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Abstract
Recursive programs may require large numbers of procedure calls
and stack operations, and many such recursive programs exhibit
exponential time complexity, due to the time spent re-calculating
already computed sub-problems. As a result, methods which trans-
form a given recursive program to an iterative one have been inten-
sively studied. We propose here a new framework for transform-
ing programs by removing recursion. The framework includes a
unified method of deriving low time-complexity programs by solv-
ing recurrences extracted from the program sources. Our prototype
system, ')(�*�+�,.- , is an initial implementation of the framework, au-
tomatically finding simpler “closed form” versions of a class of
recursive programs. Though in general the solution of recurrences
is easier if the functions have only a single recursion parameter, we
show a practical technique for solving those with multiple recursion
parameters.

Categories and Subject Descriptors D.1.2 [Automatic Program-
ming]: Program transformation; D.3.3 [Language Constructs and
Features]: Recursion; F.3.1 [Specifying and Verifying and Reason-
ing about Programs].

General Terms Languages, Performance.

Keywords Program transformation, recurrences with one or mul-
tiple parameters, efficient time complexity.

1. Introduction
Linear recurrences play a significant role in many areas of com-
puter science. For example, in the field of complexity analysis,
recurrence relations can be used to compactly express complexity
measures. The solution of the recurrences provides a closed form
expression which can be evaluated to decide if mobile agents can be
allowed to run in a given context [16], assist programmers to reason
about the behaviour of the programs, optimize their programs [22],
and even discover bugs that reduce the efficiency of a program, that
may be otherwise difficult to detect. In addition, many algorithms
are naturally expressed in a recursive form, although there may be
more efficient closed forms of the algorithms.

There is a significant need for efficient software systems that in-
corporate recursive functions. A common concern with such soft-
ware is to reduce the time or space complexity of the recursive func-
tions, and since much of the complexity is due to the time spent in
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recalculating already computed sub-problems, an improvement is
to compute each sub-problem only once, remembering a specific
number of previous values.

Traditional techniques for program transformation are tupling
[4, 21], memoization [1, 6, 7, 14, 19, 24], tabulation [2, 3, 13, 23]
and static incrementalization [18].

Tupling aims to compute multiple values together in an efficient
way, leaving open the possibility for parallel evaluation. It can be
made automatic on subclasses of problems [5] and to work on more
general forms [8]. It is also extended to store lists of values [23],
but such lists are generated in a fixed way, which is not the most
appropriate way for many programs. A special form of tupling can
eliminate multiple data traversals for many functions [13].

Memoization has the advantage that the original recursive pro-
gram needs little change and only values needed for the solution
are computed. However, separate table management has an inter-
pretative overhead and a general strategy cannot be efficient for all
problems.

The tabulation method involves a compiled table management,
no interpretative overhead, specialized computation strategy and
also optimized space usage. Tabulation manually rewrites the orig-
inal program and may compute values that are not needed for the
solution.

Static incrementalization has the advantage of a transformation
based on computation increment. Compared with previous meth-
ods that perform memoization or tabulation, the method based on
incrementalization is more powerful and systematic and it stores
only values that are necessary for the optimization.

Program transformation by solving recurrences is a novel
and powerful technique that is capable of obtaining low time-
complexity run-time closed form (in terms of algebraic operations)
non-recursive programs from exponential recursive programs. Here
is an example, the “Domino Puzzle”, which can be efficiently trans-
formed to a closed form by our technique, but not by the traditional
techniques. This puzzle asks the question: How many ways, 0214365
are there to tile a 798:3 rectangle with dominos? A solution program
( ;<1>=�?�5 ) derived using the approach suggested in [12] consists of
two mutually recursive functions:

@BA
CBDFEHGJIHAKCMLON�D%P�Q�R�SUTR�V�W�RXGJIYA�CZL[T\D]P�Q�R�SONR�V�W�R^@_AKC%`ba�Ddceagf6hiAKCj`eT\D
khlA
CBDFEHGJIHAKCMLON�D%P�Q�R�SONR�V�W�RXGJIYA�CZL[T\D]P�Q�R�SUTR�V�W�R^@_AKC%`mT\DdcbhlA�Cj`<a�D�k
A transformed “Domino Puzzle” program ( ;<14n�o)pq3r5 ) obtained
automatically by our method is:

@ts�uvA
CBD%E
wYxxzyd{}|�~2{ w |J�>����{>{�� wl� � � � y { w�� ~ � � � w {���~ � � � � y { � ~ � � �z� khBs�u\A�CBD%E�� x��.��x ��� ��� yv��� � � xz� �y � � y���� � � xz� �y �� � � k
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Another example that cannot be transformed to a closed form using
the traditional techniques is this Fibonacci-like function, which has
two recursion parameters:

��� T�A�����CBD]EHGJIHAzA��	�YT\D�

�HA�C�����DzD2P�Q�R�SXTR�V�W�R ��� T�A�� `eT�� C%`<a�D�c ��� T�A�� ` a��zC2`���D
k
The transformed program obtained automatically by our method is:

��� T\s
uvA���� CBDFE
xy�{4| ~ � �� ��{ xz��� �y ��� � � ����� � y � ~ xy�{4| w � �� ��{ x���� �y � � � � �!�"� � y � k

For efficiency, in practice we may retain the base cases of the
functions in the final programs. The transformed functions have
no recursive calls, and specify a compact and efficient form for
calculating the results. The most time-costly component of the
efficient form is the calculation of an exponentiation #%$ , but such
a computation can be done in ;<14n�o)p'&
5 time. We use mathematical
notation in the final program for clarity, for example, ( # instead ofW*)��
P,+.-�/

and #,$ instead of 0 
*1%+.-3254�/
, as the use of the programming

notation results in long and unclear programs. The use of real-
valued variables (for example ( 7 ) may introduce concern about the
precision of values, however sufficient precision is easily achieved
using (for example) an arbitrary precision package such as the
MPFR library [26].

The class of programs that can be transformed effectively is the
class of programs that have corresponding recurrences that may be
solved using automatic tools such as 687�9�:8;�687�9�<>=�7 . This permits a
wide range of functions, including:

? Functions with one recursion parameter and other symbolic
parameters.? Recursive calls on one branch - single recursive branch (SRB),
or more than one branch - multiple recursive branches (MRB).? Different types: linear recurrences of finite order with constant
coefficients, linear recurrences with variable coefficients or di-
vide and conquer recurrences.? Simple conditionals containing polynomial expressions or ones
containing a single recursive call. SRB programs with such a
recursive test are called SRB-RT.? Functions with multiple recursion parameters.

In this paper we show useful function templates and the types of
recurrences that can be extracted from them, but we avoid show-
ing how the recurrences are solved, and just name the particular
solution method used. The emphasis is on program transformation
rather than solving recurrences.

This paper’s contributions are:

? We present a new technique, program transformation by solving
recurrences, for obtaining low-complexity non-recursive pro-
grams. This technique solves the implicit recursion equation
found on each path and eliminates any recursive conditionals.? We describe and target an important class of recursive pro-
grams; the ones that contain linear recurrences of finite order
with constant or variable coefficients and divide and conquer
recurrences. The class can be extended to programs with many
parameters but only one recursion parameter. Moreover, we ad-
mit an extension of the SRB functions; those with recurrences
in conditionals, such as in this function:

@ a
A
CBD%EYGJIHA�CZLON�D]P�Q�R�S[TR�V�W�RHGJIXA @ a
AKCj`eT\DBAYTvN�D2P�Q�R�S @ a
AKCj`eT\D�cC�R�V�W�Rmagf�Cgk

? We present code transformation techniques corresponding to
the types of the programs that we consider, SRB, MRB and
SRB-RT. We present experimental results that demonstrate the
effectiveness of the algorithms on a set of benchmarks.

? We show how a specific useful class of recursive functions with
multiple recursion parameters may be methodically reduced
to a more complex function with one recursion parameter. In
turn this function may be expressed as a recurrence using the
techniques outlined, leading to an efficient program for the
original recursive function. There is no general method for
solving recurrence relations with more than one parameter,
but the class of functions that can be solved by our technique
appears useful.

Section 2 introduces the terminology used in this paper, the formal
basis of the approach, and characterizes the class of recursive func-
tions analyzed in terms of their corresponding recurrences. Section
3 explains the analysis strategies for each of the categories of pro-
grams. Section 4 shows how functions with more than one recur-
sion parameter may be methodically reduced to a more complex
function with one recursion parameter. Section 5 describes 7�D�98E
F�G ,
and presents some preliminary results, and we conclude in Section
6 with discussion about the method.

2. Recurrences in programs
In this section we explore the terminology and definitions used by
our approach. The transition from functions to corresponding re-
currences is straightforward. For example, the recurrences corre-
sponding to the functions 0 and H from the Domino Puzzle are:

0 ? I 0 ?KJMLONQPSR H ?TJVUH ? I 0 ?KJVUVN H ?TJML
Initial conditions for the Domino Puzzle are 0XW IZY , 0 U I\[ ,H W I][ and H U�I^Y . For the recursive calls we may have cor-
responding linear recurrences of finite order with constant coef-
ficients, linear recurrences of order 1 with variable coefficients or
divide and conquer recurrences. We allow self and mutual recursive
calls in function definitions. The recurrences may be linear or non-
linear recurrences, and each of these can be in turn, self, mutual or
auxiliary recursive.

DEFINITION 1. (Self, Auxiliary and Mutual Recursion): A function_
is said to be self-recursive if its recursive set of functions, from

its call graph, is simply itself ` _Ma
. Mutual recursion is a form of

recursion where two functions are defined in terms of each other. A
function is said to be auxiliary recursive if the expressions contain
auxiliary functions that have the recursive calls as parameters. An
example of the use of an auxiliary function is b�c8d 15e P 143�f Y 5*g Y�[ 5 .
We also use the terms self, auxiliary and mutual when talking about
the corresponding recurrences.

If the recursive functions contain conditional constructs (guards),
prior to their recursive calls, they are called conditional recursive.

DEFINITION 2. (Conditional Recursive): A function call is said to
be conditional recursive if there exists one or more guards prior to
its recursive call(s). A recurrence is said to be conditional recursive
if its corresponding function call is conditional recursive.

Another classification, based on the structure of the conditionals is
as follows:

DEFINITION 3. (Recursive Calls in Conditionals): A function, or a
set of mutually recursive functions, is said to have recursive calls in
conditionals if at least one of the guards from its definition contains
a self recursive call.
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� � ����� � Variables �_ g
	 g�� � 
�������� � Function names �3 � � � Integer constants �� � ��������� � Boolean expressions ������
I

�! ��
U or

�
L
 ��

U and
�
L�"�#�

I = U I = L
 = U%$I = L

 = U'& = L
 = U'( = L

 = U') = L
 = U'* = L+ I = L

 + $I = L
 + & = L

 + ( = L
 + ) = L

 + * = L= � '�,�-�. � Arithmetic Expressions �= ���
I 3  �  30/l=  = UVN = L

 fB=_ = � 
 ,�-�. � Functional Expressions �_ = �#�
I =  +  31/ _ =  �_ = U N

_ = L
 f _ =+ � 
 * ���2� � Function Terms �+ ���

I
_ 1 � U N 3 U g434343
g ��5 N 3 5 5  �_ 1 � U 6 3 U g43�343�g ��5 6 3 5 57 � +�8 � 8 � Statements �7 ���

I 9�: � 8�; ��<=7 U ��>�?��@7 L  7 U 7 L  �_ =A � B���C�> � Declarations �A ���
I

_ 1ED U g434343�gFD 5 5 I 7 ;G � ( ��H�I � Program �J ���
I

ALK
Table 1. The language syntax

An example of a function with recursive calls in conditionals is
the

I2M
function given previously. The analysis of these functions is

more difficult, but still tractable.

DEFINITION 4. (Recursion and symbolic parameters): We distin-
guish two groups of parameters: recursion parameters whose size
could change via recursive calls and symbolic parameters whose
values do not change during recursive calls.

More in depth classifications of the recursion parameters can be
done (constant, accumulative or roving parameters) but we focus
here on first-order recursive functions with one recursive parameter
only.

2.1 The approach

Our goal is to transform exponential recursive programs in the sim-
ple first-order recursive language defined in Table 1 into equivalent
programs with lower complexity. Note that the suffix

A�N
in Table 1

denotes a list of one or more distinct syntactic terms. A Program is
a set of function definitions; each function definition is a set of base
cases followed by one or more recursive calls on single or multipleGJI

branches. Recursion is the only iterative construct.
We limit the form of programs to those which match templates.

These templates are general enough to capture a wide class of
programs, but each template has a corresponding set of recurrences,
and hence extracting the recurrences from the programs that match
the template is a trivial task.

Thus, from the initial specification, program
J0O P4O Q

, we want
to obtain a final program

JSR2P4TFU
which computes the same value,

that is for all functions
_

in
J O P4O Q

and values D �WV o�b 1 _ 5 ,XZY Y _ O P4O Q 1ED 5\[ [ I
XZY Y _ R2P4TFU 1ED.5\[ [ . Note that

XZY Y J [ [ is the evaluation func-
tion defined inductively over the (functional) programming lan-
guage. Moreover, we intend to preserve this equivalence between
each step of the program transformation, such thatXZY Y _^] 1ED.5\[ [ I

X_Y Y _^]a` U 1ED 5\[ [
for all b such that c�d�cfe ) b &hg d%c)n .

We define a space/time cost function i U
Y Y J [ [ which measures the

number of calls needed for a function. The principal reduction rule
we use removes all recursion from a program and so

i U
Y Y J R2P4TFU [ [ I Y & i U

Y Y J O P4O Q [ [

A second cost function i L Y Y J [ [ measures the number of arithmetic
operations in a program. For all transformations in our framework,i L Y Y J ]a` U [ [ ) i L Y Y J ] [ [ . We improve a program by reducing either (or
both) of these costs:

DEFINITION 5. (Rule): A rule
J fkj J%l

is a basic step in the
transformation of a program

J
to
J l

that preserves the aboveX
equivalence and either improves the program, or leaves it un-

changed.

The rules are applied according to some strategy:

DEFINITION 6. (Strategy): A strategy is an algorithm for choosing
a sequence of rule reductions in the program transformation pro-
cess for a particular type of program.

Our transformation applies to three sub-classes of recursive func-
tions, SRB - single recursive branch, MRB - multiple recursive
branches and SRB-RT - recursive test(s) programs. SRB and MRB
recursive programs may look limited, but they are able to express
all integer linear recursive functions having one recurrence param-
eter.

These three classifications of the recursive programs are not
disjoint; we may have programs with multiple recursive branches
and with recursive calls in conditionals.

A new idea in our transformation is to exploit the use of sym-
bolic computation. Symbolic computation, in contrast to numeric
computation, deals with manipulating formulas instead of calculat-
ing numbers and thus the obtained generalized solutions can con-
tain variables and parameters. 687�9�:8;�687�9�<>=�7 allows for symbolic
computations, and explains why it is used as the engine for our
transformer.

For each program in our language, there is a corresponding
system of recurrence equations, composed of the union of the base
cases ( m�c�nFo�p_q ) and recurrences ( rso4t�p_q ). For the Domino Puzzle
program

Jvu�w
consisting of the functions 0 and H , the system is:Jvu�w j `2rso4t�p_qSxym�c�nFo4pZq a u�w

I
z{| {} 0 ? I 0 ?KJ L NQPSR H ?KJ U g0 W I Y g 0 U'I [ gH ? I 0 ?KJ U N H ?TJML gH W I [ g H U'I Y

~ {�
{� u�w
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Note the clear correspondence between the programs and the sys-
tem of recurrence equations. This correspondence is so direct and
immediate that sometimes we swap from the recurrence view to the
functional program view without comment.

The solution of this system of recurrence equations for 0 ? andH ? is a set of mappings `
0 ? j = u g H ? j = w a
from our functions0 and H to closed form expressions = which express the same set

of evaluations as the original system.
It is clear that the mappings correspond to a new program

J l
which computes the same values as the original

J
, and so we can

now rewrite our program as

@qs�� u\A�CBD]E�� u khBs���u\A
CBDFE�� w k
More formally we can express this as:

DEFINITION 7. For a program
J

composed from a set of functions�
I ` _ U g434343�g _ ? a with a corresponding system of recurrence

equations `�r o t�pZq x m�c�nFo�p_q a � , we define the
���f^j reduction rule

`2rso4t�p_qSxym�c�nFo4pZq a � ���fkj
	�

] _ ] j = ]�� �

such that for each
_ ] � �

and 3 � V o�bb1 _ ] 5 , XZY Y _ ] 14365\[ [ I
XZY Y = ] [ [ ,

and = ] is a closed form expression (without recursion).

Note that since there is a clear correspondence between the pro-
grams and the system of recurrence equations, we can also view

this reduction rule as one from program to program:
J ���f^j J l

, and
since the final program

J l
has no recursion i U

Y Y J l [ [ I Y & i U
Y Y J [ [ .

DEFINITION 8. We define the
�f^j simplification rule	



] _ ] j = ]�� � �f^j 	


] _ ] j = l ] � �

such that i L Y Y = l ] [ [ ) i L Y Y = ] [ [ and
XZY Y = ] [ [ I

XZY Y = l ] [ [ .
All recurrence types that we consider in this paper have decision
procedures supported by 687�9�:8;�687�9�<>=�7 . We use the F E 

V���R built-in

function to implement an
���f^j rule, and the E G�� 0 V)GJI�� function to

implement an
�f�j rule:

? F E 

V���R��������������! #"%$�u&�����(' ) 2+* ,-�KS/./032}S/.
solves for a set of

recurrences 1 .? E G�� 0 V)GJI��2�3�4. simplifies expression = .
We also use the F R656798�R��3� �;:9<�=>. from 687�9�:8;�687�9�<>=�7 to solve simple
(in)equalities over a domain. The rso4t�p_q equations can involve
terms of the form 1 ? ` ] where b is any fixed integer. Equations
such as 1 W I@? W can be given to specify base conditions. If not
enough base conditions are specified, F E 

V���R will give solutions
with undetermined constants.

We now present the forms of the recurrences examined in this
paper, showing how each is solved by 687�9�:8;�687�9�<>=�7 , and with ex-
amples of corresponding functions.

2.2 Linear recurrences of finite order with constant
coefficients

A linear recurrence of finite order with constant coefficients has the
form A

? I # UOR
A
?TJVU N 3 343 N #CB R

A
?TJ B NED 143r5 (1)

for #CB $I [ , 3 *GF , where F is a positive integer. The coefficients#IH are real numbers, and if #JB is not zero, we say that the recurrence
has order F . The function D 143r5 is definable on K-L Y F g�M[5 , and is

the non-homogeneous part of this recurrence. If D 143r5 I [ , then
we say that the recurrence (equation 1) is homogeneous, otherwise
it can be a sum of polynomials and exponentials. An example of
a function with a corresponding homogeneous recurrence is the
Fibonacci function.

Solutions to linear recurrences of finite order with constant
coefficients are found by systematic means, by using generating
functions or by noticing that N ? is a solution for particular values
of N . If the recurrence is non-homogeneous, a particular solution
can be found by the method of undetermined coefficients. The
final solution is the sum of the solutions of the homogeneous and
particular solutions. 687�9�:8;�687�9�<>=�7 can provide an exact symbolic
solution using matrix powers [25].

An example with symbolic parameters is in the computation of
Chebyshev polynomials containing one symbolic parameter, # I?�O 7 1 + 5 . These polynomials find practical application in the field
of computer graphics when calculating boxing and intersections of
parametric curves and surfaces [11]. A sample is:�;PQ� � A
C �;R"D]EYGJIHAKCMLON�D%P�Q�R�SUTR�V�W�RHGJIHAKCjL[T\D%P�Q�R�SSRR�V�W�Rma f%RtfT�;PQ� � A�Cj`eT��;R)D `U�;P9� � A�Cj` a��&R
D
k
The transformed function is much faster to compute:�;PQ� � s
uvA�C ��R"D%E UL

AzAVRi`XW `:T�cYR L D ? cOAVRqc�W `:T�cER L D ? D
k
2.3 Linear recurrences with variable coefficients

Linear recurrences with variable coefficients that have a solution in
closed form are more difficult to classify. Exponential generating
functions may be used, which after taking derivatives, lead to an
ordinary differential equation (ODE). Unfortunately there are no
general methods for finding closed form solutions to the resultant
ODEs. However, an algorithm to solve the first-order case (equation
2) exists [20]. The general form is:A

? I[Z 143r5 R
A
?TJVUONED 143r5 (2)

where Z 143r5 and D 143r5 are polynomials in 3 . For these kind of
recurrences there is only one initial value, usually it is

A]\
, but

depending on the domain of Z 143r5 and D 143r5 .687�9�:8;�687�9�<>=�7 can derive solutions for this type of recurrence
[25]. The example below is an average-case time analysis of quick-
sort:�)uvA
CBD%EYGJIHA�CZLUT\D]P�Q�R�S[TR�V�W�RXAzT6c U?

D�fT��u\A�Cj` T\D�ceaq` U?
k

The transformed function is presented below, where ^ is Eu-
ler’s constant (which can be evaluated to arbitrary precision in687�9�:8;�687�9�<>=�7 ), and _i1 #Mg &
5 is the Polygamma function, the 143 N
Y 5;`3a logarithmic derivative of the Gamma function, which is com-
putable in constant time.�)u�s�u\A
CBD]EY` ��C]cea�b.A�T�cbC.Ddcea
A�T6c C.D3cgAKN���T6cbC.D
k
2.4 Divide and conquer recurrences

Divide and conquer algorithms are a powerful tool for solving con-
ceptually difficult problems, and also providing a natural way to
design efficient programs, as the algorithms may often be executed
on multi-processor machines, making efficient use of shared mem-
ory and so on. The recurrences have the form:A

? I # R
A
� d NYD 143r5 (3)

where # g.& are positive, and D 143r5 a function whose domain is the
set of positive integers.
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In order to solve divide and conquer recurrences, we could use
either the rewrite or substitution techniques. Depending on the form
of the recurrence, we can rewrite the terms in easier-to-solve forms.
For recurrence

A ] I
A��
y N

A��
� , we let

� ] I
A

L
�
, and the

recurrence becomes
� ] I

� ] JVU N
� ] JML . In the substitution method,

the idea is to guess the solution and then try to prove it explicitly,
by induction.

There are good reasons to make divide and conquer algorithms
more efficient. Besides the slowness of recursion, it may also be
more complicated than some iterative approach, especially if large
base cases are to be implemented for performance reasons.

Strassen’s algorithm multiplies two 3 823 matrices in ; 143 L�� � U�5
time, instead of ;<143 � 5 . The complexity function of the algorithm
runs in ; 14n�o)pq3r5 time, but we can improve it to be approximately;<1 Y 5 . The function is:

u��&�&$�u u&�
	�A
C:D%EHGJIHAKCjL[T\D%P�Q�R�SXTR�V�W�R��9f�u
���;$�u�u&�
	�A ? L D�cOT�� fqA ? L D L k
The equivalent transformed function is the following:

u��&�&$�u u&�
	�s�uvA
CBD]E���� ��� � y � �� ��� y `���C L k
3. Strategies for transforming functions
Here we define the strategies used for each of the types of functions,
SRB, MRB and SRB-RT. For each type of function, we define
the syntax first, and then give the strategy, along with a worked
example.

3.1 Strategy for SRB functions

An SRB function is a recursive function
_

with one or more base
cases and with a single recursive branch, containing one or more
recursive calls. A template for this is:� A��gD%EYGJI�� W A���D%P�Q�R�S�� W A���DR�V�W�RHGJI�� U A���D%P�Q�R�S�� U A���DR�V�W�RHGJI! " " R�V�W�R#�&���\s���$$#%#�uvA���D
k
where the &�o4t _ t�c�n�n�n�1ED 5 expression has one of the following forms:R U('
) A��F`mT\Ddc�*�*
*�cER B '�) A��F`�+�D�c-,�A���D,�A���D '
) A��F` T\D�c.,�A���DR '�) A��0/$�JD�c.,�A���D
and 	 is any function (including

_
) that belongs to this SRB pro-

gram. We name the set of all these functions as SRB functions. An
SRB program contains one or more SRB functions.

To ensure that the recurrence is well defined, all base cases rele-
vant to a function must appear in the function body. This simplifies
the process of constructing the equations for the base cases m�c�nFo4pZq
and recursive cases rso4t�p_q . We distinguish 3 steps in transforming
SRB functions.

Given an SRB program
J

, we apply firstly the
�J�f�j rule and

then the
�fkj rule:

(Step 1) Extract the recurrence equations and base cases from the
body of the functions of the program:J � j^`2rso4t�p_qSxym�c�nFo�p_q a �
(Step 2) Apply the

���`21
rule:

`2rso4t�p_qSx m'c�nFo�p_q a � ���fkj
	 

] _ ] j = ] � �

(Step 3) Apply the
�`31

rule:	 

] _ ] j = ]�� � �fkj 	 


] _ ] j = l ] � �
Note that at any stage we can reconstruct a program, so we can
view this as J ���fkj J

_ N 7 �f^j J
_ 7

We demonstrate the three steps of the SRB strategy using the
Chebyshev function:
(Step 1) Extract the recurrence equations and base cases:J5476$8�9

� j `2rso4t�p_qSx m'c�nFo�p_q a 476$8�9 �j ` `�t�:Lo$; ?�I P
K # K t�:Lo$; ?TJVU f t�:�o<; ?TJML

a
x `�t�:Lo$;3W I Y gFt�:�o<; U I # a a 476$8�9

�I `2t�:�o$; ? I P
K # K t�:�o$; ?KJVU f t�:Lo$; ?TJML gt�:�o$; W I Y gFt�:�o$; U�I # a 476<8
9

�
(Step 2) Applying the

���`31
rule gives:= �;PQ� � ? 1 T

a AzA Ri`�> `:T�cYR L D ? cOAVR:c?> `:T6cER L D ? D�@ 476<8
9
�

(Step 3) Applying the
�`31

rule gives:= �;PQ� � ? 1 T
a AzA Ri` > `:T�cYR L D ? cOAVR:c > `:T6cER L D ? D @ 476<8
9

�
Note that the application of the

�f^j rule has no effect here,

since the result from the
���fkj cannot be (further) simplified. The

equivalent transformed program is:�;PQ� � s
uvA�C ��R"D%E UL
AzAVRi` W `:T�cYR L D ? cOAVR:c W `:T�cER L D ? D
k

3.2 Strategy for MRB functions

An MRB function is a recursive function b-&
; with one or more
base cases and with more than one recursive branch, containing at
least one recursive call for each branch. The template is:= � � A"�gD%EHGJIA� W A���DFP�Q�R�S?� W A���DR�V�W�RYGJI�� U A���D%P�Q�R�S�� U A���DR�V�W�RYGJI�B W A���D]P�Q�R�S��&���\s��4$$#%#�uvT
A���DR�V�W�RYGJI�B U AC�vD]P�Q�R�SS������s6�4$$#%#�u�a�A���D� " " 
where the

��R 8�s/8
-�V
V�W G +
D�/
,
��R 8�s/8
-�V
V�W MK+
D�/

, ... expressions have the
same forms as in SRB functions with the limitation that the recur-
sive calls are only self and not mutual recursive calls. We name the
set of all these functions as MRB functions. A program formed by
at least one MRB function is called an MRB program. Note that
there is no way to transform MRB programs into SRB programs,
so the MRB functions must be treated as a separate case.

The strategy for MRB functions is to consider each of the re-
cursive branches in a specific order. This order is given by ordering
the continuous domains over which a particular recursive branch

applies. For each of these branches, we apply the
�J�f^j and

�fkj
rules separately, folding the results from the previous solution into
the next.

Given an MRB program
J

, we transform each MRB function_ ] using the following strategy:

(Step 1) Extract a set of pairs EGFqo�d V0H ] gFrso4t�p_q B �]�I , where Fqo�d VGH ]
represents the semi-closed interval over which a particular recur-
rence equation applies, and rso4t�p_q B �] represents the recurrence
equation. Also extract the base cases from the function:J j EKJ(E Fqo�d VGH ] g
r o4t4pZq B �] IML g�m'c�nFo�p_q I
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Note that here we annotate the recurrence equation with the symbolF ] , which is the order of the recurrence for this branch (the number
of initial conditions needed to solve the recurrence). The domain
of an MRB function is the union of all the Fqo�d V0H ] intervals. We
may have different conditions with the same rso4t�p_q B �] expression.
We can have simple constraints, for example `�3  3 )�� a , or more
complex conditionals, such as `�D  D L'f���D N P ( [

a
. In the case

of a split interval, we generate two EGFqo�d V0H ] gFr o t�pZq B �]�I pairs.

(Step 2) Order the elements in the set J EGFqo�d VGH ] g�rso4t�p_q B �] I L by
ordering the intervals Fqo�d VGH ] . Determine the cardinality (or length)t�c�& V 1�Fqo�d VGH ] 5 of each interval Fqo�d VGH ] .
(Step 3) The following algorithm performs the transformation:

I 

��R�- 8vQ����T<"	Q:�� ] �&��������� B �]	� +vG�S 

��5�R�� I�� 
 � W\P�R 0 M�/
GJIHA�
 LUT\D%P�Q�R�S��
������������������� �����! "#!$w�% $w&%(' xR�V�W�R� 
����������� �*)�+ � ��x-, ' � ��x {�. w |v�0/2131213/ + � � � , ' � � � {4. w65 �87  "#!$w�% $w&%(' � k

In this algorithm we make a reasonable assumption that the order
of the recurrence equations is less then the cardinality of the inter-
vals Fqo�d VGH ] . When this assumption is not satisfied, the algorithm
requires a search for all 9 ] expressions in order to compute all the
base cases. It is for this reason that we calculate the cardinality of
the intervals in step 2.

We demonstrate the steps using
I G , an example of an MRB

program:

@ T
A
CBD%EYGJIHA�CZLON�D]P�Q�R�S[TR�V�W�RHGJIXA�CZLXT\D%P�Q�R�SXTR�V�W�RHGJIHA�C;:=<
N�D]P�Q�R�S @ T
A�Cj`eT\D�c @ T
AKCj`<a�DR�V�W�RHGJIHA�C;:YTvN
N�D%P�Q�R�SOa f @ T
AKCj`eT\D�cbCR�V�W�R @ T
A�Cj`<a�D�cbCqk
(Step 1) Extract the base cases and the recursive equations. The
base cases are rso4t�p_q I `�e Y W I Y g e Y U I Y

a
, and we then find all

the domains of the branches:Fqo�d V0H U I `�3 � K  3 &�� [?> 3 $� ` [ g Y
a�a j Y

P g � [ 5Fqo�d V0H L I `�3 � K  3 & Y�[ [@> 3 $� 1BA U x ` [ g Y
a 5 a j Y � [ g Y�[�[ 5Fqo�d V0H � I `�3 � K  3 $� 1BA U xCA L x ` [ g Y

a 5 a j Y
Y�[�[ g6MU5

and hence we have the following set of recurrences associated with
the domains: J E Fqo�d V0H ] gFrso4t�p_q B �] IMLDz| } � 1�Fqo�d V0H U 5 Y

P g � [ 5*g e Y ? I e Y ?TJVU N e Y ?TJML �Mg� 1�Fqo�d V0H L 5 Y � [ g Y�[ [ 5*g e Y�? I P
K e Y�?TJVU N 3 � g� 1�Fqo�d V0H � 5 Y

Y�[�[ g6MU5*g e Y�? I e Y�?TJML N 3 �
~ �
�

(Step 2) The set ordering is Fqo�d VGH U & Fqo�d VGH L & Fqo�d VGH � .
(Step 3) We then apply successive folding with the

���f^j and
�f^j

rules:J rso4t�p_q B xU x m�c�nFo�pZq L � ���fkj �f^jE9 UD
J rso4t�p_q B yL x `8e YGF�HSI 9 U 1B��I�5 a L � �J�f^j �f^jE9 LD
J rso4t�p_q B �� x `8e Y H�H I 9 L 1JI&I�5*g e Y H � I 9 L 1JI�K
5 a L � ���fkj �f^jE9 �

Each mapping 9 ] is of the form `�e Y ] j = ] a , and the equivalent
transformed program is:

@ T\s�uvA
CBDFEGJIHAKCC:=<
N�D2P�Q�R�S
xxMLd{ w { xyd{}| w � N �>�>����{ w N ~ � N ��~ { xy�{}| ~ � N �>�z��{ N ~ � N �R�V�W�RYGJIXA�C;:HTvN
N�D]P�Q�R�S w �r~;O x ��� wQPR�V�W�R
O y w O � { w |J�z� w-R 1 �TS N { w |v� y ��~ R 1 S N P w-R 1 � N { w |v� y � P ~ R 1 � N { P � y k

Experiments show that the runtime of the final transformed pro-
gram

I G s�W�+zS�/
is around 1-2 microseconds, for values of 3 ranging

between 1 and 1000. By contrast, the original program took more
than Y I&U seconds to calculate

I G +WVGX�/ . The implementation has been
done in C and we used the built-in 0 
*1 function. For future research,
we want to extend the class of the MRB programs to include mutual
recursive functions as well.

3.3 Extension to recursive calls in conditionals (SRB-RT)

We have presented the strategies for removing recursion for two
classes of programs, SRB and MRB. However, in practice, more
complicated examples have recursive calls in conditionals or even
as arguments to auxiliary functions. We extend the present frame-
work by including recursive calls in conditionals for SRB pro-
grams. For the sake of simplicity, we limit the discussion to self
recursive functions. Consider an SRB-RT function template,

W*��48�
P
,

which has one recursive call in the conditional
8�
\S/5�s
��R 8�s/8
-�V
V

:

u&� � �
�vA"�gD%EHGJIA� W A���DFP�Q�R�S�� W A���DR�V�W�RHGJI  " " R�V�W�RYGJI#��<"	Q:�s��&���\s��4$$#%# 5 P�Q�R�S��&���\s��4$$#%#}T�Y
A���DR�V�W�R ,�A���D�k
where D 1ED.5 is a function of the input D , and t�o�d V _ &�o4t _ t�c)n�n 5
contains one recursive call

W*��48�
P,+
D�Z��,/
of order [ ) F , and[ � K . &�o4t _ t�c�n�n Y Y 1ED.5 has the same form as in SRB or MRB

functions and has recursive calls of order \ ) F .
For simplicity we do not consider trivial cases in which pro-

grams have recursive conditionals which are either always
P��67�R

or
always

I8-�V�W�R
. However, we are concerned with the cases in which

the programs take multiple paths at runtime. We construct a path
analysis for SRB-RT functions, and we keep track of a domain
variable ] which identifies those intervals that still have to be pro-
cessed. ] is an interval, or a union of intervals, and we initialize
it to be the set of natural numbers K less all initial base cases. The
iterative analysis terminates when ] I_^ .(Step 1) For the input D I F (the order of the recurrence relation),
substitute the result of evaluating the base case &/B J 5 1 F f�[e5 into
the recursive call in the conditional:

t�o�d V _ &�o4t _ t�c�n�n 5 Y &6B J 5 1 F f`[ 5 6 n &
;G&Fe�1 F f`[ 5\[
If the result is

P��67�R
, then we analyse the call &�o4t _ t�c�n�n Y Y 1ED.5 , pro-

ceeding with step 2. If the result is
I8-�V�W�R

, then we analyse D 1ED 5 ,
proceeding with step 3.
(Step 2) Solve the recurrence relation for &�o t _ t�c�n�n Y Y 1ED.5 , where them�c�nFo�p_q set is the set of corresponding base cases:

`2rso4t�p_qSx m'c�nFo�p_q a � ���fkj �f^j =�1ED 5
Substitute the =�1ED fa[e5 into the recursive call in t�o�d V _ &�o4t _ t�c)n�n 5 ,
and solve the (in) equation:

t�o�d V _ &�o4t _ t�c)n�n 5 Y =�1ED f�[e5 6 n &
;G&Fe�1ED f�[e5\[
The solution of this is a union of disjoint ordered intervals, and we
identify the least such interval intersected with the domain ] , here
termed bcb . The complementary set of intervals, b � , is ]	d&bcb .
Thus we can conclude that, ekD � bcb , the branch taken is the

P�Q�R�S
branch. Update the domain ] I b � , and if ] $I_^ then go to step
3; otherwise the algorithm terminates.
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(Step 3) Substitute D 1ED�f [e5 into the recursive call in the condi-
tional t�o�d V _ &�o t _ t�c�n�n 5 , and solve the (in) equation:

t�o�d V _ &�o t _ t�c�n�n 5 Y D 1ED f�[e5 6 n &
;G&Fe�1ED f�[e5\[
The solution of this is again a union of disjoint ordered intervals,
and we identify the least such interval intersected with the domain] , here termed

� b . The complementary set of intervals,
�%�

, is]	d � b . Thus we can conclude that, ekD � �%� , the branch taken is
the

R�V�W�R
branch. Update the domain ] I

�%�
, and if ] $I ^ then

go to step 2; otherwise the algorithm terminates.

@ a
A
CBD%EYGJIHA�CZLON�D]P�Q�R�S[TR�V�W�RHGJIXA @ a
AKCj`eT\DBAYTvN�D2P�Q�R�S @ a
AKCj`eT\D�cC�R�V�W�Rmagf�Cgk
We demonstrate these steps using

I2M
, an example of an SRB-RT

program, first initializing the domain to be ] I K d�` [ a
.

(Step 1) For 3 I Y , substitute
I2MK+ G Z G / with Y in the inequality15e P 1 [ 5 ( Y�[ 5 . The result is 1 Y ( Y�[ 5sjZe5c)n�nFo , and we apply step

3.
(Step 3) Solving P

K 143 f Y 5 ( Y�[ over K results in 3 ( U , thus� b I 3 ( U , and
�%�

I 3 ) U . We now update the domain with� b , resulting in ] I 3 ( U . We move on, considering the other
branch, using step 2.

(Step 2) Use the
���f^j and

�f^j rules on the
P�Q�R�S

branch:J � L �6���j `2rso4t�p_qSx m'c�nFo�p_q Q 6$8 P a � L ����� �j `�e P
� r m ? I e P

� r m ?KJ UBN �,g e P
� r m�� I Y8P

a � L �6��� ��J�f^j `�e P
� r m fkj ��1 fB7 N 365 a�f^j `�e P
� r m fkj ��1 fB7 N 365 a

Solving � K 1 fB7 N 3 f Y 5 ( Y�[ over K results in 3 * �
, thusbcb I 3 * �

, and b � I ^ . We now update the domain with b � ,
resulting in ] I ^ , and our algorithm will terminate. The final
transformed program is:

@ a�s�u\A
CBD]EYGJIHAKCMLYN�D%P�Q�R�SXTR�V�W�RYGJImC��A�eP�Q�R�S^agf�CR�V�W�R �qfqAz` �qcbC�D�k

4. Recursive functions with multiple recursion
parameters

We saw in the previous sections recurrences of one parameter
which may be solved in a generic way. A challenging problem is
the extension to recurrences with more than one parameter, corre-
sponding to recursive functions with multiple recursion parameters.
Consider this example function

I�G 4�M
:

��� a�A�����CBD]EHGJIHAzA��	�YT\D�

�HA�C��YT\DzD P�Q�R�SXTR�V�W�R ��� a�A�� `eT�� C%`eT\D�c ��� a�A�� ` a��zC2` a�D
k
Both of the parameters are recursion parameters, but it is possible
to reduce it to a recurrence with a single parameter, and derive an
equivalent non-recursive program:

��� a�s
uvA���� CBDFE
xyd{}| ~ � �� ��{ x���� �y � � � � �!��� � � ~ xyd{}| w � �� ��{ x���� �y � � � � ����� � � k

Transforming functions with multiple recursion arguments such as
these has always been difficult. Some existing methods are avail-
able to transform such a program into one with linear complex-
ity. Synchronisation analysis [9], in particular, classifies multiple
recursion arguments as level-3 synchronisations, and guarantees
that a linear-complexity program can be obtained via the multiple-
recursion tupling technique.

The notation 3 I 143 U g4343 3�g�3
	
5 denotes an 7 -tuple of positive
integers, and the notation

_
I 1 _ U g�34343�g _ 	
5 an 7 -tuple of functions

given by
_ 1 3r5 I 1 _ U 143 U 5*g4343 3�g _ 	�143
	
5�5 . We say that

_
is an 7 -

tuple (or vector) of strictly monotonically decreasing functions iffesb � ` Y g�343�3�g 7 a each
_ ] is a strictly monotonically decreasing

function.
_ ] is a strictly decreasing function iff

_ ] 1 #d5 ( _ ] 1 &�5 ,e # & &�3 Successive self-application of a function is denoted by_�� Y�

.
_ 1 3�5 is extended to

_ � Y�
 1 3r5 I 1 _ �
Y�


U 143 U 5*g434343
g _ �
Y�

	 143
	�5�5 .

We say that a recurrence relation is in 7 -tuple normal form iff it
has the form:A

? I
� 1
A
� � ? 
 g

A
� � y � � ? 
 g43�343
g

A
� � � � � ? 
 5 (4)

where
�

is an expression of one of the kinds presented in previous
sections.

THEOREM 1. Consider an 7 -tuple normal form recurrence of type
(4) such that

_
is a vector of strictly monotonically decreasing

functions, and
�

is solvable in one parameter. Then, there exists
a solution of (4) which can be expressed in a closed form.

PROOF. The key idea to solve the 7 -tuple recurrence of type (4)
is to reduce it to a recurrence with one parameter. We substi-
tute the 7 -tuple 143 U g434343�3�	�5 with

+
, and extend this for all argu-

ments, so 1 _ � U



U 143 U 5*g 34343�g _ � U



	 143 	 5�5 becomes
+ f Y and so on until

1 _ � B 
U 143 U 5*g43 343�g _ � B 
	 143
	�5�5 becomes
+ f F , for any positive integerF 3 By doing this substitution, the recurrence relation (4) can be re-

duced to
� ` I

� 1 � ` JVU g434343�g � ` J Y 5 . According to the hypothesis,�
has a solution which can be expressed in a closed form. Al-

though this conversion was relatively easy, coming back from the
generic solution of

�
to a generic solution of

A
is not simple at

all. Denote by n�o
n U 143 U 5*g434343�g
n�o
n�	
143
	�5 the solutions of equations_ � B 

U 143 U 5 I [ up to

_ � B 
	 143 	 5 I [ solved in variable F g respec-
tively. Since

_
U g43�343�g _ 	 are strictly monotonically decreasing func-

tions, the values
_ � B 

U 143 U 5*g4343 3�g _ � B 
	 143 	 5 are decreasing to [ 3 Let us

consider F such that
+ f F I [ . Then, there exists b � ` Y g�343 3�g 7 a

such that
_ � B 
] 143 ] 5 I [ and

_ � B 

U 143 U 5 * [ g 3�343�g _ � B 
] J U 143 ] J U 5 * [ g_ � B 
]a` U 143 ]a` U 5 * [ g43�343�g _ � B 
	 143
	
5 * [

The solution of
_ � B 
] 143 ] 5 I [ is F I n�o)n ] 143 ] 5 3 We prove now thatF ) n�o
n U 143 U 5*g43�343�g F ) 7 O � ] JVU 143 ] JVU 5*g%c�d VF ) 7 O � ] ` U 143 ]a` U 5*g434343
g F ) 7 O � 	)143
	
5

Suppose, by reductio ad absurdum, that n�o
n U 143 U 5 & F 3 According
to the monotony of

_
U ,

_ ����� U x � ? x 
�
U 143 U 5 ( _ � B 

U 143 U 5 . This implies

[ ( _ � B 

U 143 U 5 * [ g which is a contradiction. So, F ) n�o
n U 143 U 5 .

Similarly, all the other inequalities can be proved. Let us denote by�����
$ 1 3r5 the expression obtained from

_ � B 

$ 143 $ 5 by replacing F withn�o
n � 143 � 5*g for all & � ` Y g�34343�g 7 a . Then, we take

+ I F I n�o)n ] 143 ] 5
and � W I

A
� � � x � ? 
 � � � � � � � � � ��x � ? 
 � W � � � � � ��x � ? 
 � � � � � � � � � � ? 


So, the generic solution of
�

can be done by providing
+

as the
minimum of the solution set n�o
n U 143 U 5*g43 343�gFn�o)n 	 143 	 5 . �

Consider the example function
I�G 4 G given in Section 1. The

corresponding recurrence is
A 5 � ? I

A 5 JVU
�
?TJML N

A 5 JML
�
?TJ�F ,

and as in Theorem 1, we do the substitution of vector 1B[ g�3r5 by
+
.

Therefore, the vector 1B[ f Y g�3Xf P 5 is replaced by
+ f Y , and so on

until 1B[ f F g�3 f P,R F 5 is replaced by
+ f F . This implies that we have

an equivalent one parameter recurrence relation
� ` I

� ` JVU N
� ` JML 3
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������� *���. � ��<�� 9 � . ��H���������< 8 � < . � 8 ? 
�������C�� [
	�� 

��� ?���� 	�� 
���?���� 	��� � < � +�,�� Y�[ ��������� - ������� - ���
����\B H4� 9 <LH ( ������>�� � ;<1>= ? 5Zj ;<14n�o
pg3r5 7 P 7 �������
� � ������� � �������C ; �"!#� <#$
� � +�,�� Y � g Y ��������� - ������� - ��������&% ; �"! � ? ; ��� � ;<1>=�?d5Zj ;<14n�o
pg3r5 P � g Y �'���
��� - ������� - �������
: - � < � (�,�� � � ��� $ ���
� ������� - ������� - �������;<1>=�?d5Zj ;<14n�o
pg3r5 � � - ��� $ �
�����&� - � - ����� - - �&��� -: 9 ! � � ��$ < � ( �
) *+*�+�,�� P [ gv7 [ �����
��� - ���
��� - �������

;<1>=-, O P � 5 � ? 
 5 j ; 14n�o
p'b c�d 1B[ g�3r5�5 � [ g2U [ ����������� - �����
� - ���
���
: � � < � +�,��+*�,�* Y�[ ��������� - ������� - �������;<1>=�?d5Zj ;<1 Y 5 P � - �����&��� - - ������� - �������

Table 2. Table showing relative times for recursive and transformed programs. . s
��R 8 is the original program, . s
�)W is the program transformed

using the
���fkj rule, and . s�W is the program transformed further using the

�f^j rule. Note that different columns have different time units.

This can be solved, giving� ` j Y
P
1�1 Y f ( �� 5 R

� W N P ( �� R
�
U 5�1 Y N ( �

P
5 `

N Y
P
1�1 Y N

( �� 5 R
� W�f P ( �� R

�
U 5�1 Y f ( �

P
5 `

In order to get the closed form for the recurrence
A 5 � ? , we apply

Theorem 1, by replacing
+ I [ b>391B[ g ? L 5 , and� W I

A 5 �0/ � 5 J � y
� W 
 � 5 �0/ � W � ?TJML21 5 
 I Y�

U'I
A 5 �0/ � 5 J � y

�
U 

� 5 �0/ � U � ?TJML21 5 
 I Y

The equivalent transformed program is:

��� T\s
uvA���� CBDFE
xy�{4| ~ � �� ��{ xz� � �y � � � � ����� � y � ~ xy�{4| w � �� ��{ x�� � �y � � � � �!�"� � y � k

5. Prototype and results
Our automated prototype system, 7�D�98E
F�G (which stands for Auto-
matic Program Transformer by Solving Recurrences), is an initial
attempt to implement the technique, using the 687�9�:8;�687�9�<>=�7 com-
puter algebra system [25], as an embedded engine to automatically
solve recurrences.

{f        e}

{f        e’} {f        e}

transformed
sourcefile

SRB_RS

SRB_S MRB_S

RS,S

kernel
Mathematica

J/Link code

transformed
sourcefile

S

RS

sourcefile
Input

Parse/Analyze
JavaCC MRBSRB

(MRB strategy)

(SRB strategy)

{RecEq,BaseEq} {RecEq,BaseEq}

Figure 1. System architecture of 7�D�98E
F�G .
Figure 1 shows the software architecture of the tool, linking

program analysis, classification, and the 687�9�:8;�687�9�<>=�7 kernel to
solve the recurrences for both SRB and MRB forms, leading to a
transformed source file. 3 -6�8- =�= is a parser generator, and in 7�D�98E
F�G
it is used to automatically parse the input sources, and then extract
the recursive equations and base cases. After classification, the code

� < . � 8 < :�9 ! : 9 ! �'4 - �
5 : 9 !6��?��� [ 3 I Y�[ [ 3 [�[TY � � [ 3 [ [KY K ��
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Table 3. Runtime (in mS) of Fibonacci code in C

uses 3-8:9 G�S0; (a Java API from Wolfram Research) to connect with
the kernel.

A clear demonstration of the improvement is seen in Table 2,
which compares the runtimes of the recursive and the automatically
transformed versions of the programs mentioned in this paper. The
programming language in each case is C, and we used the same
platform for each test: a lightly loaded linux cluster. The table
shows significant improvements in the runtime of the algorithms,
reflecting the reduction from exponential complexity achieved by
our transformation. Note for example the change from (say) 0j1 Y�[ 5
to 021>7 P 7�5 , where the recursive program takes 200 times longer,
whereas the closed-form version shows only a marginal increase in
time.

We also compare (in Table 3) our implementation
I�G 4)s�W�+zS�/

with that done in [17], an iterative Fibonacci function obtained by
the incrementalization method. Our (near) constant time implemen-
tation increases more slowly as 3 increases. The function

I�G 4)s�W
is:

��� s�u\A�C_D%E
xxML�{ w { xyd{}| wZ� N �z�>����{ w N ~ � N ��~e{ xy�{4| ~ � N �>�>�.{ N ~ � N � k

The function (
I�G 4"<

) from [17] is repeated here for comparison:

GJIHAKCML:LON�D%P�Q�R�S * 
 LON�k RiL[T�k 0R�V�W�RHGJIXA�CjL:L[T\D%P�Q�R�SS* 
.L[T�k RlLXT�k 0R�V�W�R�* 
 LOa�k RlLYa�k �"L[T�k 0�k1
Q�G\V�RXA�
>=�LOC.D *
 L�
�cOT�k R l L R k � l L���k RlLSR l c � l k �"L R l k0��R�P678��S R k
6. Conclusion
The contribution of this paper is two-fold. Firstly, we describe a
new framework for transforming programs by removing recursion
entirely, resulting in new programs without recursion, normally
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called closed forms. Consequently, new programs run in linear or
logarithmic times, if not less. Secondly, (perhaps the most challeng-
ing problem) we extend the framework to handle recurrences corre-
sponding to recursive functions with multiple recursive parameters.

There are many program transformation strategies which trans-
form recursive programs of exponential complexity into new pro-
grams of linear complexity [1, 2, 3, 4, 6, 7, 13, 14, 18, 19, 21, 24].
Futamura’s method for removing recursion from linear recursive
programs was recently further extended to deal with recursive pro-
grams with one descent function [15]. Our framework differs from
these strategies in that we discover the closed forms of these recur-
sive programs. Our technique exploits symbolic computation dur-
ing transformation. More notably, the transformation is not syntax-
directed, and relies on recurrence analysis to derive the desired so-
lutions. We are not aware of any systematic syntax-directed tech-
niques of transforming programs with exponential complexity into
ones with logarithmic complexity. An ad-hoc method can be found
in a footnote of the first-year undergraduate textbook Structure and
Interpretation of Computer Programs.

Only a few existing program transformation strategies, such as
[9, 10, 18] can handle recursive programs with multiple recursion
parameters. In this paper, we presented a novel technique for con-
verting a class of such programs into linear recurrences, and recov-
ering the desired solutions from those of their linear recurrences.
While the class of programs corresponds to the notion of level-3
synchronization from [10], the final transformed programs, of log-
arithmic complexity, are definitely more efficient than those pro-
duced by the techniques described in that work. We intend to extend
the class of recursion programs with multiple recursion parameters
to include different levels of synchronization, as defined in [10].

Our transformations are defined in as generic a manner as pos-
sible, and so are reusable across a wide range of languages. Our
future research will focus on providing the user with options for dif-
ferent degrees of automation. For example, given an MRB programJ

supporting an interface which provides a contract (expressed as a
set of input constraints `�� ] a , ie., pre-conditions) to the user,

J
can

be selectively specialized based on the contract. That is, only those
branches in

J
which follow from a satisfiable `�� ] a are subject to

the application of MRB transformation, while the other branches
are eliminated. This will provide an opportunity for synergy be-
tween the technique of partial evaluation and MRB transformation.
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