RHS of an equation in F. If ∀s1, s2 ∈
HCFSet(S ).πB (s1) �0 πB (s2), then performing the MRP-tupling on C will generate a finite number
of different tuples. ��

A note on the complexity of this analysis: We notice from Theorem 6.3 that the main task of syn-
chronisation analysis is to determine that all segments in HCFSet(S) are level-0 synchronised. This
involves expressing each segment in S as its prime factorisation, partitioning S under level-3 synchroni-
sation, computing the highest common factors for each partition, and lastly, determining if HCFSet(S)
is level-0 synchronised. Conservatively, the complexity of synchronisation analysis is polynomial wrt
the number of segments in S and the maximum length of these segments [19].

Theorem 6.4 summarises the results of Theorem 4.1 and Theorem 6.3.

Theorem 6.4. (Termination of The MRP-Tupling)
Let F be a set of mutual-recursive functions, each of which has non-zero number of recursion parameters.
Let S be the set of segments corresponding to the edges in (NF,EF). Let C be a set of overlapping calls
occurring in the RHS of an equation in F. If

1. ∀s ∈ SCycle(NF,EF).πR(s) �= {id}, and

2. ∀s1, s2 ∈ HCFSet(S ).πB (s1) �0 πB(s2),

then performing the MRP-tupling on C will terminate. ��

An equation is called an MRP-equation if all sets of overlapping calls occurring in its RHS satisfies
the conditions stated in Theorem 6.4. An F-set of mutual-recursive functions is called an F-set of MRP-
functions if all its equations are MRP-equations.

Finally, we state the effectiveness of the MRP-tupling in eliminating redundant calls.

Theorem 6.5. (Call-Redundancy-Free of MRP-Tupled Functions)
Consider a set of mutual-recursive MRP-functions. Performing the MRP-tupling on this set will result
in a new set of tupled functions which do not contain syntactic call redundancy. ��

6.4. Enhanced Treatments for Accumulating Arguments

We have taken a pro-active approach in handling accumulating arguments. Earlier works in tupling
either assume the absence of accumulating arguments, fix its appearance, or always generalise it during
transformation [7, 16]. We have taken into consideration the construction of accumulating arguments,
and involve their segments in determining synchronisation.

At present, the accumulating arguments are restricted to depend on only its (in-situ) parameter, and
be specified by acc o �i for the i-th parameter. However, it may also be possible for an accumulating
argument to also depend on other parameter values. For instance, the accumulators of repl/sdrop (in
Section 1), which have the form (sdrop o (Node−1 o �1, �2)), depend on two parameters. Under
this scenario, it is meaningless to perform level-3 factorisation of the accumulators. Instead, we rely on a
restricted version of MRP-tupling (Theorem 6.2) which simply checks for level-4 synchronisation. In the
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case of repl/sdrop, the segments which overlap do indeed synchronise at level-4. Hence, successful
MRP-tupling can be guaranteed.

There are other possible extensions to enhance the power and applicability of MRP-tupling. We refer
the reader to our technical paper [10] for detail.

7. Related Work

One of the earliest mechanisms for avoiding redundant calls is memo-functions [13]. Memo-functions
are special functions which remember/store some or all of their previously computed function calls in
a memo-table, so that re-occurring calls can have their results retrieved from the memo-table rather
than re-computed. Though general (with no analysis required), automatic memoisation can have major
overheads since they rely on complex run-time machinery that may not pay-off. A recent approach to
overcoming this overhead is to empower the programmer with control over the specifics of memoisation
[1], including the cost of equality checking and the caching and replacement policy for memo-tables.
While selective memoisation can potentially give maximal performance, there is an onus on to the pro-
grammers to achieve that.

Other transformation techniques (e.g. tupling and tabulation) may result in more efficient programs
but they usually require program analyses and may be restricted to sub-classes of programs. By focusing
on a restricted bi-linear self-recursive functions, Cohen [12] identified some algebraic properties, such as
periodic commutative, common generator, and explicit descent relationships, to help predict redundancy
patterns and corresponding tabulation schemes. Unfortunately, this approach is rather limited since the
functions considered are restricted. In addition, the algebraic properties are difficult to detect, and yet
limited in scope. (For example, the Tower-of-Hanoi function does not satisfy any of Cohen’s algebraic
properties, but can still be tupled by our method.)

Another approach is to perform direct search of the DG. An early work of Pettorossi [24] gave an
informal heuristic to search the DG (dependency graph of calls) for eureka tuples. Later, Proietti & Pet-
torossi [27] proposed an Elimination Procedure, which combines fusion and tupling, to eliminate unnec-
essary intermediate variables from Logic programs. To ensure termination, they only handled functions
with a single recursion parameter, while the accumulating parameters are generalised whenever possible.
No attempt is made to analyse the synchronisability of multiple recursion/accumulating parameters.

With the aim of deriving incremental programs, Liu and her co-workers [20, 22, 21] presented a
three-stage method to cache, incrementalise and prune user programs. The caching stage gathers all
intermediate and auxiliary results which might be needed to incrementalise, while pruning removes
unneeded results. In [21], they show how redundant calls can be eliminated by transforming programs
into ones that employ dynamic programming technique manipulating on dynamic data structures. Their
technique complements the technique described in this paper in that the latter uses more efficient static
structures but is applicable to more restricted class of programs. Liu et al.’s method has been shown to
be applicable to a wide range of computational-intensive programs. On the other hand, it requires deeper
intuition. The embedding of dynamic tree-like data structures employed by their technique has an effect
closer to memoisation, and this usually requires extra mechanism for space recovery. Moreover, there is
not yet a characterisation of the class of programs to which the method applies.

The link between supercompilation[32] and tupling was recently explored by Secher [28], when he
proposed collapsed jungle evaluation as the underlying evaluation semantics that has the potential for
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super-linear speed-up. This evaluation strategy is based on graph-based reductions where repeated nodes
are re-used rather than re-computed. Secher proposed a variant of positive supercompilation [15] that
works on jungles rather than terms, that has the potential to achieve tupling-like effect. To ensure termi-
nation, he proposed the use of homeomorphic-embedding [14] to ensure well-quasi-ordering. It would
be of interests to see how this termination criteria compares with our more intricate synchronisation
analysis, as well as the exact relationship between tupling and graph-based supercompilation.

Ensuring termination of transformers has been a central concern for many automatic transforma-
tion techniques. Though the problem of determining termination is in general undecidable, a variety
of analyses can be applied to give meaningful results. In the case of deforestation, the proposals range
from simple pure treeless syntactic form [33], to a sophisticated constraint-based analysis [29] to stop
the transformation. Likewise, earlier tupling work [7, 16] were based simply on restricted functions. In
[7], the transformable functions can only have a single recursion parameter each, while accumulating
parameters are forbidden. Similarly, in the calculational approach of [16], functions can only have a
single recursion parameter each, while the other parameters are lambda abstracted, as per [26]. Multiple
recursion arguments are not considered. Furthermore, when lambda abstractions are being tupled, they
yield effective elimination of multiple traversals, but not the effective reuse of redundant function-type
calls. Thus, if functions sdrop and repl in Section 1 is lambda-abstracted prior to tupling, its redundant
calls will not be properly eliminated.

8. Conclusion

There is little doubt that tupled functions are extremely useful. Apart from the elimination of redundant
calls and multiple traversals, tupled function are often linear with respect to the common arguments
(i.e. each now occurs only once in the RHS of the equation). This linearity property has a number of
advantages, including:

• It can help avoid space leaks arising from unsynchronised multiple traversals of large data struc-
tures [31].

• It can facilitate deforestation (and other transformations) that impose a linearity restriction [33],
often for efficiency and/or termination reasons.

• It can improve opportunity for uniqueness typing [3], which is good for storage overwriting and
other optimisations.

Because of these nice performance attributes, functional programmers often go out of their way to
write such tupled functions, despite them being more awkward, error-prone and harder to write and read.

In this paper, we show the effectiveness and safeness of an automatic tupling method, when argu-
ment change, between pairs of caller and callee, are found to be arising from a common generator, which
we called level-3 synchronisation, our MRP-tupling algorithm guarantees an effective and safe transfor-
mation. The presence of common generator enables lock-step unfolding of calls to take place, which
guarantees fold operation to take place after some recursive steps.

Our syncrhonisation analyses operate on sets of mutual-recursive functions, and require clear char-
acterisation of function parameters into recursion, bound and accumulating parameters. By bringing
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multiple recursion arguments and accumulating arguments into one framework, we have considerably
widened the scope of functions admissible for safe tupling. Consequently, the tupling algorithm and the
associated synchronisation analysis could now be used to meet the run-time performance need, whilst
preserving the clarity/modularity of programs.
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