
Parameterized Partial Evaluation *

Charles Consel Siau Cheng Khoo

Yale University

Department of Computer Science

New Haven, CT 06520

{consel, khoo}@cs. yale. edu

1 Introduction

Besides specializing programs with respect to concrete val-

ues, it is often necessary to specialize programs with re-

spect to abstract values, i.e., static properties such as signs,

ranges, and types. Specializing programs with respect to

static properties is a natural extension of partial evalua-

tion and significantly contributes towards adapting partial

evaluation to larger varieties of applications. This idea was

first investigated by Haraldsson [13] and carried out in prac-

tice with a system called Redfun in the late seventies. Al-

though this work certainly started in the right direction, it

has some limit ations: (:) the static properties cannot be de-

fined by the user; they are fixed; (n) the approach is not

formally defined: no safety condition for the definition of

symbolic values, no finiteness criteria for fixpoint iteration,

etc.; and (m) because Redfun is an online partial evaluator

— the treatment of the program is determined as it gets

processed — and consists of numerous symbolic values and

program transformations, it is computationally expensive.

As a by-product, Redfun could not be self-applied as no-

ticed in [10, 13], and thus, the partial evaluation process

could not be improved.

This paper introduces pararneterized partial evaluation,

a generic form of partial evaluation parameterized with re-

spect to user-defined static properties. We develop an al-

gebraic framework to enable modular definition of static

properties. More specifically, from a concrete algebra, an

abstract algebra called a facet is defined; it is composed of

an abstract domain — capturing the properties of interest

— and a set of abstract primitives that operate on this do-

main. Using abstract interpretation [1, 16], this can be for-

mally achieved by relating the two algebras with a suitable

abstraction function, However, unlike abstract interpreta-

tion, not only does a facet define primitive functions that

compute static properties, but it also defines ones that use

abstract values to trigger computations at partial evalua-

tion time. Furthermore, considering partial evaluation as

an algebra whose domain is syntactic terms and operations

are primitive functions, it is possible to capture the partial

evaluation itself as a facet.

“This research was supported in part by NSF and DARPA grants

CCR-8809919 and NOOO1 4-88-K-0573, respectively. The second au.

thor was also supported by a National University of Singapore Over-

seas Graduate Scholarship.

Permission to copy without fee all or part of this material is granted

provided thst the copies are not made or distributed for direct commercial

advantage, the ACM copyright notice and the title of the publication and

its date appear, and notice is given that copying is by permission of tha

Association for Computing Machinery. To copy otherwise, or to

republish, requires a fee snd/or specific permission.

@ 1991 ACM 0-89791 -428 -7/91 /0005 /0092 . ..$1 .50

In “conventional” partial evaluation [3], efficiency is achie-

ved by an ofline strategy that consists of splitting the par-

tial evaluation process into two phases: binding time analg-

sis that statically determines the static and dynamic expres-

sions of a program given a known/unknown division of its

inputs; and specialization which processes a program driven

by the binding time information and the concrete values.

Thus, the binding time information of a program can be
used for specialization w long as the input values match

the known/unknown pattern given for binding time analy-

sis. Besides improving the specialization phase, an ojj%e

partial evaluator enables realistic self-application [17].

Our framework is general enough to capture offline par-

tial evaluation. Just aa a binding time analysis is used to

compute the static/dynamic property, we introduce a facet

analysis to statically compute properties. A specialize can

then use the result of facet analysis in the same way that it

used the result of binding time analysis previously to trig-

ger computations. Because the facet analysis is performed

statically, the specialization phase is kept simple, as before,

in contrast with an online strategy that performs everything

at once.

Our approach overcomes the limitations (~), (n) and (ut)

mentioned above. Let us summarize the new contributions

of this paper.

e

●

o

The notion of facet offers a formal framework for intro-

ducing user-defined static properties: a facet is a safe

abstraction of a concrete algebra.

Partial evaluation can now be pararneters%ed with re-

spect to any number of facets, each facet encapsulating

properties of interest for any given application.

Facet analvsis, another novel asDect. allows facet com-

putation t; be lifted from par&d evaluation keeping

the specialization phase simple (unlike conventional

program transformation systems). Indeed, not only

does the facet analysis statically determine which prop-

erties trigger computations, but it also selects the cor-

responding reduction operations prior to specializa-

tion. This makes it possible to achieve self-application

and improve the specialization process.

The paper is organized as follows. Section 2 briefly in-

troduces conventional partial evaluation. Section 3 describes

the abstraction methodology used to define properties of in-

terest. Section 4 presents online parameterized partial eval-

uation. In particular, Section 4.1 presents the notion of

facet together with examples and Section 4.4 describes the

Proceedings of the ACM SIGPLAN ’91 Conference on

Programming Language Design and Implementation.

Toronto, Ontarior Canada, June 26-28, 1991.

92

1. Synt attic Domains

c 6 Const Constants
x ~ Var Variables

pEPo Primitive Operators

~EFn Function Names

e G Exp Expressions

::= clzlp(el,en)l~(el.en)li.fele2e3
Pro; ::= {~a(~l, . . . ,Zn) = e:} (fl is the main function)

2. Semantics Domains
b G Values = (Int + Bool) *

P G Env = Var ~ Values
63 G FunEnv = Fn ~ Valuesn ~ Values

3. Valuation Functions

EP.Og : Prog ~ Values

E: Exp ~ Env ~ FunEnv # Values
K : Const # Values

Kp : PO + Valuesn - Values

~ ~~11 wher~~~~ ‘~) = “}1 =

&Pr09 [{ “(zl~ . = ~[(~(bl $

. . . . bn) . & [e,] (l[bk/~k]) @)/ji]

&[c]p C3 = K [c]

t[z]pfl

S@(el,...,

= p [z]

en)]p@ = Kp~](t[el]p@,,,,,t[en] p~)

t [if el ez es] p O = (t[ei]p~)+ t[e~]p~,$[cs]p~

& [f(el,... ,en)]p@ = e[f](~[el]pe,..,t[en]pe)

Figure 1: Standard Semantics of a First Order Language

semantics of online parametrized partial evaluation. Sec- function calls (unfoldlng and specialization). Because this

tion 5 presents offline parametrized partial evaluation. We treatment vastly differs from one partial evaluator to an-

int reduce the notion of abstract facet in Section 5.1 and other, it is abstracted from the semantics by function A PP.

present facet analysis in Section 5,4. In Section 5.5, we Domain Sf defines a cache that keeps the specialization
extend the facet analysis to handle higher order programs,
Section 6 presents an example of online and offline parame-

patterns of each function and maps these patterns to the rep-

terized partial evaluation. Section 7 concludes and discusses
resentation of the corresponding specialized functions. Es-

future work.
sentially, this achieves instantiation and folding as in [5], and
ensures uniqueness of specialized functions. To keep track
of each specialization, partial evaluation is single-threaded

2 Preliminaries
with respect to the cache. This causes the evaluation order

of the language to be explicit. Function Mk.%og constructs

In this section we examine conventional partial evaluation
for strict functional programs. For conciseness we only con-
sider first order programs; although, as discussed in Section
5.5, extending the framework to higher order programs is
straightforward using existing techniques.

Let us first examine Figure 1 that displays the standard
semantics for a first order functional language. As is cus-
tomary, we will omit summand projections and injections.
Domain Values is a sum of the basic semantic domains (we
only consider the integer and boolean domains in this pa-
per). Function K maps a constant to its semantic value;

function Kp defines the usual semantic operations for prim-
itive operators. Domain FunEnv maps function names to
their meaning. The result of a program is the value of ~1.

We assume all functions have the same arity.

Figure 2 defines the semantics of a simple partial eval-

uator for programs written in our language. It is based
on existing approaches ([3, 21, 6], for example). The figure
only highlights aspects of the semantics relevant to later dis-
cussion. For example, we omit details about treatment of

a residud-program from the specialized functions contained
in the cache.

Because partial evaluation is a source-to-source program
transformation, it operates on a syntactic domain — de-

noted by Exp. Domain FnEnv recursively defines the mean-
ing of each function. Function K-l maps a value (e.g., in-
teger and boolean) back to its textual representation.

Partial evaluation subsumes standard evaluation. This
is reflected, for instance, in the treatment of the primitive
functions: when a primitive is called with constant argu-

ments. its standard semantics is invoked. In eeneral. an
“ ., ––

expression is completely evaluated when it solely depends
on available data. Lastly, notice that in partial evaluation
the primitive operators compute new values; in dealing with
properties, we will want them to play a similar role.

With this preliminary material in hand, we are now ready

to introduce parameterized partial evaluation.

93

1. Synt attic Domains
(defined in Figure 1)

2. Semantics Domains

P E Env = Var -+ Exp

w c FnEnv = Fn --t Exp” ~ (EXP X Sf)
Uesf = (Fn x Const”) ~ Exp

3. Valuation Functions
sP&Frog : Prog ~ Input ~ Prog ~

sP& : ~~~ExEp;v ~~E~;Env +- Sf -+ (Exp x Sf) ~
SKP :

MkProg : Sf ~ Prog (omitted)

SP&p~O~ [{ fi(%l,.. ”,~n) = ei)] (ii,.-.,~n) =

MkProg (SPS [fI(m, zn)] (-L[i~/z~]) m L)J2

whererec w = J-[(A(#I, . , , , @n, ~) . sP~ [ei] (J--[@ k/~k]) w ~)/fi]

sP& [c] p w C7 = ([c], !7)

SPS [z] p U7 C7 = (P [~1, ~)
SPt~(el,.. .,en)]pu7c7 = (~f:r~] (e!,..., e;), an)

(ej, q) = SPt [cl] p w a

(in, c.) = S>t [en] p w an-,

SP& [if el ez es] p w u = (e~ e Const) ~
(K e;) ~ SP& [ez] p w I-71, SPS [e3] p w m,

(Jif,ej ej ej], f73)

(ej, a2) = SP& [e.] p m LTI

(ej, a3) = SPS [e~] p m uz

where (e;, UI) = SPt [cl] p w a

SPS [f(el,. ... en)] p w u = APP[f]ej...e~a~w

where (e;, UI) = SPE [el] p m u

-.

(;n,CTn) “= SP~ [en] p w an–l

SICP ~](el,..., en) = ~(ei E Const) -+ tC-l (KP~] ((K e~),,(~ en))), ~(e~,,en)]

,=1

Figure 2: Simple Partial Evaluation Semantics

3 The Abstraction Methodology

This section presents a general methodology to introduce
abstract values in the partial evaluation process. Sections
4 and 5 describe how to instantiate this methodology for
online and offline partial evaluation.

In optimizing compilation, static properties are intro-

duced to reason about a program prior to its execution.
Computation of static properties is then defined by abstract

versions of primitive functions. This structure (domain/ope-
rations) naturally prompted us to use an algebraic approach
to model static properties. In particular, a concrete algebra
can be captured by the notion of semantic algebra as defined
in dqnotationrd semantics (e.g., [19]).

Definition 1 (Semantic Algebra) A semantic algebra, [D; O],
con8ists of a semantic domain D, and a set of operations O on
thi8 domain.

Our approach consists of defining, from the semantic al-

gebra, an abstract algebra composed of an abstract domain

— capturing the properties of interest — and the set of ab-
stract primitives operating on this domain. Using abstract
interpret ation [1, 16], this can be formally achieved by relat-

ing the two algebras with an abstraction function, Because
we aim at addressing both online and offline partial evalua-
tion, a given algebra may be defined at three different levels
— listed in increasing abstractness: standard semantics, on-

line partial evaluation and offline partial evacuation. These
levels respectively define semantic algebras, facets and ab-
stract facets.

The rest of this section describes a general methodology
to relate these dlfierent levels. In essence, this amounts to
relating two algebras. To investigate this, we first discuss
how to relate the domains and their operations in Sections
3.1 and 3.2 respectively. Then, this is formalized in Section
3.3 where the notion of relating two algebras is precisely
defined together with safety criteria.

Notationally, a symbol s is noted 3 if it is used in on-
line partial evaluation and 3 in offline partial evaluation.
Symbols that refer to standard semantics are unannotated.

Finally, for generality, any symbol used in either online or

94

offiine partial evaluation is noted S.

3.1 Relating Domains

Domains can be related using an abstraction function [9].
Such a function is strict and monotonic; it maps an initial

domain into an abstract domain.

As a simple example, say we wish to introduce some
symbolic computations on signs abstracted from the integer
algebra [D; O]. To do so we first have to define an abst rac-
tion of the integer domain that captures the sign properties.

A natural abstract domain is 6 = {1, POS, zero, neg, T}.

Domains 5 and D are related by the following abstraction
functicm.

cr-- :D+ij
AD
a~ (z) = LB ifd =&D

pos ifd>o
zero if d = O

neg ijd<O

This example is further developed in Section 4.1.

3.2 Relating Operations

In abstracting one algebra from another, not only do we
want to relate a domain to an abstract domain but we also
want to relate the operators to their abstract versions. More
precisely, we want to formulate the safety condition of an
approximation to an operator.

Essentially, relating two operators consists of relating
their graphs. To this end, we distinguish two classes of oper-
ators. The first class is composed of operators closed under
the carrier of the algebra, That is, for an algebra [A; O], we
say that p E O is closed if and only if p : A ~ A. Thus, the
abstract version of a closed operator will be passed abstract
values to c~mpute new ones; this corresponds to an abstract

primitive in abstract interpr@ation.

The second class of operators consists of those whose co-
domain is different from the carrier; they are referred to ss
open. Intuitively, abstract versions of open operators will
use abstract values to perform actual computations. Inter-
estingly, we can relate this division to optimizing compila-
tion where, typically, a phase collects properties and another
triggers optimizations using these properties.

For convenience, given an algebra [A; O], O. and O. will
denote the set of open and closed operators, respectively.

This division suggests that since an abstraction function
relates the carriers of two algebras, it can also be used to
relate an operator and its abstract version when this opera-
tor is closed under the carrier. However, this does not apply

to open operators since their domain differs from their co-
domain. Since an operator may be defined at three different
levels (standard semantics, online and offline partizd eval-
uation), its corresponding co-domain will then have three

different definitions: in the standard semantics, an operator
belongs to a semantic algebra; both open and closed op-
erators produce basic values (domain Values). In online
partial evaluation, an operator belongs to a facet; when it is
open it produces a constant provided it is called with appro-
priate values (see Section 4). In offline partial evaluation,
an operator belongs to an abstract facet; when the operator

is open it mimics the facet operator and thereby produces a
binding time value (i.e., Static or Dynamic) (see Section 5).

Thus, in order to relate an open operator to its abstract
version, we have to relate their co-domains. To do so let us
define the abstraction functions relating the three levels of
definition of domain Values.

From standard semantics to online partial evaluation, we
need to map basic values into their textual representation;
this mapping is defined as follows.

—
‘r Values + Values
;(c) = _Lv~e~ if z = Lvalaes

K-1 x otherwise

Because Values is a sum of basic domains it is more
convenient to define ~ as a family of abstraction functions
indexed by t~e basic domain. That is, for each basic domain

—
D, there is an abstraction function % : D ~ Values
defined. To keep the notation simple, we omit the indexing

of function ?.

Note that to be consistent with our framework, domain

Va%es used above denotes a separated sum constructed by
adding the elements -L — and Tvxe$ to the original

Values

domain of constants Const; these elements are respectively
weaker and stronger than all the elements of Const. For

convenience, we assume the functions defined on Const to

be also defined on Va~es (e.g., function K); this domain is
further discussed in Section 4.

To investigate the relation between online partial evalu-

ation and offline partial evaluation, recall that conventional
offline partial evaluation consists of a binding time analysis

—
and a specialize. The binding time domain, noted Values,
is composed of the set {Static, Dgnamic} lifted with a least
element Lvx~~. Thk domain forms a chain, with ordering

J- Vx-, G Static G Dynamic, and abstracts the online

partial evaluation process in the following way.

T VXes .+ ViEes

F(Z) = J_v.-J& ijx=l.———
Valuea

Statac if z C Const
Dynamic otherwise

This reflects the fact that an expression is static if it partially
evaluates to a constant.

3.3 Relating Algebras

Given this preliminary discussion we can now forrnahze the
notion of algebra abstraction.

Let [A; O] and [A’; O’] be two algebras, and ~AJ : A -

A’ and T : B -t Values be two abstraction functions. Then,
the algebra abstraction is noted aAJ : [A; O] ~ [A’; O’].

Definition 2 (Facet Mapping) aAJ : [A; O] -+ [A’; O’] is a

facet mapping with respeet to Values if and only if

1. At is an algebraic lattice of jinite heightx.

1ArI algebraic lattice is defined as an algebraic CPO that is also
a complete lattice. All lattices defined in this paper are algebraic
lattices. Notice that with a lattice of infinite height, a widening op-
erator can be used to find fixpoints in a finite number of steps (see
[9]).

95

2.

9.

-1.

1. p E O ia a closed operator, then p’ : At + A’ ia de
corresponding abstrwct version.

If p c O is an open operatov with functionality A + B,
whe~e B is some domain diffevent f~om A, then PI : Al -+

Values is its comesponding abstract version.

VP E O and its comeapondin.q ab8tract version P’ E 01
cl~lop ~ p’O aAl if P iS a closed operatov

~Op ~ p’O~Al if p is an open operator with

functionality A + B

Notice that Condition 1 ensures termination in comput-
ing abstract values. Also, for simplicity, we only consider
a limited form of heterogeneous algebra (Conditions 2 and
3): only the co-domain of an operator can be different from
the carrier of the algebra. Finally, Condition 4 defines the
safety criteria of an approximation to an operator.

Given a facet mapping, we can succinctly describe the
relationship between the components of two algebras by a
logical relation [18, 16].

Definition 3 (Logical Relation ~a~,) M aAl : [A; O] *

[A’; O’] be a facet mapping with Tespect to Values. We dejine
the binary velation ~aA, as follows.

1. v a C A, V a’ C A’: a ~aA, a’ + ffAl(a) ~Al a’.

2. Let p E O and p’ E 0’ be closed operators. Then

P LaA/ P’ *

V a G A, V a’ G A’ : a ~a~, a’ + p(a) ~a~, p’(a’)

3. Let p c O and pJ c O’ be open operators and p : A + B
for some domain B. Then

P GaA/ P’ *

VaEA, Va’EA’ : a ~a~, a’ * p(a) LF p’(a’)

where GF is the logical relation defined for the facet mapping
T : [B; OB] x [Values; Ok]. Facet mappings ? and ? are
presented in Definitions 7 and 10 respectively.

Using this logical relation, we can re-formulate the safety
criteria expressed by Condition 4 of Definition 2 as follows.

Property 1 Let aA/ : [A; O] -+ [A’; O’] be a jac.i mapping

with respect to Values, V p E O and itscorresponding abstTact
OJeTsionp~ ~ of, P &aA, P’.

4 Online Parametrized Partial Evaluation

This section presents online parameterized partial evalua-
tion, We first define the notion of facet by instantiating the
abstraction met hodology described in Section 3. Then, we
describe online parametrized partial evaluation.

4.1 Facets

A facet captures symbolic computations performed in online
partial evaluation. As a result, while a closed operator will
compute new abstract values, an open operator will produce
constants when provided with appropriate abstract values.

Formally,

Definition 4 (Facet) A facet for a semantic algebra [D; O] i~

an algebra [6; 6] defined by a facet mapping 85 : [D; O] 4

[b; ~] with respect to V~es.

We refer to b as the facet domain and ~ as the set of
facet operators. The use of facet mapping in the definition

ensures the following property about the open operators of
a facet.

Property 2 For any open operator p E O of arity n, we have

V#t c 6and. Vd16D~ud that d,~:=~tfO~i~{l,...t~}:
D

$(JI,. . . , &+) 6 Const and p(dl,..., d~) terminates

=+ @(dI, . . . ,ln)=~(p(dl,..., dn))

In essence, this property states that if an open operator
of a facet yields a constant for some abstract values, this
constant is the same as that produced by the concrete oper-
ator called with the corresponding concrete values. Notice
that this equality only holds if the call to the concrete op-

erator terminates. TheAconcrete values di are those related
to the abstract values di under the logical relation ~:~.

D

However, for some values, an open operator of a facet
may not yield a constant. Indeed, it may be passed abstract

values too coarse to be of any use. This is illustrated in the
example below.

As an example of a facet, say we wish to define a Sign

facet from an integer algebra. The set of static properties
would be {J-, pos, zero, rzeg, T}. Assume that the operators

of this algebra are {+, <}. Then + would be a closed oper-
ator: it operates on two sign values to compute a new one.
However, < is an open operator: it uses the abstract value
of its arguments to trigger computation whenever possible
(e.g., .?(zero, pos) = [true]).

Example 1 Sign information forms a facet for semantic algebra
[D; O] = [Int~; {+, <}].

1.D = {Ll pOs, zero, neg, T} with

vj~fi,4GiLT

2. The abstraction function is

:D-+fi
:;
cl: (z) = l.~ ifd=~D

poa ifd>O
zero i.fd=O

neg ijd<O

3. ~ G 80 U 8C where ~. G {<} and 8. = {-&}

4. Facet operators

+: fixfi+h

4 = A (C&, J2). (-C L=1)V(J?=I)4 1,
dl = zero -+ d2,

i~=zero+ &,j~ l.J c&.

96

‘(71 =-’l)v(&=L) + 1 .——————,

({I = pos) A (~z E {neg, z~;~)” -+ [jars.],

((I = zero) A (d? = p.,) + [true],

(~~ = zero) A (:2 c {neg, zero}) + [false],

($ =Jsg) A (d~ e {p.,, 2.90}) + [true],

values

We can now explain further our approach and examine
how the notion of facet achieves the parameterization of par-
tial evaluation.

.4.2 Product of Facets

Essentially, parameterized partial evaluation differs from the

conventional partial evaluation in two aspects: it collects
facet information and propagates useful results of any facet
computation to all relevant facets. While the latter aspect
is described explicitly in the new partial evaluation model

presented in Section 4.4, the former is captured by the notion
of the product of facets defhred in this section.

A product of facets captures the set of facets defined

for a given semantic algebra. It consists of the product of
facet domains and the set of facet operators. In particular,
for each operator p, a product operator, noted o+, triggers
each facet operator ii with the corresponding abstract val-
ues. If p is a closed operator, the product operation yields
a product of abstract values. Otherwise, it produces either

a constant, lv~e~ or Tvme~ depending on the abstract

values available.

Definition 5 (Product of Facets) Let ~~ : [D; O] -+ [b;; ~,]
jori~ {l,..., m) be the set of jacet mappings defined for a se-

. .
mantic algebra [D; O]. Its p~oduct o.fjacet.s, noted, [’D; 0], consists

of two components:

f. A domain~ = 61@. ..@6m s
fi

6; ; it is a smaahed

1=1

product 2 of the facet domains;

2. A set o.f product operators fi such that for any p G O and

its corresponding p?oduct operator 2P E S2,

(a) i.f p E O is a closed operator, then

P: D”-+D, and
‘n+~LJp:v

m

tip= A(8~, . . . !$~) - J-JM$:)””” J2

i=l

‘Given two lattices D and E, its smashed product, D @ E, is a
lattice, the elements of which are defined by the function, smashed,

such that:

arnashed DxE+D@E
smashed(d, e) = (d, e) if (d# LD) and (e # LE)

J_D@E othemuise

(b) otherwise, p E O is an open operator
p: D~+D’ for some domain D’, and

LIP : D“ 4 VZes

tip= A(&,&J ,
(3j E{l,... ,773} St. c? = lV--JJ + lv~--,,

(3je {l,... ,m} s.t. 83 G Const) + &, Tv~e~
m

1=1

Notice that the i-th component of an element of the do-

main 5 is noted ~i; this domain is partially ordered component-
wise. All product operators defined above are monotonic.

Although facets of a product are defined independently,
the facet values with respect to which a program is special-
ized must have some consistency.

Definition 6 Let [’6; 6] be a pToduct oj facets of an a[gebra

[D; O]; & G 5 is consistent if and only if

m

fl{dcD [dC-._a, ~’} is not the empty set nor {L}.

1=1

Each set of concrete values corresponds to a particular
facet property; it is defined by the logical relation ~; . No-

,

tice that if domain D is lifted, by definition of the relation
g:, , the above intersection will at least yield the single-

ton {_L}; therefore this set must not imply consistency, In
essence, the above definition ensures that a product of ab-
stract values represents an actual subdomain of D.

We assume that a program is always specialized with re-

spect to consistent products of facet values. By definition
of a facet the consistency property is preserved by the open
and closed operators. This property contributes to the cor-
rectness of the following lemma which states that if there
are more than one facet that produce concrete values, those
values are equal (see proof in [8]).

Lemma 3 Let [’6;6] be a product of facets and p G O be an
open operatov,

If 3j, kG {l,... ,m}(j#~)and~l,.#.,FnC5

We have seen how properties of interest can be formally
introduced via a facet and described how facets could be
combined to form a product of facets, Let us now explore
the generality of the approach. In particular, we want to
examine how partial evaluation can itself be captured by a

facet.

97

4.3 Partial Evaluation Facet

So far, we have used the notion of facet to introduce sym-
bolic computations drawn from a semantic algebra defined

in the standard semantics. Application of the same notion
to partial evaluation raises the following question: What can

be captured by a partial evaluation facet?

Just as a facet defines symbolic behavior of primitives,
the partial evaluation facet Will capture the partial evalu-
ation behavior of primitives. More specifically, for a given
semantic algebra, the corresponding partial evaluation facet
will define its standard semantics whenever it is passed con-

stant arguments. The partial evaluation facet is defined as
follows.

Definition 7 (Partial Evaluation Facet) The partial evalua-

tion facet of a semantic algebra [D; O] is dejined by the jacet

‘Vatue, : [D; O] + [V~e~ ~]mapping a —

f. 2————: I) + V~es
~Vatues
CX-ZT

Values

2. V@ E60farityn

@ : V%es” -+ VZIes

“=A (ii,...,dn).P

In fact,

3iG {l,... ,n} s.t. cl, = lv~--~ + lv~e~,

~(& GConst) +;(Kp[pj(dI,,dn)),Tv~~

i=l
wheve di = (K Cii) ie{l,+..,n]

the abstraction function ~v~--$ is essentially

the same as ~ given in Section 3.2: it maps a value into its
textual representation.

Notice that, just as any other facet operator, a partial
evaluation facet operator produces value Tv~e~ when it is

passed too coarse values (that is, non-constant values).

We can now define the semantics of parameterized partial
evaluation.

4.4 Semantics of Online Parametrized Partial Evaluation

Since this semantics aims at defining partial evaluation, we
shall assume that the partial evaluation facet always exists.

Thus, because a partial evaluation facet is defined for each
semantic domain, it will be assigned to the first component
of every product of facets. A sum of these products of facets

is noted SD; each summand corresponds to a semantic al-

gebra. We shall use ; to denote an element of domain S-D.

For readability, we do not index ~ with a given summand
and assume that it denotes an element of the appropriate

summand. As before, ~’ denotes Lth facet value a product
of facet values.

Figure 3 displays the parametrized partial evaluation
semantics. For simplicity, we assume that every product
of facets contains m facets (including the partial evaluation

facet). Also, we assume that user-supplied facets are glob-
ally defined, that is, the corresponding abstraction functions
and product operators are globally defined.

For a product of facets fi, ti~, denotes the i-th abstrac-
,

tion function. Besides computing facet values, the partial
evaluator haa to construct the residual program and col-
lect the specialized functions. This triple forms the co-
domain of the partial evaluation function and is defined as

Exp x S-D x Sf. Closed and open operators are respectively
noted p= and p“.

Notice that when an expression partially evaluates to a
constant ——because the expression is either a constant or

a primitive called with appropriate values — functions ~

and ~P propagate this value to all facets in a product by

invoking their corresponding abstraction function.

The following theorem asserts that any constant pro-
duced by partial evaluating a primitive call is always correct
with respect to the standard semantics, modulo termination
(see proof in [8]).

Theorem 1 Let [’6; 6] be a product of jacets (including the par-

tial evaluation facet) for an algcbTa [D; O],
3jc {l,... ,m} such that,

(Cc Const) and (Z[p(zl, . c. ,~n)]l[di/~i]-l) temni-

nate$ + c = ~(S~(%l,.. ., On)]l[di/~i]J-)

where c = (p$[P(Z1, ~n)].l[([~i], 6i)/~i]Ll.)J.l

and di~ {d~ D I d~;~ $:}.

~3

Finally, let us point out that online partial evaluation
as defined in Figure 3 provides a less complete treatment
of conditional expressions than the one described in Redfun
[13]. Indeed, Redfun is able to extract properties from the
predicate of a conditional expression. Then, these proper-
ties and their negation are propagated to the consequent and
alternative branches respectively. This is somewhat similar
to constraints in logic programming. We are currently in-
vestigating this issue to possibly incorporate the notion of

constraints in our approach.

5 Offline Parameterized Partial Evaluation

As discussed earlier, in an online strategy all decisions about
how to process an expression are made at partial evaluation
time. This makes it possible to determine precise treat-
ment based, for example, on concrete values. However, this
is computationally expensive because the partial evaluator
must anal yze the context of the computation — the available
data — to select the appropriate program transformation.
This operation is repeatedly performed when processing re-
cursive functions.

In conventional partial evaluation efficiency is achieved
by au oflirae strategy which splits the partial evaluation

phase into binding time analysis and specialization. In par-
ticular, the binding time analysis only computes the static/dy-

namic property. In offline parameterized partial evaluation,
we generalize the binding time” analysis to facet analysis: a

98

1.

2.

Semantics Domains.

~ c S-D = ~fij where 5, = (~jl @ . . . @ fi~~) and s is the number of basic domains

j=l

e’ c Exp

p c Env = Var + (Exp x S-D)

w G FnEnv = Fn + Exp” + S-D” _ (Exp x S-D x Sf)

u C Sf = (Fn x Exp” x S-D”) + Exp

Valuation Functions

PEPrOg : Prog -+ Expn + S-D” + Progl

Pt : Exp + Env + ~n~nv + Sf + (Exp ~ ~? x Sf)L

Ep : PO + Expn - SD ~ Sf ~ (Exp xsD X Sf)l

P&Prog [{j, (zl,zn) = ei}] (e~,.,.,e~) (~l,...,~n) =

(kfkProg a) whererec (–, a) = P& ~~,(z,, xn)~ (l[(e~,~,)/z,]) U7 1

w = l[(~((e~,...,e~),($l,..., ~ ,a6)) . P& [ei] [(e’, ~~)/x~] w u)/.fi]

Iv[c]pmr=t[ga

Pf[z]pcuu= (e’, 6, a) wlye (e’, F) = p [z]A

~& ~(el,.. -,en)]PWU = KP~](e~, ”..2eL) (61,..., Fn)un

where (e~,fil,a~) = P& [e~]pcua

99

phase that statically computes facet information. Conse-
quently, the task of program specialization reduces to fol-

lowing the information yielded by the facet analysis.

To present offline parameterized partial evaluation, we
follow the approach used in defining online parameterized
partial evaluation: we introduce the concept of abstract

facet in Section 5.1, describe the product of abstract facets
in Section 5.2, define the binding time facet in Section 5.3,
and lastly, describe facet anal ysis in Section 5.4.

5.1 Abstract Facets

To lift facet computation from partial evaluation, we need to
define a suitable abstraction of this process. In particular,
we need to define an abstraction of a facet that enables facet
computation to be performed prior to specialization. The
resulting facet is called an abstract facet and is defined in

this section.

Not surprisingly an abstract facet has the same struc-

ture as a facet. In particular it has two classes of operators:
open and closed. Similar to a facet, a closed operator of an
abstract facet is passed abstract values and computes new
ones. As for an open operator, it mimics the corresponding
facet operator: it uses abstract values to produce binding
time values. More precisely, instead of a constant it pro-
duces the binding time value Static and instead of Tv=e~

it produces Dynamic.

Just as a facet is defined from a semantic algebra, an
abstract facet is defined from a facet. Formally,

Definition 8 (Abstract Facet) An abstract facet [b; 6] o.f a

jacet [6; 6] is defined by a .fa.et mapping =5 : [6; 6] + [~; 6]

—
with respect to Values.

This definition leads to the following property about
open operators.

Property 4 Fov any open operatoT @ E O of arity n, we have

V~I,&Gfi and Vd, such thatd; ~z-~i~o~i~{l,...)n}

D

(p(J, ,... ,Cln) = stat;.) * @(al l,... ,CL) EV--J--, c

jor c G Const.

This property states that, when an open operator of an

abstract facet maps some properties into the value Static,

the open operator of the corresponding facet will yield a
constant value at specialization time, modulo termination.

As an example of an abstract facet, say we wish to de-
fine a Sign abstract facet from the Sign facet (Example

1). This will amount to determining, prior to specialization,
whether sign computation can produce constants. If so, the
specializ at ion phase will collect sign information and trigger
the open operators that produced the value Static at facet
analysis time.

Example 2 The abstract facet for the Sign facet [6; ~] is defined

as follows.

1.

2.

3.

5.2

6 = 6 (strntlar to Ecarnp/e 1)

;: is simply the identity mapping between 6 and ~.

6 a {<, ~} where ~ has the same functionality as $ and <
is defined as follows.

-2’ 5x5+ VXes

<= A(a, b). a=lvb=l+ l— ---,

a = pos A (b E {rze~, z%%}’)’ -+ Static,

a = zero A b = pos ~ Static,

a = zero A (b 6 {neg, zero}) + Static,

a = raeg A (b G {p09, Zero}) -+ StQtiC,

Dynamic

Product of Abstract Facets

As in online parameterized partial evaluation, we now define
the product of abstract facets.

Definition 9 (Product of Abstract Facets) Let ~i : [b;; ~;]

+[fit;~:lfo~~e{lt... 7m} be the set of Facet mappings de-
fined joT the facets oj a semantic algebra [D; 0], Its product of

--
abstvact facets, noted [D, !2], consists of two components:

f. A domain 6 =
O

G; is a smashed pToduct of the abstTact

i=l

jacet domains;

2. A set of product operators ~ such that for any p G O and

its corresponding product operator 6P E ~,

(a) ij fi is a closed operator, then

p:D~+ D_, and

GD:D” +D

1=1

(b) otherwise, @ E 6 is an open ope’rater, and
p : D“ + D’_joT some domain D!, and

‘n
~P:v 4 Values

tip= A(151,...,&) .

(3j G{l,... ,m} s.t. 3 = L
VXes) + ‘.x..’

(3je {l,... , m} s.t. @ = Static) + Static,

Dunamic

The domain ~ is partially ordered component-wise. Since
all the product components are of finite height by definition,
the product domain is also of finite height.

5.3 Binding Time Facet

While the partial evaluation semantics of algebraic operators
is captured by a facet, the computation of their binding time
values can similarly be captured by the notion of abstract

facet. Such an abstract facet is called a binding time facet.

100

Definition 10 (Binding Time Facet) The binding time facet
—,-.

of a partial evaluation Jacet [Values; O] is dejined by the facet

‘vatue~ : [V~e~ ~] + [VXes; G]mapping a —

l.z —:—— Values --i
-Values

cl-z ;
Values

2. V6GG0favityn
—

6: VGesm A Values
n

VZes

‘5= A(dl, . . . , &) .~(di = StOtiC)-+ Static, Dgnamic

1=1

Not surprisingly, the above definition captures the prim-

itive functions of a conventional binding time analysis. As a

result, not only does the facet analysis compute user-defined
abstract values but it also computes binding time values,

just as a binding time analysis.

5.4 Facet Analysis

We are now ready to examine the facet analysis. It is es-

sentially a conventional binding time analysis, as described

in [2 I] for example, extended to compute facet information.
Analogous to the definition of parameterized, online partial

evaluation, we assume the binding time facet to be always
defined. The main semantic domain used by the analysis

is denoted by SD, which is a sum of products of abstract
facets – each summand corresponds to a semantic algebra.

The bhding time facet is assigned to the first component of
each product,

Facet analysis is displayed in Figure 4. The notational
conventions about indices are similar to Figure 3. The anal-

ysis aims at collecting facet information for each function in
a given program; this forms the ~acet signature of the func-

tion. More precisely, a facet signature consists of a product
of abstract facet values for each parameter of a function

and is defined as S—D”. The result of the analysis (domain
SigEnv) is a function mapping each user-defined function

in the program to its facet signature,

The valuation function ~ maps each user-defined func-
tion into its abstract version. The resulting abstract func-

tions are then used by the valuation function A to compute
the facet signatures, As usual, computation is accomplished

via fixpoint iteration. Functions ~ and ~P perform the ab-

stract computation on constants and primitive operators.

This is similar to functions ~ and ZP defined in Figure 3.
Finally, note that fixpoint iteration is performed over the

domains S—Dand SigEnv. Since these domains are of finite
height and operations over these domains are monotonic, a
fixpoint will be reached in a finite number of steps.

5.5 Higher Order Offline Parametrized Partial Evalua-
tion

The techniques for higher order online partial evaluation are
now known (e.g., [20, 12]). However, traditionally problems

arise when dealing with the oftline strategy. For this reason,

this section will concentrate on offline parameterized partial

evaluation. In particular, we will present a higher order
facet analysis, the essential component of the offline strategy,

just as binding time analysis for conventional offline partial
evaluation.

While the first order facet analysis extends conventional

first order binding time analysis, the higher order analysis

makes use of recently developed technique in abstract inter-

pretation for analyzing higher order programs (e.g., [14, 15,
4, 7]).

With the introduction of higher order functions, the ab-

stract version of each user-defined function may now take
higher order abstract functions as arguments. This means
that the abstract facet property should be captured by a

domain consisting of both first-order and higher order prop-
erties:

q ~ AV=S—D+ @v~Av)

Figure 8 displays the facet analysis for higher order pro-
grams. The language has been extended to include higher

order functions. Similar to the first-order facet analysis,

function ~ transforms a user-d~fined function into its ab-
stract version, while function A uses the abstract function
to collect abstract facet information for each user-defined

function, Given two functions ~1 and f2, we define their
meet as follows:

jl Ujz = (fl = Tc) V (f2 = Tc) + Tc,
(:/~\.f*) = a,it~(j~)) +

“.., wn). fl(vl,. ”$, wn)uf2(wl,..., wn),
Serr

where Tc denotes an operator which always returns the ap-

propriate strongest element in the domain Av; Serr denotes
the error function.

~ performs fixpoint computation over the domain Av to
produce the abstract version of the user-defined functions.
The semantics is self-explanatory, except for the treatment

of conditional expression: when a conditional expression re-
turns in higher order function, the meet of the functions ob-
tained from the two branches is returned. However, when
the test expression is dynamic, the “unknown” operator Tc

is returned to indicate that the possible operators returned

by the conditional expression cannot be determined stati-
cally, and therefore will not be applied at specialization time.
Functionally, Tc takes arbitrary number of arguments, and

always returns the appropriate strongest elements in the do-
main Av. For convenience, we assume that it is pre-defined

in the initial environment 00.

~ performs a global analysis to collect the facet signature
of each user-defined function. These signatures are captured

by the domain SignEnv, The co-domain of ~ is defined as
follows.

Ans = SigEnv x ((Avn x Ansn) -+ Ans) x P(Fn)

The first component consists of the facet signatures as de-
scribed above. The other two components are only signifi-
cant when the expression being analyzed is higher order, In
this case. these component~ represent its ak~t.met Lel. aviom

in the following sense. When a higher order function is ap-
plied, it may induce new facet signatures; this is captured

101

Figure 4: Facet Analysis

102

by the second component of AIM. Also, when a user-defined
function is applied, we would like to update its facet signa-

ture; this is captured by the third component of Ans, which

consists of the set of possible user-defined functions that an

expression may evaluate to,

Let us now explain the treatment of a conditional ex-

pression by function ~. Besides the usual tasks of collecting

signatures from each component of the conditional, we also

need to determine if the abstract facet information returned

is the unknown operator. Since this operator indicates that
the higher order functions returned by both branches will
not be applied at the specialization time, we must there-
fore apply the appropriate strongest abstract facet values to
these functions in order to collect the signature information

from their function bodies. The application is performed
% advance” before we return an answer from evaluating
the conditional.

For simplicity, we assume that both the initial environ-
ments QO and co contain functions that deal with primitive
operations. Thus, for each primitive p, we have

@o@] P1. ..wn = &@]wl... %l

where ~P is defined in Figure 4, and

so El((PI “C”pn), (m, ””., an)) = (-L, Serr, {}).

In general, the analysis as described is not guaranteed to
terminate. The reaeon is that a program may include higher

order functions that need to be analyzed an infinite number
of times. This situation is described by Hudak and Young in

[14]; they circumvent the problem by disallowing functions
whose type is of arbitrary “order” or “depth”. Here, we
adopt the same rest riction.

6 An Example

This section illustrates further parameterized partial eval-
uation with an example of a program computing the inner

product of two vectors. After describing this program, we
examine its online and offline partial evaluation when the

size of the vectors is known. In this example we consider
vectors of floating point numbers.

One can think of a vector as an abstract data type V
consisting of a set of operators O listed below.

MktVec : Int + V creates a vector of the specified size.
UpdVec : V x Int x Float -$ V updates an element.
Vecn : V + Int returns the size of the vector.
Vrej : V x Int - Float returns a specified element.

The program for computing inner product is presented
in Figure 5. To specialize the inner product program with
respect to the size of the vectors our strategy consists of
defining the size information as a property of a vector.

6.1 Online Parametrized Partial Evaluation

In order to capture the size property of a vector, we define

the Size facet [~; ~] from the vector algebra [V; O].

1. ~ G Intu {l;, T-. } with the ordering l; g i ~ Tv Vi ~ Int.

iprod(A, B) = dotProd(A, B,n) =

let n = Vec#(A) ifn=O then O

in dotProd(A, B,n) else Vref(A, n) * Vref(B, n)

+ dotProd(A, B,n-l)

Figure 5: Inner Product Program

2.

3.

4.

A&traction function ~

a? V*V
‘2;(U) = J+ Zfu=l.

Vecti(v) otherwise

Closed operators

UpFe c : 9 x V%es x V%es * Q

l!JpZec(6, i, r) = (i= 1“==,) v (r = lv~e*)

-L-’ “, v

Open operators

Let us now specialize the inner product program with
respect to a given size, say 3. The facet values passed to the

pa;tial evalu~tor will be -

<A, <Tvx--~ , 3>> and <B, cTv~--~, 37>

where A and B are residual identifiers for iprod; T “~--, is

the partial evaluation facet value; and, 3 is the size facet
value. When partially evaluating iprod, the size facet in-

formation is used to obtain the size of vector A. Variable n
is then bound to a constant value. As a result, the test ex-
pression in dotProd is static, and thus can be reduced. Also,
the recursive call to dotProd can be unfolded. The result-

ing program is displayed in Figure 6. Notice that it is now
non-recursive. Since elements of the vectors are unknown at
partial evaluation time, the primitive operation Vref cannot

be reduced; therefore, both the multiplication and addition

operations are residual.

iprod(A, B) = Vref (A, 3) * Vref(B,3)

+Vref (A, 2) * Vref (B, 2)
+Vref(A, 1) * Vref(B, 1)

Figure 6: Residual Program for Inner Product

103

6.2 Offline Parameterized Partial Evaluation

In the offline parameterized partial evaluation, we define the

abstract Size facet [$; b].

1.

2.

3.

4.

Values s and d denote a static and a dynamic vector size, re-
spectively.

A~stract~on fur@ion
12.- :v+v
-v
07(0) = _L; ifij=l;

d zfO= T+-
V

s otheranse

Closed operators

M=ec : V=es -+ ~

Open operators

v=! : G A VXes

Vz[(ti) = (; = 1;) + 1“==,,

(0 = .) + static, Dynamic

V%f : V x VXes -+ VXZes

Vwf(ti, i) = (t = L--)v (i = lv=e~) --? lv==~,

Dynamic

Let us now perform a facet analysis on the inner prod-
uct program given that the actual value of both vectors is
dynamic but their size is static. Recall that besides the ab-

stract Size facet, the binding time facet (Definition 10) is
also defined. Both parameters of iProd will then be bound
to the pair of abstract values <Dynamic, s>, As a result, the
binding time value of variable n is Static. Thus, the facet
analysis determines that the test expression in dotProd is
static, and the conditional expression can be reduced stati-

cally. This coincides with the result of online parameterized
partial evaluation; however, these reductions have been de-

termined statically.

Figure 7 displays the information yielded by the facet
analysis of the inner product program when only the size

of the vectors is static; more precisely, we show the facet
values of the main expressions of the program. For concise-
ness, the values Static and Dynamic are noted Stat and Dyn
respectively.

The underlined binding time value represents the static
value obtained from the size abstract facet value. Notice
that the size information is only used in the main function,
iprod. This means that, at specialization time, size facet
computation is only required for iprod (in fact, it is only
required for partial evaluation of an abstract syntax tree
rooted by the open operation Vecj). Binding time analysis
is the only facet computation performed for dotProd. This
contrasts with the online parameterized partial evaluation

of the inner product program where the size facet computa-
tions were performed for each function manipulating vectors.

7 Conclusion and Future Works

Redfun is the main approach aimed at specializing programs

with respect to static properties. Since then other partial

evaluation systems (e. g., [20, 12, 2]) have been developed

based on this approach.

Parameterized partial evaluation goes beyond this in that:
it captures both online and offline partial evaluation; the

notion of facet provides a formal method to introduce user-
defined static properties; finally facet analysis achieves effi-
ciency of the specialization phase by enabling self-application.

Furthermore, our approach subsumes conventional self-
applicable partial evaluation d la Mix [17] in that it gen-

eralizes the notion of binding time analysis to any static
properties.

We are currently implementing parameterized partial eval-
uation for higher order functional programs and investigat-
ing various extensions to this framework. In particular, we

are looklng into parameterized partial evaluation for a lazy

language. We are also exploring partial evaluation parame-
trized with respect to operational properties such as strict-
ness properties.

Acknowledgements

To the Yale Haskell Group. Thanks are aJso due to Karoline
Malmkjzer, Olivier Danvy, Paul Hudak, Pierre Jouvelot and
David Schmidt for thoughtful comments on earlier versions
of this paper.

References

[I] S. Abramsky and C. Hankin, editors. Abstract Interpre-

tation of Declarative Languages. Ellis Horwood, 1987.

[2] A. Berlin. Partial evaluation applied to numerical com-

putation. In ACM Conference on Lisp and Functional

Programming, pages 139-150, 1990.

[3] D. Bj@rner, A. P. Ershov, and N. D. Jones, editors.
Partial Evaluation and Mixed Computation. North-

Holland, 1988.

[4] A. Bondorf. Automatic autoprojection of higher order

recursive equations. In N. D. Jones, editor, ESOP ‘$?o,
3’d European Symposium on Programming, volume 432

of Lecture Notes in Computer Science, pages 70–87.
Springer-Verlag, 1990.

[5] R. M. Burstall and J, Darlington. A transformational
system for developing recursive programs. Journal of

ACM, 24(1):44-67, 1977.

[6] C. Consel. Analyse de Programmed, Evaluation Par-
tielle et Gene.atiorz de Compilatetir.s. PhD thesis, lJni-

versit4 de Paris VI, Paris, France, 1989.

[7] C. Consel. Binding time analysis for higher order
untyped functional languages. In ACM Conference
on Lisp and Functional Programming, pages 264–272,
1990.

[8] C. Consel and S. C, Khoo. Parameterized partial eval-
uation. Research report, Yale University, New Haven,
Connecticut, USA, 1991. Extended version.

104

PTogTam Abstract Facet Values

iprod(A, B) = A =< Dyn, s>, B =< Dyn, s>

let n = Vecfl(A) Vecj(A) = < Stat >
in dotProd(A, B, n) n =< Stat>

dotProd(A, B, n) = A =< Dyn, s>,13 =< Dyn, s>, n =< Stat>
if

n = o n = <Stat>

then O < Stat >
else Vref(A, n) * Vref(B, n) Vref(A, n) == < Dyn >, Vref(B, n) = < Dyn >

+
dotProd(A, B, n — 1)

Figure 7: Abstract Facet Information After Facet Analysis

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

P. Cousot and R. Cousot. Abstract interpretation: a [19]
unified lattice model for static analysis of programs by
construction or approximation of fixDoints. In ACM

Symposium on P;i;ciples of Progr-am-rning Languages,

pages 238-252, 1977. [20]

P. Emanuelson and A, Haraldsson, On compiling em-

bedded languages in Lisp. In ACM Conference on

Lisp and Functional Programming, Stanford, Califor- [21]

nia, pages 208-215, 1980.

H. Ganzinger and N. D. Jones, editors. Programs as
Data Objects, volume 217 of Lecture Notes in Computer

Science. Springer-Verlag, 1985.

M. A. Guzowski, Toward developing a reflexive par-
tial evaluator for an interesting subset of Lisp. Mas-
ter’s thesis, Department of Computer Engineering and
Science, Case Western Reserve University, Cleveland,
Ohio, 1988.

A. Haraldsson. A Program Manipulation System Based

on Partial Evaluation. PhD thesis, Linkoping Univer-

sit y, Sweden, 1977. Linkoping Studies in Science and
Technology Dissertations No 14.

P. Hudak and J. Young. Higher-order strictness analysis

in untyped lambda calculus. In ACM Symposium on

Principles of Programming Languages, pages 97-109,

1986.

P. Hudak and J. Young. A collecting interpretation of
expressions (without Powerdomains). In ACM S~mpo-

sium on Principles of Programming Languages, pages

107–118, 1988,

N. D Jones and F. Nielson. Abstract interpretation: a
semantics-based tool for program analysis. Technical
report, University of Copenhagen and Aarhus Univer-

sity, Copenhagen, Denmark, 1990.

N. D. Jones, P. Sestoft, and H. S@ndergaard. Mix:

D. A. Schmidt. Denotational Semantics: a Methodol-

ogy for Language Development. Allyn and Bacon, Inc.,
1986.

R. Schooler. Partial evaluation as a means of lan-

guage extensibility. Master’s thesis, M.I.T. (LCS), Mas-
sachusetts, U.S.A, 1984.

P. Sestoft. The structure of a self-applicable partial
evaluator. In [11], pages 236–256, 1985.

a self-applicable partial evaluator for experiments in

compiler generation. Lisp and Symbolic Computation,

2(1):9–50, 1989.

[18] F. Nielson. Two-level semantics and abstract inter-
pretation. Theoretical Computer Science, 69:117–242,

1989.

105

1. Synt attic Domains

e c Exp Expressions

.f C Fn Functions
e ::= clzl$li~ele2e312(m ,.. .,xn)el e(el””, en)n)

2. Semantics Domai~

PCAV =SV+Av~Av

T G SigEnv = Fn ~ Av”
a c Ans = SigEnv x ((Av” x Ansn) e Ans) x 7J(Fn)

Q 6 Env = Var .+ Av

$ E E~v = Var -+ (Av” x Ansn) ~ Ans

3. V&uation Functions

M : Program ~ S—D” e SigEnv

IF: Exp .+ Env ~ Av

A: Exp -+ Env -+ E~v ~ Ans

H~{j,(zI,... ,z~) = e;}] (pi,...,pw) =

(< M] (f%,”..,%%) (L”””, q)u _

wherer’ec Q = @o[(~ (PI, ,, o, pn) . 8 [ei] Q[Pk/zk~)/j!]

$ = <o[(~ ((w,’””,%),(m)’”, am)) . A [e,] e[p~/z~] ~[~~/x~])/fi]

(F,(d), -.. ,Fm(d)) where F, = =;, o ~~, and d = (K c)

Q [x]

e [f]
$%1= ~Av + ~Au,

(% =_Static) + f$72 u %33,

V2 E SV -+ (D-ynamic, p; u w:, ..., p? u p~), TC

where pi = S-[ei] @ < fOT i = {1,2,3}

@,”” ”,w%J) . S IIel (~9k/zkl)
(c$[e] Q) (f [cdl e,”’ ~,t [en] Q)

-@e< = (1, Sem, {})
~[f]eq = o-,< [f], {f})
~[z]Qq = < [z]
A[ifele2e3]Qq = p = TC + (~u T’, TF, {}), (T,g,Fz UF3)

w~e~e (T’, -,-) = gJ(T,”” “,T), (T, ”””, T))

(m,, g,,$,) = ~ [e,] Q s for i = {1,2,3}

p=&[ifeleze3]Q

~ = XlUlrZU~3

9 = 92 LJ93

x[A(zl,. ..!&)en@~ = (~, ~((wl,’ ””, pn), (al,”.. , %)) . x Ke] e[pk/zk] $[ah/zk], {})

XiIe(el,. ”-, en)l e~ = (m’ u ~“, g’, F’)

where (#, g’, F’) = g ((qI, . . . ,qn), (al,. . ., an))

T“ = 7r[(~l, . . . ,~n)/f I Vf G F] u ~~i

,:1

(~,g,F~= X[e]eg

p, = f[et]e f0T2_={l,n}

ai = (~.,–,–) = A[e,]g7f fori={l,. --, n}

TF ((pi,...,p~),(al,a~))a~)) = (J-, TF, {})

Figure 8: Facet Analysis for higher order Programs

106

