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Abstract. In component-based software development, gluing of two software com-
ponents is usually achieved by defining an interface specification, and creating
wrappers on components to support the interface. We believe that interface speci-
fication provides useful information for specializing components. An interface may
define constraints on a component’s inputs, as well as on its outputs. In this paper,
we propose a new approach to program specialization with respect to output con-
straints. We provide the form in which an efficient specialized program should be
after such specialization, and consider a variant of partial evaluation to achieve it.
In the process, we translate an output constraint into a characterization function
for a component’s input, and define a specializer that uses this characterization
to guide the specialization process. We believe this work will broaden the scope
of program specialization, and provide a framework for building more generic and
versatile program adaptation techniques.
Categories and subject descriptors: D.3.4 [Programming Languages]: Proces-
sors – optimization; I.2.2 [Artificial Intelligence]: Automatic Programming – Pro-
gram transformation; D.2.13 [Software Engineering]: Reusable Software.
General Terms: Algorithms, Performance.
Keywords: Partial Evaluation, specialization, weakest pre-condition.

1. Introduction

In the last three decades, partial evaluation (PE) has widely been used
in many applications, showing remarkable results in improving program
efficiency. We have also witnessed various techniques related to this
transformation, each attempting to either improve the efficiency of the
partial evaluation process or to broaden its scope of application.

Regardless of the improvements and variations, partial evaluation
inevitably aims at specializing a program with respect to some aspects
of the program’s input, and it is with this objective in mind that partial
evaluation is also termed projection [14].

∗ This is an expanded version, with major revisions, of the paper entitled
“Output-Constraint Specialization”, which was presented in the 2002 ACM SIG-
PLAN ASIA Symposium on Partial Evaluation and Semantics-Based Program
Manipulation.
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There are times when we wish to specialize a program, the context of
which does not conveniently reveal to us its input constraint. Consider a
component-based program development, in which software components
are reused to construct programs. Gluing of software components re-
quires clear definitions of interfaces acting as contracts between them.
It is not uncommon to find that the existing components involved are
too general for a particular interface at hand.

A common technique used in component composition is by creating
wrappers (of the components) with the aim of adapting the output
of one component to the input of the other. We call this the wrapper
approach. While such wrappers can be automatically generated, their
use increases the run-time overhead of the combined system.

A more desirable solution would be to specialize the components
according to the contract specified by the interface. Consider the case
when data produced by a component A is passed to another compo-
nent B, adhering to the interface’s specification. For component B,
the interface contract provides the necessary input constraint (called
a pre-condition), with respect to which component B can be partially
evaluated. Here, a constraint-based partial evaluator such as that devel-
oped by Lafave et al. [17] suits the task well. However, for component
A, the contract specifies its necessary output condition (called a post-
condition). The specialization of component A cannot be realized by
traditional partial evaluation techniques.

It is also desirable to adapt a stand-alone program to some output
constraint. Consider a program that simulates the behaviour of a vend-
ing machine as follows: It can take in 10c, 20c, 50c, and $1 coins, and it
sells coffee(80c), green tea(60c), black tea(60c), and coke($1). Suppose
we wish to modify the program to simulate the behaviour of another
vending machine which only dispenses tea, a plausible solution is to
specialize the original program with respect to the output constraint.

Declaratively, an output-constraint specialization (OCS) can be de-
fined as follows:

DEFINITION 1 (Output-Constraint Specialization). Given a program
with a main function f(x1, x2, . . . , xn) = e, and a constraint Φ about
the function’s output, an output-constraint specialization will produce
a new program with main function f ′ such that, for a given input tuple
(c1, c2, . . . , cn), if y is a non-bottom result of the application f(c1, c2, . . . , cn),
then

− if y satisfies Φ, then f ′(c1, c2, . . . , cn) = y.

− if y does not satisfy Φ, then f ′(c1, c2, . . . , cn) = Error, where
Error can be represented by some error messages.
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A naive way to achieve the effect of output-constraint specialization
is to add a check to f ’s output, as follows:

f ′(x1, x2, . . . , xn) = if (y satisfies Φ) then y else Error (1)
where y = f(x1, x2, . . . , xn).

This approach is no different from the wrapper approach described
earlier. The new program will run slightly slower than the original one.

A more desirable specialized program should possess the following
characteristics:

− For input leading to the desired output (ie., satisfying the output
constraint), it can produce the same output at possibly reduced
computation cost.

− Otherwise, it aborts the computation as early as possible.

It is not always possible to maximize both goals at the same time in
practice. Some trade-off must be made.

Sometimes, reduced computation cost in specialized program can-
not be ensured if conventional partial evaluation techniques are used
for output-constraint specialization. For instance, given the following
function definition:

f(m,n) = if (m > 0) then m+ n else n

Suppose that we wish to specialize f such that the output is 3 + n , a
simple calculation will reveal that this can happen only when the input
m takes the value 3. Thus, a reasonably efficient specialized program
will be as follows:

f(m,n) = if (m = 3) then 3 + n else Error (2)

Here, the efficiency arises from the introduction of a new test (m = 3)
in the specialized program. Such introductions are never done in con-
ventional partial evaluation.

In this paper, we propose a systematic approach for performing
output-constraint specialization (abbreviated as OCS). Specifically,
given a program with an output constraint Φ, we identify a class of
program inputs which will lead to (if the computation ever terminates)
an output satisfying Φ, and another class of inputs which will not lead
to an output satisfying Φ. We then specialize the program with respect
to these two classes of inputs. Our main technical contribution is to
derive a means to characterize program inputs by program outputs, and
a sufficient condition to detect the existence of a best characterization
of program inputs.
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As we have mentioned earlier, a conventional partial evaluator, even
a constraint-based partial evaluator, may not be adequate for attaining
the desired specialization. We thus define a variant of partial evaluation
to accomplish the task.

While our solution leverages on existing techniques in program anal-
ysis and semantics-based transformation, it enables us to broaden the
scope of program specialization.

The outline of this paper is as follows: In Section 2, we review the
background of this work, including the language syntax and the con-
straint system used. In Section 3, the general specialization approach
is explained, together with a close examination of some of the issues
involved. This is followed by Section 4, which examines in detail the
use of weakest pre-condition in practice to relate input constraints to
output constraints. Section 5 describes the analysis phase in detail, and
Section 6 illustrates an off-line output-constraint specialization process.
We discuss related work in Section 7, before concluding in Section 8.

2. Language and Constraints

We apply our technique to a simply typed first-order functional lan-
guage with strict semantics. The language is defined in Figure 1. For
ease of presentation, we restrict function definitions to top-level ones,
and only allow variables to be passed as arguments to functions. These
restrictions do not reduce the generality of our method, as transforma-
tions exist (such as the let-abstraction) to convert an ordinary program
to one conforming to the restriction.

A program consists of a list of function definitions and possibly some
data-type declarations. One of the definitions is the main function. Pro-
gram execution begins by passing some arguments to the main function.
These arguments are also called program inputs. For simplicity, the only
data-type declaration we introduce is the enumerated data type.

Constants in the language include integers, boolean, and enumerated
data. The following is a valid function in our language:

data Beverage = Coke | GreenTea | BlackTea | Coffee
choose :: Int → Beverage
choose n = if (n == 1) then Coke

else if (n == 2) then GreenTea
else if (n == 3) then BlackTea
else Coffee

Functions (and expressions) can be annotated with constraints describ-
ing the relationship between their input (or free variables) and output.
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x ∈ Var 〈Variables〉
f ∈ Prim + FName 〈Function Names〉
c ∈ Const 〈Constants〉
e ∈ Exp 〈Expressions〉

e ::= x | c | let x = e0 in e1 |
if e0 then e1 else e2 | f (x1, . . . , xn)

d ∈ Decl 〈Definitions〉
d ::= f (x1, . . . , xn) = e

Figure 1. The Language Syntax

A constraint can be viewed as an assertion about the behaviour of a
function, or the property of a piece of data. In this paper, we call it a
size constraint . It can aid in the derivation of constraints needed for
specialization.

Constraints are formulated in the framework of the sized-type sys-
tem as proposed by Chin and Khoo [4, 5]. However, we wish to point
out that our proposed technique works equally well with other con-
straint systems, such as dependent-type systems [29], and verification
conditions proposed by Flanagan [13] – which solve constraints via a
theorem prover.

A sized-type system aims at capturing and propagating size infor-
mation of a program. Size information is relational in nature, where an
interdependency the relationship amongst inputs, as well as relation-
ship between input and output may be captured by linear constraints.
The size information for an expression describes the relationship be-
tween the free variables and the expected result of the expression.
The sized type of each expression e can be expressed by e :: (τ, φ),
where τ is an annotated sized type containing size variables, and φ is
a constraint expressed in terms of the size variables in τ . While what
constitutes size information is subject to interpretation, we take as
default the following:

− The size of an integer is the integer value itself. Eg. 3 :: (Intv ,
v = 3).

− The size of a boolean value is either 0 (for False) or 1 (for True).
Boolean is an instance of enumerated types. In general we encode
each data constructor in an enumerated type by an integer. For
instance, given the declaration of data type Beverage given above,
we can assign 0 to Coke, 1 to GreenTea , and so on.
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− The size of a variable is a relation specifying the sizes of the possible
values associated with the variable.

− The size of a function is a relation between the sizes of its input
and output.

We can now provide the sized type of the above choose function defi-
nition as follows:

choose :: (Intn → Beverager ,
(0 ≤ r ≤ 3) ∧
((n = 1 ∧ r = 0) ∨ (n = 2 ∧ r = 1)
∨ (n = 3 ∧ r = 2) ∨
(¬(n = 1 ∨ n = 2 ∨ n = 3) ∧ r = 3)))

Throughout this paper, we reserve variable r as the size variable cap-
turing the returned values of a function.

For the sake of efficient computation, size relations are expressed in
terms of presburger formulae [12], and computed with the help of some
efficient constraint-solving technology (e.g. Pugh’s Omega Calculator
[21].) Presburger formulae can be built from affine constraints over
integer variables (eg. r = 2 ∗ v is a valid Presburger formula, but
r = v ∗ v is not), the logical connectives ¬, ∧, ∨, and the quantifiers
∃ and ∀ (∀ is viewed as an abbreviation of (¬ ∃ ¬)).

The syntax of sized types is depicted in Figure 2. A formula can be
of the form [v1, . . . , vm ] → [w1, . . . ,wn ] : Φ. This specifies a relation Φ
between the size variables of a function’s input ([v1, . . . , vm ]) and the
size variables of the function’s output ([w1, . . . ,wn ]). For example, the
size of the choose function can be re-written as:

[n] → [r ] : (0 ≤ r ≤ 3) ∧
((n = 1 ∧ r = 0) ∨ (n = 2 ∧ r = 1)
∨ (n = 3 ∧ r = 2) ∨
(¬(n = 1 ∨ n = 2 ∨ n = 3) ∧ r = 3))

As the formula is relational, we can also express the formula in set-like
format , as in [n, r] : · · ·.

For an annotated type, we retrieve its size variables through the fv
function. It is defined as follows:

fv(Intv) = {v} fv(τ1 → τ2) = fv(τ1) ∪ fv(τ2)
fv(Boolv) = {v} fv(τ1, . . . , τn) =

⋃n
i=1{fv(τi)}

Concerning notation, when X = {v1, . . . , vn} is a set of size variables,
we write ∃ X . φ or ∃ v1 . . . vn . φ as a shorthand for ∃ v1 . . . . . ∃ vn . φ.
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Sized Type = (AnnType, F)

Annotated Type Expressions:
v , w ∈ V 〈Size Variables〉
τ ∈ AnnType 〈Annotated Types〉
τ ::= b | (τ1, . . . , τn) | τ1 → τ2

b ∈ Basic 〈Basic Types〉
b ::= Intv | Boolv | · · ·

Formulae:
Ψ ∈ F 〈Formulae〉

Ψ ::= Φ | [v1, . . . , vm ] : Φ | [v1, . . . , vm ] → [w1, . . . ,wn ] : Φ
Φ ::= φ | ¬ Φ | ∃ v . Φ | Φ1 ∨ Φ2 | Φ1 ∧ Φ2

Size Formulae:
φ ∈ Fb 〈Boolean Expressions〉
φ ::= True | False | a1 = a2 | a1 �= a2

| a1 < a2 | a1 > a2 | a1 ≤ a2 | a1 ≥ a2

a ∈ AExp 〈Arithmetic Expressions〉
a ::= n | v | n ∗ a | a1 + a2 | − a

n ∈ Z 〈Integer Constants〉

Figure 2. Syntax of Sized Types

3. Issues in Output-Constraint Specialization

In a naive version of OCS, such as the function defined in equation (1),
the specialized program will subject all its outputs to a test on output
constraints. Consequently, the specialized program always runs slower
than the original program. As we have mentioned, it is no different
than wrapping the program by an interface. Nevertheless, this naive ap-
proach sets a lower bound to the efficiency of the specialized programs
we aim to attain.

A more promising approach to this problem is to replace as many
as possible tests on output constraints by tests on input constraints.
Specifically, this approach identifies an input constraint such that sat-
isfiability of this input constraint implies satisfiability of the output
constraint. The idea here is to raise the tests to the beginning of the
program, so that decisions (especially the decision to abort) can be
made as early as possible. Equation (2) is the result of such an ap-
proach. The benefit of including input tests in the specialized program
is that: we can aggressively specialize the portion of the program which
is guaranteed to lead to an output satisfying the output constraint.
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In the perfect case when the input constraint thus identified encom-
passes all possible inputs leading to the desired output, we can also
immediately abort the computation for those inputs that do not satisfy
the input constraint, thus avoiding useless computation. Consequently,
the resulting specialized program takes the following form (which we
call the perfect form):

f n = if (input satisfying the input constraint) then
< specialized code without output constraint test >

else Error

(3)

There are potential limitations to this approach:

1. It can be problematic to include an input constraint as a piece of
code in the specialized program, since such constraint, in order to
be precise enough, may not be easily coded. Moreover, once coded,
its computational complexity may be too expensive. For example,
the input constraint may be a primality test, etc. Such a check
may incur more run-time cost than a simple specialized program
obtained by the wrapper approach. Thus, in practice, the run-time
cost of executing an input constraint needs to be weighed against
the saving gained from both aggressive specialization and omission
of the output-constraint test.

2. To reap the full benefit of this approach – and thus obtain spe-
cialized programs akin to the perfect form (3), we should partition
inputs cleanly into two categories: one category contains inputs that
must lead to the desired output (and the corresponding code can
thus be aggressively specialized), and the other contains those that
must not lead to the desired output (and the corresponding code
can thus be replaced by an Error message, signifying abort opera-
tion.) However, it is not obvious whether such a clean partition of
input can be attained.

We believe that the first limitation above is, in most situations,
inevitable in our pursuit to replace output-constraint tests by tests over
other program variables, including program inputs. Thus, the decision
to introduce any input-constraint test is mainly an engineering issue.
While this issue is worth investigating, it is beyond the scope of this
paper.

On the other hand, the second limitation can be partially overcome
through careful and innovative derivation of input constraints. It is
therefore the main focus of this paper. Specifically, we shall describe in
detail the inference of input constraints from output constraints, and
provide a sufficient condition for clean partitioning of program inputs.
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Our approach to output-constraint specialization comprises two
phases: an analysis and a specialization phase. The analysis phase takes
in a program and an output constraint. It derives two input constraints
for the main function (and the other functions too, for the reason to
be given in Section 6). These two input constraints attempt to divide
the input domain into two sets, as mentioned in the discussion for
limitation 2 above. When such division results in a clean partitioning
of program inputs, we can obtain a specialized program resembling the
perfect form. Otherwise, we have at least two options for generating
the specialized program.

In the first option, we may generate the specialized program in the
form (4) below:

f n = if (input leading to desired output) then
< specialized code without output constraint test >

else if (input leading to undesired output) then Error
else < wrap code in output constraint test >

(4)

We name this form the double-test , as two input constraints are
included in the specialized programs. At the last branch, we are not
able to determine if an input does lead to the desired output, neither
are we able to determine that it does not lead to the desired output.
Hence, we simply replace the branch by the original program wrapped
with the output-constraint test. Though simple, this form may not be
appealing because of the inclusion of two input-constraint tests.

In the second option, we generate a specialized program that may
contain output-constraint tests at some branches of the original pro-
gram. However, it does not contain any input-constraint test . We name
this form no-test , for the obvious reason that no input-constraint test
is involved.

This no-test form of specialized programs has the advantage that
it avoids any use of an input-constraint test, while still being able to
produce efficient code (without wrapping) for some branches which can
only produce a desired output.

In this paper, we adopt the decision to use the perfect form when a
clean division of program inputs can be obtained. Otherwise, we choose
to specialize the programs into no-test form, as we can then address
some of the more interesting specialization issues pertaining to this
option. 1

1 In our previous paper [16], we described solely the generation of specialized
programs in no-test format.
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4. Weakest Pre-Condition

Input constraints aim at characterizing program inputs by their ability
to generate outputs that satisfy the output constraint. In the theory of
program semantics, this problem of deriving the best input constraint
leading to the desired output is tackled via the technique of weakest
pre-condition (WPC) derivation.

If, for a given program and an output constraint, we were able to
derive its weakest pre-condition, then our OCS would have been much
simpler. Specifically, the specialized program would be in perfect form,
in which the conditional test would be a check on whether a program
input satisfies the weakest pre-condition.

In practice, it is often the case that the derived pre-condition is
stronger than WPC . That is, there may exist some program inputs
which do not satisfy the derived pre-condition but nevertheless satisfy
WPC . Thus, the derived pre-condition cannot be used as a conditional
test in the specialized program written in perfect form.

This observation is crucial to the understanding of OCS. It is not
adequate to specialize a program with respect to a subset of input that
guarantees to yield the desired output. Rather, we need to at least ensure
that all possible inputs leading to the desired output are supported by
the specialized program.

Derivation of a pre-condition stronger than WPC can be viewed as
a must-analysis. Such analysis determines a (possibly proper) subset of
program inputs that satisfies WPC . One may wonder if it is desirable
to perform a derivation using some may-analysis, thus yielding a pre-
condition that is weaker than WPC . In this case, all valid inputs
(ie. inputs satisfying the WPC ) are included in the resulting pre-
condition. However, this attempt is futile, as the derived pre-condition
may also include inputs not satisfying the WPC . Therefore, the spe-
cializer does not know, among all the inputs satisfying the resulting
pre-condition, which inputs do/do not lead to the desired output. Con-
sequently, the specialized program will have to include many output-
constraint checks, since it must also be the case that no output that
does not satisfy the output constraint should be produced .

In summary, the reason that derived pre-conditions may not be used
in attaining specialized programs of perfect form is because it is difficult
to infer that such a derived pre-condition is indeed WPC .

Note that derivation of WPC assumes termination of program. As
such, WPC does not include input values which cause a program not to
terminate (these inputs are called non-terminating inputs). In the pres-
ence of programs which may not terminate on some inputs, it becomes
difficult to obtain the theoretical WPC automatically, as the problem
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of termination is in general undecidable. Therefore, we may have to
include non-terminating inputs in the result of WPC derivation. We
call this result a variant of WPC .

DEFINITION 2 (WPC -Variant). Let w be the WPC of a program with
respect to an output constraint. A variant, v , of w is defined as follows:

For any input i , if executing the program with input i terminates,
then i satisfies w if and only if i satisfies v.

The above definition states that a WPC -variant covers the same
set of program inputs as WPC , provided executing the program with
those inputs always terminate. Thus, these two constraints differ only
in their inclusion of inputs which do not cause program to terminate
during their executions.

How do we determine if a derived pre-condition is a WPC -variant?
Our idea is to look at “the other side of the problem”. Parallel to the
derivation of pre-condition from an output constraint, we also employ
the same technique to derive a pre-condition from the negated output
constraint . We call this derived pre-condition a negative pre-condition.
Correspondingly, the derived pre-condition from the original output
constraint is called a positive pre-condition. Program inputs that sat-
isfy negative pre-condition are guaranteed to yield undesired output,
if their computation terminates. Consequently, code associated with
producing undesired outputs should not be generated by OCS.

Briefly, when both positive and negative pre-conditions cover the
entire range of program inputs, we will show that the positive pre-
condition is a WPC -variant, and the specialized program can be written
in perfect form. Otherwise, we will express the specialized program in
no-test form.

In the following section, we shall describe this derivation process in
detail, through an illustration using a sized-type system.

5. The Analysis Phase

We introduce in this section an analysis that infers an input condition
of a program associated with an output constraint.

5.1. Forward Contextual Analysis

We perform a forward contextual analysis starting from the main func-
tion of a program. It aims to compute the context of the program’s
output. In general, a context is a formula relating the output of an
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expression to its input. Such a context is described by a Presburger
formula, and called a contextual constraint.

Algorithm C depicted in Figure 3 traverses the syntax tree rep-
resenting the right-hand side of the main function of a program. It
relies on the size information available in the program. Constraints
gathered during traversal include constraints for selecting a branch (of
if -expression), assertion about the sizes of local variables, and post-
conditions of function calls, as obtained from the input-output relation
of that function and the constraints of its arguments. Prior to this
analysis, we assume that size information about individual function
definitions is available, either through the execution of a size-type sys-
tem (as described in [4, 5]) or through user annotation. This includes
size information for recursive function definitions. Therefore, it is not
necessary for our analysis to re-compute a size information for recursive
calls.

C :: Exp → Env → F → ( AnnType × F)
where Env = Var → AnnType × F

C [[ x ]] Γ ψ = let (τ v1 , φ) = Γ [[ x ]]
v = newVar

in (τ v , (v = v1))
C [[ n ]] Γ ψ = let v = newVar in (Intv , (v = n))
C [[ f (x1, . . . , xn ) ]] Γ ψ =

let ((τ v1
1 , . . . , τ vn

n ) → τ, φf ) = renameVar (Γ [[ f ]])
Y = {v1, . . . , vn}
(τ

′v′
i

i , φi) = Γ [[ xi ]] ∀ i ∈ {1, . . . ,n}
φ = ∃ Y . φf ∧ (∧n

i=1 (v ′
i = vi))

in (τ, φ)

C [[ if e0 then e1 else e2 ]] Γ ψ =
let (Boolv , φ) = C [[ e0 ]] Γ ψ

(τ v1
1 , φ1) = C [[ e1 ]] Γ (φ ∧ (v = 1) ∧ ψ)

(τ v2
2 , φ2) = C [[ e2 ]] Γ (φ ∧ (v = 0) ∧ ψ)

τ v3
3 = renameVar (τ v1

1 )
Y = { v , v1, v2 }
φ3 = ∃ Y . φ ∧ (((v1 = v3) ∧ (v = 1) ∧ φ1)

∨ ((v2 = v3) ∧ (v = 0) ∧ φ2))
in (τ3, φ3)

C [[ let x = e1 in e2 ]] Γ ψ =
let (τ1, φ1) = C [[ e1 ]] Γ ψ

(τ, φ2) = C [[ e2 ]] Γ [(τ1, φ1)/x ] ψ
Y = fv(τ1)
φ = ∃ Y . φ1 ∧ φ2

in (τ, φ)

Figure 3. Definition of the Context-Derivation Function C

C operates on expressions. It takes in a sized-type environment Γ
which binds program variables to sized types. It also binds primitives
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and user-defined functions to their respective input-output relations.
It produces a tuple consisting of: the annotated type of the subject
expression, and its contextual constraint.

C also maintains a formula ψ (of type F, as defined in Fig. 2),
representing the contextual constraint before analyzing an expression.
Initially, ψ is set to some facts (ie., constraints) about the input and
output. For example, there are only four values for Beverage and if
r is the size variable of a parameter (or an expression result) of type
Beverage, then we must have 0 ≤ r ≤ 3. Also, if n is a natural num-
ber, then n ≥ 0. We call these constraints the inherent constraints
of size variables. In the algorithm C, its initial input ψ for analyz-
ing program choose will be 0 ≤ r ≤ 3 (there is no constraint on the
input.)

Concerning notation, in Figure 3, function newVar returns a new
(size) variable, renameVar performs renaming of size variables (ie.,
α-conversion). renameVar is overloaded so that it can take in either
an annotated type or a sized type (which is a pair). It consistently
renames all size variables occurring in its argument, by giving them
new and unique names. Furthermore, Γ [(τ, φ)/x ] denotes the update
of environment Γ by a new binding of sized type (τ, φ) to x .

During computation, when a branch of an if -expression is chosen,
the context of this branch is included in ψ. When a function call is en-
countered, its contextual constraint is derived from the sized type of the
function – with appropriate size-variable renaming for the arguments.

As a simple example, the sized information of the equality function
(x == y) can be defined as:

((v1 = v2) ∧ (v = 1)) ∨ (¬(v1 = v2) ∧ v = 0)

where v1, v2 and v are size variables of x , y and the result of equality,
respectively. Given an expression n = m , the resulting size information
gathered will be:

((w1 = w2) ∧ (w = 1)) ∨ (¬(w1 = w2) ∧ w = 0)
∧ w1 = vn ∧ w2 = vm

where vn and vm are the size variables of n and m respectively, and
w1, w2, and w are renamed size variables for v1, v2, and v respectively.

To complete the process of context computation, we need to existen-
tially quantify the free size variables appearing in the returned formula,
except the size variables for input parameters and output. Thus, for
the case of the choose function, after simplifying the formula, we can
express the context as follows:
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[n] → [r ] : (0 ≤ r ≤ 3) ∧
((n = 1 ∧ r = 0) ∨ (n = 2 ∧ r = 1)
∨ (n = 3 ∧ r = 2) ∨
(¬(n = 1 ∨ n = 2 ∨ n = 3) ∧ r = 3)))

Notice that no special treatment is required for recursive calls. This
is because the size information about a function, including a recursive
function, has been captured by the input-output relation. The goal of
C is simply to utilize this information for collecting contextual infor-
mation and formulating contextual constraints. We refer the readers to
[5] for a detailed description of input-output relationship computation.

5.2. Characterizing Inputs

Given a program P and an output constraint Φ, we would like to char-
acterize as many of P ’s inputs as possible by their ability to produce
output satisfying (or not satisfying) Φ. As mentioned in Section 4, the
best way to achieve such characterization is the weakest pre-condition
(WPC ) derivation. Here, the weakest pre-condition is expressed by the
term wpc.P .Φ . Function-wise, we can consider wpc as a function taking
a program and an output constraint, and returning its weakest pre-
condition. WPC for functional programs can be defined formally by
first translating the program P into a program in Passified Guarded
Command Language (PGCL) form [13]. As PGCL is of imperative
nature, we can define weakest pre-condition using the familiar method.

Given a program and its output constraint Φ, the algorithm C, de-
fined in Section 5.1, can be used to compute the weakest pre-condition
of the program. This is possible if we treat Φ as an assertion about the
program’s output. This fact is expressed in the following theorem:

THEOREM 1. (WPC of Functional Programs) Given a program
P and an assertion Φ about its output. Denote the result of perform-
ing C over P by Ctx(P). Let P ′ be the corresponding PGCL program
translated from P . Then,

wpc.P ′.Φ = ∀X.(Ctx(P ) ⇒ Φ).

where X contains all free variables in the formula, except the input size
variables.

In the theorem, the phrase performing C over P is defined as the
following application:
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C [[ emain ]] Γinit φinit

where emain = body of the main function fmain of P
Γinit = Γx ∪ Γf

Γx = { (τx, T rue) | x is parameter of fmain }
Γf = { (τf , φf ) | f is a function occurring in P }
φinit = initial constraint on parameters of fmain

The proof can be found in Appendix A.

As the PGCL program P ′ is equivalent to the functional program
P , we will simply write wpc.P .Φ instead of wpc.P ′.Φ for ease of pre-
sentation.

Theoretically, the importance of WPC computation is that it in-
cludes all input values to a program which are guaranteed to produce
the desired output. For the case of the choose function, let’s assume
that we wish to restrict the function to only produce Coffee. The output
constraint is thus r = 3. To make the example more interesting, let us
further assume that its input to function choose must be non-negative;
ie. n ≥ 0. Thus, we obtain the following wpc :

wpc.choose.(r = 3) = [n] : ∀ r . Ctx (choose) ⇒ (r = 3)
= [n] : n ≤ 0 ∨ n ≥ 4

where Ctx (choose) = (n ≥ 4 ∧ r = 3) ∨ (n = 1 ∧ r = 0) ∨
(n = 2 ∧ r = 1) ∨ (n = 3 ∧ r = 2).

The accuracy of WPC computation depends on the accuracy of
context information gathered, which is dependent on the constraints
associated with each expression in the program. In practice, these con-
straints may be approximated, yielding a contextual constraint that
is weaker than expected. Denoting an approximated result as Ctxa(P)
and the theoretical one as Ctx t (P), we must have Ctx t(P) ⇒ Ctxa(P).
For instance, consider the following function g1:

g1 n = if n ≤ 2 then 1
else if n ∗ n ≤ 25 then 2 else 3

It has a “theoretical” context as follows (assuming that the program
input n must be natural number):

Ctx t (g1) = (0 ≤ n ≤ 2 ∧ r = 1) ∨ (2 < n ≤ 5 ∧ r = 2)
∨ (n > 5 ∧ r = 3)

However, the size of the expression n ∗ n ≤ 25 cannot be expressed
in Presburger arithmetic. Consequently, during analysis, the context
will be approximated as follows:
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Ctxa(g1) = (0 ≤ n ≤ 2 ∧ r = 1) ∨ (n > 2 ∧ (r = 2 ∨ r = 3))

The computed context shows that the output of g1 can be either 2 or
3 when the input n is greater than 2.

This weakening of computed contextual constraint implies that the
computed (derived) pre-condition will be stronger than the theoretical
WPC :

pca .P .Φ
def≡ ∀ X . (Ctxa(P) ⇒ Φ) ⇒∀ X . (Ctx t(P) ⇒ Φ)

For the case of function g1, let Φ be r = 3. We have:2

wpc.g1.(r = 3) = [n] : n ≤ −1 ∨ n > 5
pca .g1.(r = 3) = [n] : n ≤ −1

The result of pca indicates that no program input of natural numbers
can produce the desired output — certainly a very strong pre-condition.

As pca is stronger than the wpc, we cannot be certain if an input
that fails to satisfy pca .P .Φ will cause the program P not to produce
the desired output.

We next turn to the identification of program inputs which do not
lead to desired outputs. As mentioned in Section 4, this set of inputs
can be captured by computing the weakest pre-condition of a program
P with respect to a negated output constraint, ¬Φ. For function g1,
we have

wpc.g1.(r �= 3) = ∀ X . Ctx t (g1) ⇒ (r �= 3) = [n] : n ≤ 5
pca .g1.(r �= 3) = ∀ X . Ctxa(g1) ⇒ (r �= 3) = [n] : n ≤ 2

Although all program inputs that are less than or equal to 5 do not
lead to the desired output (r = 3), the actual derived pre-condition
only detects those values which are less than or equal to 2.

Lastly, we differentiate the two weakest pre-conditions, wpc.P .Φ
and wpc.P .(¬Φ) by calling them positive weakest pre-condition, and
negative weakest pre-condition, respectively. Likewise, we have positive
and negative derived pre-conditions.

2 Given the initial assumption that program inputs are naturals (n ≥ 0), the
derived pre-condition implies that no program input can produce the desired output.
Informally, this is the same as saying that the pre-condition is False. The reason
that the derived constraint is not just False is because the Presburger simplification
takes as its working domain the entire integer set. We will remedy this in the later
section.
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5.3. Full Input Characterization

When all the program’s inputs can be precisely characterized by its
ability to produce (or not to produce) the desired output, modulo
termination, we say that the input domain has been fully characterized .
More formally,

DEFINITION 3 (Full Characterization). Given a program P and an
output constraint Φ, let Ψ+ and Ψ− be the positive and negative pre-
conditions of P with respect to Φ. We say that the pair (Ψ+, Ψ−) fully
characterizes the inputs of P with respect to Φ if for any program input
i, if execution of P with input i terminates and returns a result r , then
the following holds:

1. i satisfies either Ψ+ or Ψ−;

2. if i satisfies Ψ+, then r satisfies Φ;

3. if i satisfies Ψ−, then r satisfies ¬Φ;

Furthermore, we call the set of program inputs which ensures termina-
tion of the execution of P the terminating inputs.

A consequence of full characterization is that the set of terminating
inputs can be partitioned into two disjoint sets, one satisfying Ψ+, and
the other satisfying Ψ−. Consequently, the specified function can be
specialized into the perfect form.

Because of their roots in program semantics, the positive and neg-
ative WPC ’s of a program (with respect to an output constraint) is
an obvious pair of input constraints fully characterizing the program
inputs. We state this formally as a property about WPC :

PROPERTY 2. Given a program P and an output constraint Φ, the
following pair of weakest pre-conditions

wpc.P.Φ and wpc.P.¬Φ

fully characterizes the input of P with respect to Φ.

For the function g1 defined above with Φ being r = 3, the terminat-
ing input is the set of all naturals. Among them, those falling within the
range n > 5 satisfy positive WPC , and those belonging to 0 ≤ n ≤ 5
satisfy negative WPC .

On the other hand, the derived pre-condition pair of g1, (pca .g1.Φ,
pca .g1.¬ Φ), does not fully characterize the program inputs with re-
spect to Φ: terminating inputs belonging to n > 2 are not captured
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by any of the derived pre-conditions. Thus, it may not be correct to
specialize g1 into a perfect form.

Note that full input characterization does not only depend on the
contextual constraint, Ctxa(g1), but also depends on the output con-
straint. If we choose a new output constraint Φ′ to be r = 1, then we
will have:

pca .g1.Φ′ = [n] : n ≤ 2 = wpc.g1.Φ′
pca .g1.¬ Φ′ = [n] : n ≤ −1 ∨ n ≥ 3 = wpc.g1.¬ Φ′

Thus, the derived pre-condition pair can fully characterize the program
input with respect to Φ′.

Furthermore, derived pre-conditions need not be exactly the same as
the WPC ’s in order to fully characterize the program inputs. Consider
the following function definitions headed by g2:

g2 n = if n < 3 then 1
else if n < 5 then 2 else h n

h n = if n = 0 then 1 else h (n ∗ n)

Here, g2 enters an infinite loop when n ≥ 5, because function h does
not terminate when n �= 0. In the sized type system, infinite recursion
is theoretically denoted by False . Thus, assuming that the program
inputs are naturals, the theoretical contextual constraint is:

Ctx t (g1) = (0 ≤ n < 3 ∧ r = 1) ∨ (3 ≤ n < 5 ∧ r = 2)

In practice, however, this size information (for infinite recursion) can
be approximated by any Presburger formula. In particular, it is likely
for the size system to infer (safely) that r = 1 for all calls to h. Thus,
the computed contextual constraint can be:

Ctxa(g1) = (0 ≤ n < 3 ∧ r = 1) ∨ (3 ≤ n < 5 ∧ r = 2)
∨ (n ≥ 5 ∧ r = 1)

Now, let the output constraint Φ be r = 1, the theoretical positive
and negative WPC ’s for g2 with respect to Φ are:

wpc.g2.Φ = [n] : n < 3 ∨ n ≥ 5
wpc.g2.¬ Φ = [n] : n ≤ −1 ∨ 3 ≤ n < 5 ∨ n ≥ 5

whereas the derived pre-conditions are:

pca .g2.Φ = [n] : n < 3 ∨ n ≥ 5
pca .g2.¬ Φ = [n] : n ≤ −1 ∨ 3 ≤ n < 5

Here, the negative pre-condition differs from the negative WPC . How-
ever, they differ in the set of inputs that do not lead to termination
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(n ≥ 5). Hence, the negative pre-condition is a negative WPC -variant.
The derived pair still correctly partitions the terminating inputs; it thus
fully characterizes inputs of g2 with respect to Φ.

5.4. Constrained Pre-conditions

In the previous section, we saw how derived pre-conditions can be used
to characterize (terminating) inputs of a program with respect to an
output constraint. In this section, we provide a sufficient condition for
a pair of derived pre-conditions to fully characterize the inputs. This
will turn the detection of full input characterization into an effective
procedure.

Our first attempt to detect full characterization was to rely on the
clean partition of terminating inputs by the pair of positive and nega-
tive pre-conditions. To do this, we require that all terminating inputs
satisfy either positive or negative pre-conditions. A sub-problem to be
resolved is thus the detection of all terminating inputs, which is known
to be undecidable.

Our second attempt was to ignore the terminating-input set, and
check for the “disjointness” of positive and negative pre-conditions.
By disjointness, we mean that there is no input value that satisfies both
positive and negative pre-conditions. However, disjointness is not strong
enough for detecting full characterization. Even the pair of positive
and negative WPC ’s may not be disjoint, as evidenced in the case for
functions g1 and g2.

Our final, and successful attempt is to check for the “complete
coverage” of input domain by positive and negative pre-conditions.
To this end, we choose a constrained form of pre-conditions as our
derived pre-conditions: We restrict the pre-conditions to capture only
those values belonging to the input domain. We call them constrained
pre-conditions. They are defined as follows:

DEFINITION 4 (Constrained Pre-condition (cpc)). Given a program
P and an output constraint Φ. Let I be a constraint defining all inputs
to P. The positive and negative constrained pre-condition of P with
respect to Φ is defined by:

cpca
+

def
= (∀ X . (Ctxa(P) ⇒ Φ)) ∧ I

cpca−
def= (∀ X . (Ctxa(P) ⇒ ¬ Φ)) ∧ I

where X contains all free variables in the formula, except the input size
variables.

Analogously, we can define the positive and negative constrained weak-
est pre-conditions in terms of their original counterparts.
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The following table shows the corresponding cpc’s of the functions
we have mentioned earlier:

g1 g2

I n ≥ 0

Φ r = 3 r = 1 r = 1

pca
+ n ≤ −1 n ≤ 2 n < 3 ∨ n ≥ 5

pca
− n ≤ 2 n ≤ −1 ∨ n ≥ 3 n ≤ −1 ∨ 3 ≤ n < 5

cpca
+ False 0 ≤ n ≤ 2 0 ≤ n < 3 ∨ n ≥ 5

cpca
− 0 ≤ n ≤ 2 n ≥ 3 3 ≤ n < 5

From the table, we can check that the cpc-pair for both g1 and g2
with respect to the output constraint r = 1 “covers” the entire input
domain I, whereas the pair for g1 with respect to the output constraint
r = 3 does not. The Following theorem formalizes this fact:3

THEOREM 3. (Full Input Characterization with cpc) Given a
program P and its output constraint Φ , let I be the constraint defining
P’s inputs. If (cpca

+ ∨ cpca−) is equivalent to I, then (cpca
+ ∨ cpca−)

fully characterizes the inputs of P with respect to Φ.

Proof To show that (cpca
+, cpc

a
−) fully characterizes the inputs of P , we

need to show that the pair satisfies the three conditions of full characterization
on the terminating inputs.

For any terminating input i of P , let r be the result obtained by executing
P with input i .

1. i satisfies I ⇒ i satisfies (cpca
+ ∨ cpca

−), by the supposition that (cpca
+

∨ cpca
−) and I are equivalent.

2. i satisfies cpca
+

⇔ i satisfies (∀ X . (Ctxa(P) ⇒ Φ) ∧ I) (Definition of cpca
+)

⇒ i satisfies ∀ X . (Ctxa(P) ⇒ Φ) (∧-elimination)
⇒ i satisfies ∀ X . (Ctx t (P) ⇒ Φ) (Ctx t(P) ⇒ Ctxa(P))
⇔ i satisfies wpc.P .Φ
⇒ r satisfies Φ (Property 2)

3 This definition of cpc is more general than the concept of “contextualized WPC”
in our previous paper [16], in the sense that the former no longer requires the
assumption that the input domain I be equivalent to the context (∃X .Ctxa(P)).
Consequently, the condition for full characterization can be met by larger classes of
cpc-pairs.
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3. Similarly, we can show that i satisfies cpca
− implies that r satisfies ¬ Φ

through the definition of wpc.P .¬ Φ. ��

6. Specialization

In this section, we present an overview of a simple output-constraint
specialization strategy, in which specialization decisions made are based
on the result of the analysis described in Section 5. Our objective is
to raise and discuss some of the technical issues pertaining to this
new form of specialization. We restrict the output-constraint formula
to involve only output (size variables). Work on developing OCS for
programs with respect to constraints in terms of both input and output
size variables is currently being investigated.

Furthermore, for ease of presentation, we only consider monovariant
output constraints. That is, we don’t attempt to compute a new output
constraint for a sub-expression from the original output constraint for
the enclosing sub-expression. For instance, if the following expression
has the output constraint (r > 3):

2 + (g (n − 1))

Then an OCS dealing with polyvariant output constraints will need
to be aware of the fact that performing OCS recursively on the sub-
expression (g (n − 1)) requires a new output constraint (r > 1). Using
monovariant output constraints simplifies the solution at hand, but
reduces the power of OCS to only specializing tail-recursive functions
effectively. Correspondingly, the specializer will expect from the anal-
ysis phase a set of constrained pre-condition pairs, one for each of the
functions, with respect to this output constraint.

Lastly, we assume that the program has been subjected to alpha-
conversion, and all variables are given unique names. This again
simplifies our presentation.

The entire specialization process involves two specializers: our
output-constraint specializer and a conventional constraint-based par-
tial evaluator. For brevity, throughout the section, we refer to our
output-constraint specializer as “the specializer”.

Recall that a specialized program takes one of the two forms, de-
pending on the ability of its positive and negative cpca ’s to fully
characterize the program’s inputs.

In the case when (cpca
+, cpca−) fully characterizes the inputs with

respect to an output constraint, the specialized code adopts the perfect
form. Here, aggressive specialization is only performed on the condi-
tional branch the evaluation of which leads to a desired output. For
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this case, it suffices to invoke a traditional constraint-based partial
evaluation to transform the original program with respect to cpca

+. We
refer the readers to the work by Lafave et al. [17] for operational detail
of such a constraint-based partial evaluator. For brevity, we always refer
to this transformation as “aggressive specialization”.

When (cpca
+, cpca−) is not able to fully characterize the inputs, the

specialized code adopts the no-test form. Here, the specializer needs to
carefully select a group of branches (which always lead to some desired
outputs) for aggressive specialization, mark another group of branches
(which always lead to undesired output) as error, and wrap another
group of branches (the output destination of which is uncertain) with
an output-constraint test. For the remainder of this section, we shall
focus on defining such an OCS.

6.1. Overview – OCS Decisions

In OCS, the specializer has to make decision about which of the fol-
lowing three tasks to perform:

− Specializing a sub-expression aggressively;

− Replacing a sub-expression by an Error; and

− Wrapping a sub-expression with an output-constraint test.

We call this decision the OCS decision.
The first two tasks are performed when the specializer traverses

down an expression; the last task is performed while it is on its way
back up the modified expression.

During downward traversal, the specializer makes decisions only
before entering a branch of an if -expression. In addition to output
constraints, the specializer carries along a contextual constraint δ. By
comparing the contextual constraint against both cpca ’s, the specializer
decides to aggressively specialize the branch when the condition δ is
stronger than cpca

+; it decides to generate error message when δ is
stronger than cpca−. In both cases, the specializer returns not only the
transformed code, but also a binary marker of value True.

If δ is found to be incomparable with both cpca
+ and cpca−, there

are two possible cases: if the specializer is already at the bottom of an
expression tree, it simply returns the branch unchanged, and a binary
marker of value False ; otherwise, it continues to traverse down the
branch, keeping in mind the possible need to wrap the branch with
an output-constraint test. As it traverses further down the branch, the
specializer has to update the current contextual constraint δ.
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Any branch that returns a marker of value True indicates that it
needs not be wrapped further; a branch which returns a marker of value
False indicates that it may need to be wrapped with output-constraint
test, either at this branch or at some embedding expression.

As an example, consider specializing a variant of function g1, called
g1′, with output constraint r = 3. The code of g1′ is as follows:

g1′ n = if n ≤ 2 then 1
else if n ∗ n ≤ 25 then n else 3

The corresponding constrained pre-conditions are: cpca
+ is n = 3 and

cpca− is 0 ≤ n ≤ 2. During specialization, traversing the right-hand
side of g1′ downward yields the following pseudo-code:

if n ≤ 2 then < Error ,True >
else if n ∗ n ≤ 25 then < n,False > else < 3,True >

The code has three branches (one then branch, and two other branches
in the top else branch). The first branch is replaced by Error because
the specializer has determined so from the context of the branch. The
second branch is marked with False to indicate that wrapping is needed.
The third branch returns 3 because the constant result is found to
satisfy the output constraint.

On traversing up the expression tree, the specializer has to consider
wrapping the branches with an output-constraint test. It does so by ex-
amining the markers collected from every branch of an if -expression:

1. If one of the branches returns a marker of value True, the spe-
cializer will wrap all those branches having marker value False
with an output-constraint test.4 It then returns the transformed if -
expression up the expression tree, together with a marker of value
True. This indicates that it need not be wrapped anymore.

2. If all the branches return markers of value False , the specializer
simply returns the if -expression as it is, together with a marker of
value False .

Following the example of specializing g1′, the specializer will wrap
the second branch because its alternate branch (the third branch) has
returned a marker of value True. The resulting specialized code is as
follows:

4 We use the word “branches” in our description because this technique can be
extended to conditional expressions with multiple branches.
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if n ≤ 2 then Error
else if n ∗ n ≤ 25 then

let x = n in if x = 3 then x else Error
else 3

At the root of the expression tree, if the marker received from below
is False , the entire expression is wrapped with an output-constraint
test; otherwise, the return expression has already been fully specialized.

6.2. Decision Paths

Our specializer makes OCS decisions only along those paths (in an
abstract syntax tree) that lead to a last executable sub-expression.
We call these paths the decision paths. For example, in the following
example,

let x = e1 in let y = e2 in x + y

the last executable sub-expression is the nested body x + y . The deci-
sion path consists of two let-structures leading to x + y . Both e1 and
e2 are not on the decision path, because they do not contain the last ex-
ecutable expression. As such, they are only subject to constraint-based
specialization, not output-constraint specialization.

Through in-lining, expression e2, and possibly e1 can be brought into
the decision path, and be treated by OCS. As it is, specialization will
be more effective only when we allow polyvariant output constraints
(eg. computing new output-constraints for e2 in the expression x + e2

after in-lining.)

6.3. Dealing with Function Calls

The decision to unfold or specialize a function call in OCS is similar to
that in the context of constraint-based partial evaluation. The result
has already appeared in the related literature, notably the work by
Lafave and Gallagher in [17, 18, 19]. As such, in this paper, we do
not address issues pertaining to infinite unfolding or specialization. We
make the assumption that such decision have already been made for
each functions.

Treatment of call unfolding is the same as conventional constraint-
based partial evaluation. On the other hand, handling call specialization
is more involved, and we describe this in detail here.

The specializer will make OCS decisions in the body of a specialized
function if the original function call falls on the decision path. In fact,
because of monovariant output constraint requirement, the call should
be tail-recursive in order to be included in the decision path.
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Since we restrict the output constraint to contain only output (size)
variables, the output constraint will not be changed when the special-
ization process is shifted from the caller to the callee. However, the
pair of positive and negative constrained pre-condition will be changed
from that of the caller to the callee. This is reasonable, because some
of the actual arguments might get masked off during the caller/callee
shift. Similarly, the contextual constraint at the call site will need to
be consolidated, before it can be used as a contextual constraint for
the callee. Consolidation of contextual constraint includes gathering
all information about variables involved in forming the call argument,
and eliminating all (size) variables, through existential quantification,
that will become non-local at the body of the callee.

Lastly, we describe the content of the specialization store, called
cache (of type Cache). A cache associates a function name to a pair
containing: (1) the cpc-pair of the function with respect to the mono-
variant output constraint, and (2) a list of its specialized functions.
Information about a specialized function that is kept in the cache
includes cache information and a piece of residual code. A cache in-
formation item contains the following information, in this order: a
specialized function name, a list of parameters, a list of constraints
about each of the parameters, and a contextual constraint in which
the specialized function has been created. For convenience, information
about the original function definition is kept together with the list of
its specialized counterparts, and is placed at the end of the list.

There are four operations on a cache: The first operation is to treat
the cache as a function, and get a cache entry through function applica-
tion. Function cacheIn puts information of a new specialized function
into the cache. cacheUpd updates a specialized function’s information.
inCache checks the availability of a specialized function, and returns
its name if found.

6.4. The Algorithm

The entire OCS comprises three main functions: a perfect-form trans-
former ℘, an output-constraint specializer (which is defined by a pair of
mutually recursive functions U and U ′), and a conventional constraint-
based partial evaluator T . In this paper, we omit the definition of T , as
its construction can be found in the relevant literature. Figure 4 shows
the algorithm for ℘, and Figures 7, 8, and 9 show the algorithms for
the pair U and U ′.

OCS begins by calling ℘ to work on the main function with the
following information: an output constraint φ, an initial contextual con-
straint (possibly of value True) δ, the main function’s input domain I,
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and an initial cache �init which contains information about all original
functions.

The objective of ℘ is to transform the main function into a per-
fect form, if possible. The flow of function ℘ is described in Fig. 5.
When the cpc-pair (Ψ+,Ψ−), which can be obtained from the cache,
is able to fully characterize program inputs with respect to φ, ℘ calls
the constraint-based partial evaluator T to aggressively specialize the
program with respect to the positive pre-condition Ψ+ (and the exist-
ing context δ). Otherwise, it calls the output-constraint specializer to
work on the main function body. Several newly introduced auxiliary
functions used by ℘ are:

− Function sizetype takes an expression, and returns the annotated
type and size constraint of the expression.

− Function L translates a constraint to a boolean-valued expression,
so that the latter can be inserted into the specialized program.

Function U is called to make an OCS decision at a branch. It takes
in a function name f as a subscript, an expression e to be specialized,
the output constraint φ, a contextual constraint δ, a program-variable
environment Γ , and the global cache �.

Availability of the function name enables U to obtain the associated
cpc-pair for testing. The program-variable environment maps program

℘ :: Decl → F → F → F → Cache → Cache where
Γ ∈ Env = Var → Exp × AnnType × F
� ∈ Cache = Fn → ((F × F) × [ CInfo × Exp])
ι ∈ CInfo = Fn × [ Var] × [ F] × F

℘ [[ f (x1, x2, . . . , xn ) = e]] φ δ I �init =
let (τi , ψi) = sizetype[[ xi ]]

((Ψ+, Ψ−), ) = � ([[ f ]])
[[ f ′ ]] = newVar
Γ = Γinit [([[ xi ]], τi , ψi)/xi ]
ι = ([[ f ′ ]], [[[ x1 ]], . . . , [[ xn ]]], [ψ1, . . . , ψn ], δ)
� = cacheIn �init ([[ f ]], ι)
[[ eΨ+ ]] = L[[ Ψ+ ]] Γ

in if (Ψ+ ∨ Ψ− = I )
then let ([[ e ′ ]], �′) = T [[ e ]] (δ ∧ Ψ+) Γ �

in cacheUpd �′ ([[ f ]], ι, [[ if eΨ+ then e ′ else Error ]])
else let ([[ e ′ ]], �′, w) = U ′

f [[ e ]] φ δ (Ψ+,Ψ−) Γ �
[[ e ′′]] = if w then [[ e ′]]

else let [[ eφ ]] =L[[ φ ]] Γ [([[ x ]], Intr ,True)/x ]
in [[ let x = e ′ in if eφ then x else Error ]]

in cacheUpd �′ ([[ f ]], ι, [[ e ′′]])

Figure 4. Specialization Rule – ℘
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Inputs
Get 

cpc-pair

Specialize e
with T, get e’

Take perfect form

Update 
cache ϖ

yes

Specialized 
with U’

no

wrapping
needed?

Wrap with 
output test

no

yes

Icpccpc aa ≡∨ −+

Figure 5. The Process of Function ℘

input ∈ Ψ + input ∈ Ψ -

Specialize 
with T

Substitute 
with Error

Specialize
with U’

U is used to make specialization decisions

yes yes

no no

Figure 6. The Process of Function U

variables to a triple consisting of an expression (which is assumed to
have been specialized by the constraint-based partial evaluator, but not
the output-constraint specialization) , its annotated type, and its size
constraint.

The decision process performed by U has already been discussed in
Section 6.1 and is illustrated in Fig. 6. As expected, this is called by
function U ′ while working on an if -expression.

An auxiliary operation is employed by U to compute the existing
context is FΓ ,δ. This is a recursively-defined operation that combines
(via conjunction) all constraints in Γ which are related directly or
indirectly with δ. It produces the best information known about the

hoscOCS.tex; 20/09/2003; 6:35; p.27



28

U , U ′ :: Fn → Exp → F → F → Env →
Cache → ( Exp × Cache× Bool)

Uf [[ e]] φ δ Γ � =
let ((Ψ+, Ψ−), ) = � [[ f ]]
in if (∃ I . FΓ ,δ ⇒ Ψ+)

then let ([[ e ′ ]], �′) = T [[ e ]] δ Γ � in ([[ e ′ ]], �′, True)
else if (∃ I . FΓ ,δ ⇒ Ψ−) then ([[ Error ]], �, True)

else U ′
f [[ e ]] φ δ Γ �

U ′
f [[ c ]] φ δ Γ � =

if (r = c) ⇒ φ then ([[ c ]], �, True)
else ([[ Error ]], �, True)

U ′
f [[ x ]] φ δ Γ � =

let ([[ e ]], , ) = Γ [[ x ]]
in case [[ e ]] of

[[ c ]] → U ′
f [[ c ]] φ δ Γ �

→ ([[ e]], �, False)
U ′

f [[ primop (x1, . . . , xn )]] φ δ Γ � =
let ([[ e ]], �′) = T [[ primop (x1, . . . , xn ) ]] δ Γ �
in case [[ e ]] of

[[ c ]] → U ′
f [[ c ]] φ δ Γ �′

→ ([[ e]], �′, False)

For ease of presentation, we assume that program output be of annotated type Intr .

I is the set containing all input size variables. We write ∃X . φ as a shorthand for

∃ Y . φ, where Y = fv(φ) − X .

Figure 7. Specialization Rules – U and U ′ (Part I)

current contextual constraint of an expression. Formally, this is defined
as follows:

FΓ ,δ = ∧ (∪i ≥ 0 Φi ) where
Φ0 = {δ}
Φi+1 = { φ | (∃ x , τ . Γ [[ x ]] = (τ, φ)) ∧

(fv(φ) ∩ fv(Φi ) �= ∅) ∧ (φ �∈ Φi) }
As the environment Γ is finite, computation of FΓ ,φ always terminates.

Function U ′ operates on the syntactic constructs of Exp. It submits
those sub-expressions not in any decision paths to the constraint-based
partial evaluator T for specialization.

Upon encountering a constant in the decision path, U ′ checks the
constant for output-constraint satisfiability, and returns the appropri-
ate transformed code (either a constant or an error) with a marker
of value True, indicating that no further wrapping is needed on the
returned code.

For variable constructs, U ′ retrieves the relevant expression from the
environments, and subjects it to a constant check against the output-
constraint.
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U ′
f [[ if e0 then e1 else e2 ]] φ δ Γ � =

let (Boolv , ψ) = sizetype [[ e0 ]]
V = {v}
Φ = FΓ ,δ ∧ ψ

in if ∃ V .(Φ ⇒ (v = 1))
then Uf [[ e1 ]] (δ ∧ ψ ∧ (v = 1)) Γ �
else if ∃ V .(Φ ⇒ (v = 0))

then Uf [[ e2 ]] (δ ∧ ψ ∧ (v = 0)) Γ �
else let ([[ e ′

0 ]], �0) = T [[ e0 ]] δ Γ �
([[ e ′

1 ]], �1,w1) = Uf [[ e1 ]] φ (δ ∧ ψ ∧ (v = 1)) Γ �0

([[ e ′
2 ]], �2,w2) = Uf [[ e2 ]] φ (δ ∧ ψ ∧ (v = 0)) Γ �1

in if (w1 ∧ w2) ∨ ¬(w1 ∨ w2)
then ([[ if e ′

0 then e ′
1 else e ′

2 ]], �2,w1)
else let [[ eφ ]] = L[[ φg ]] Γ [([[ x ]], Intr ,True)/x ]

[[ e ′′
1 ]] = if w1 then [[ e ′

1 ]] else
[[ let x = e ′

1 in if eφ then x else Error ]]
[[ e ′′

2 ]] = if w2 then [[ e ′
2 ]] else

[[ let x = e ′
2 in if eφ then x else Error ]]

in ([[ if e ′
0 then e ′′

1 else e ′′
2 ]], �2, True)

U ′
f [[ let x = e1 in e2 ]] φ δ Γ � =
let (τ v , ψ) = sizetype[[ e1 ]]

([[ e ′
1 ]], �′) = T [[ e1 ]] δ Γ �

in case [[ e ′
1]] of

[[ c ]] → U ′
f [[ e2 ]] φ δ Γ [([[ c ]], τ, v = c)/x ] �′

→ let ([[ e ′
2 ]], �′′,w) = U ′

f [[ e2 ]] φ δ Γ [([[ e ′
1 ]], τ, ψ)/x ] �′

in ([[ let x = e ′
1 in e ′

2 ]], �′′, w)

Figure 8. Specialization Rules – U ′ (Part II)

U ′ submits a primitive operation to T for specialization, before
performing a constant check on the result.

For the if -expression, U ′ calls its counterpart U to make the OCS
decision. Notice that the contextual constraint δ is updated with in-
formation from the if -test, before being passed to U . Upon returning
from calls to U , U ′ has to decide if it need to wrap the branches with an
output-constraint test, based on the markers returned at each branch.
Only when (w1 �= w2), the branch returning False will be wrapped
up. This process is illustrated in Fig. 10.
For the let-expression, U ′ sends the local abstract to T for specializa-
tion, updates the environment with local information, and recursively
calls itself to work on the let-body. The process is illustrated in Fig.
11.

For a call to a user-defined function, say g , we assume that the
unfold/specialize decision has been provided by the user (or some deci-
sion procedure outside OCS), and can be accessed via the unfold? call.
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U ′
f [[ g (x1, . . . , xn ) ]] φ δ Γ � =

let ( , clist) = � [[ g ]]
(( , ys, , ), eg) = α (last clist)
[[[ y1 ]], . . . , [[ yn ]]] = ys
([[ ei ]] , τi , ψi) = Γ xi ∀ i = 1 . . . n
X =

⋃n

i=1
{fv(τi)}

F ′ = ∃ X . FΓ ,δ

[[ g ′ ]] = newVar
ι = ([[ g ′ ]], ys, [ψ1, . . . , ψn ], F ′)

in if (unfold?(g)) then U ′
f [[ eg ]][xi/yi ] φ δ Γ �

else case (inCache ([[ g ]] , ι)) of
[[ g ′]] → ([[ g ′(x1, . . . , xn ) ]], �, True)

→ let �′ = cacheIn � ([[ g ]], ι)
([[ e ′

g ]], �′′, w ) = U g [[ eg ]] φ F ′ Γg �′

Γg = Γinit [([[ yi ]], τi , ψi)/yi ]
[[ eφ ]] = L[[ φg ]] Γg [([[ x ]], Intr ,True)/x ]
[[ e ′′

g ]] = if w then [[ e ′
g ]]

else [[ let x = e ′
g in if eφ then x else Error ]]

�′′′ = cacheUpd �′′ ([[ g ]], ι, [[ e ′′
g ]])

in ([[ g ′(x1, . . . , xn ) ]], �′′′, True)

Figure 9. Specialization Rules – U ′ (Part III)

context=>τ context=>¬τ

any brunch 
to wrap up?

no no
Apply U to 

both brunches

Wrap up brunch
with output test

Apply U to 
then-brunch

Apply U to 
else-brunch

yes yes

yes

no

Figure 10. The Process of Function U ′ for an if-expression

Unfolding a call proceeds just like constraint-based partial evaluation.
When a similar specialized function of g cannot be found in the cache
during call specialization, a new specialized function is created. Its
body is obtained by output-constraint specializing the right-hand side
expression of g ’s definition with respect to the same output constraint,
φ, but with the constrained pre-condition pair of g with respect to φ.
This is reflected in the use of a new function-name parameter in the
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Specialize e1

with T, get e1’

Specialize e2

with U’, with new 
environment 

including x, Get e2’

Let x=e1’ in e2’

Figure 11. The Process of Function U ′ for a let-expression

recursive call to U ′. Note that we cannot use the existing constrained
pre-condition pairs (available at the caller) because information about
the actual call arguments, which may contain variables and constraints
related to the variables of the caller, may have been lost when the
control is moved to the callee. This process is illustrated in Fig. 12.
Consider the following tail-recursive function h for summing arguments

Unfold g?
any usable
residual g’

found

no

no

Search for 
residual in cache

Substitute g
by g’

Unfold g and 
apply U’

Specialize function 
g wrt. φand context

yes yes

Upload new decl
to cache

Substitute g
by new func name

Figure 12. The Process of Function U ′ for Function Calls

(assuming both n and m are naturals):

h n m = if n > 0 then h (n − 1) (m + 1)
else m

To illustrate the effect of U and U ′, let us assume that we do not
intend to transform the function into perfect form (using ℘). Given
that the output constraint is 0 < r < 3, and assuming calls to h are to
be unfolded, we obtain the following result:

h1 n m = if n > 0 then
if (n − 1) > 0 then

if (n − 2) > 0 then
if (n − 3) > 0 then Error else Error

else checkOC (m + 2)
else checkOC (m + 1)

else checkOC m
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checkOC m = let x = m in
if (0 < x < 3) then x else Error

In the above example, we replace any output-constraint test by a
call to such a test, in order to avoid cluttering the code.

6.5. Example

A more realistic vending machine simulation is used as an example to
illustrate the effectiveness of the OCS approach.

The vending machine vm takes in three arguments, the first one
money means the number of tokens that have been inserted into the
machine (initially it is always Zero), the second bev refers to the bever-
age the customer chooses(1 for Coke, 2 for Coffee, and 3 for Tea), the
last one ts means a series of tokens. Here is the program:

vm money bev ts =
case ts of

[] → if (bev == 1)
then if (money >= 1) then bev else 0
else if (bev == 2)

then if (money >= 2) then bev else 0
else if (bev == 3)

then if (money >= 3) then bev
else 0

else 0
(t : ts ′) → vm (money + 1) bev ts ′

Suppose we only want the vending machine to sell coffee, so the
output constraint is r = 2. With the initial context money = 0, we get
the context of the function vm.

vm :: (Inti × Intj × [Int]k ) → Intr

Ctx (vm) = (j = 1) ∧ ((k ≥ 1 ∧ r = 1) ∨ (k = 0 ∧ r = 0))
∨ (j = 2) ∧ ((k ≥ 2 ∧ r = 2) ∨ (0 ≤ k ≤ 1 ∧ r = 0))
∨ (j = 3) ∧ ((k ≥ 3 ∧ r = 2) ∨ (0 ≤ k ≤ 2 ∧ r = 0))

So the constrained pre-condition pairs of vm are:

cpca
+ = (j = 2 ∧ k ≥ 2)

cpca− = (j = 1) ∨ (j = 2) ∨ (j = 2) ∧ (0 ≤ k ≤ 1)

The pair “covers” the whole input domain, so it forms a full input
characterization. Thus, the specialization can take the perfect form:

vm ′ money bev ts = if (length(ts) ≥ 2 ∧ bev = 2)
then 2 else Error
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Suppose we cannot get any useful information from the context syn-
thesis, so Ctx (vm) = True, and cpca

+ = False, cpca− = False . Clearly,
this cpc-pair cannot form a full characterization, so we subject the body
of vm to the OCS algorithm U’ and we get another specialized version
of vm:

vm ′′ money bev ts =
case ts of

[ ] → if (bev = 2)
then if (money ≥ 2) then bev else Error
else Error

(t : ts ′) → vm ′′ (money + 1) bev ts ′

After post-processing, the Error branches can be combined together,
and we get another version:

vm1 money bev ts =
case ts of

[ ] → if (bev = 2) ∧ (money ≥ 2) then bev else Error
(t : ts ′) → vm1 (money + 1) bev ts ′

We have only tested OCS on some small programs. We will do more
experiments in the future and apply OCS in real world application.

6.6. Discussion

The quality of the specialization result depends on all components
involved: the analysis, the constraint-based partial evaluator used (T ),
and the main specialization functions U ′ and U . Here the quality of
the analysis result means how accurate the pre-condition is, which
depends on how accurate the context capturing process is. The qual-
ity of the partial evaluator T also contributes a lot. By keeping the
constraint-based partial evaluator as an independent component within
the system, a newly developed partial evaluator can be plugged in to
improve the quality of the entire specialization.

Functions U and U ′ as presented have been rather conservative. They
can be strengthened in at least the following ways:

1. Better interaction with function T : Currently, function T returns
a piece of specialized code. It should also be able to return a con-
straint describing the size information about the specialized code.
As the returned constraint is computed for a specific context dur-
ing partial evaluation, it will be more precise than the sized type
information available at the original expression, which had been
collected before output-constraint specialization. With it, the spe-
cialized code can be further examined for its satisfiability with the
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output constraint. Currently, function U ′ only performs a constant
check of the specialized code.

Moreover, in the case when the specialized code returned by T
contains an if -expression, and it falls in a decision path, we can once
again subject the code to the OCS decision process. This happens
when there is only a variable in the decision path, and may occur
from the result of specializing a primitive operation.

2. Improving Unfold/Specialize decisions: Currently, we rely on the
user to provide these decisions. While this is fine, the decision is still
primitive; it remains at the level of deciding to unfold or specialize a
call. A more expressive sub-language should be provided for making
such a decision. Many systems (eg.: Schism [9]) enable the user to
specify how arguments to a function should be treated during call
specialization. In OCS, we will also require the user to specify the
constraint under which call specialization should take place. For
example, in the example of specializing function h, we may wish
to annotate the function with information such as: “unfold when
n < 3.”

For OCS to be useful for component adaptation, a system with
automated unfold/specialize decisions is desirable. Further work in
this direction is still required.

Furthermore, it is certainly desirable to post-process the specialized
code, such as eliminating the test in the case when all branches that
have consistent values (eg. Error ), or to in-line a local definition which
appears once in the let-body, and many others.

Lastly, the algorithm has been restricted to the specialization of a
program with respect to monovariant output-only constraints. A poly-
variant output-only constraint can be handled during pre-processing
phase by propagating output constraints inwards to the sub-expressions.
Handling of the general polyvariant input-output-related constraint
can be challenging, as a sub-expression may partially satisfy a con-
straint, with the rest of the constraints to be satisfied by another
sub-expression. The work in this direction is currently in progress.

7. Related Work

The main objective of OCS is to adapt a program to a new form of
constraint: the output constraint. As such, the treatment of a program
is quite different from the conventional partial evaluation approach
[10, 15], which specializes programs with respect to input information.
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In the first place, it is not clear if any productive input information
can be derived from an output constraint. Next, even when all program
inputs are fully characterized with respect to an output constraint, the
outcome of OCS – a specialized program – is still expected to accept all
possible inputs. This expectation can adversely affect the aggressiveness
of specialization, since the latter must ensure that all input are treated
correctly. To appropriately relate partial evaluation to OCS, we can
say that partial evaluation performs a kind of “positive” specialization,
whereas OCS requires specialization of both “positive” and “negative”
information. (We note, however, that the term “positive” used here
is similar in spirit, but different in practice, from the term “posi-
tive supercompilation” used in the partial-evaluation community [23].)
Furthermore, partial evaluation assumes the availability of “positive”
information, whereas OCS requires derivation of both “positive” and
“negative” information.

Another area of research that is closely related to the idea of OCS is
program slicing [28, 27, 7]. Some recent work in this area has focused
on deriving program slices based on post-conditions, such as p-slicing
[8]. However, P-slicing does not necessarily produce a program slice
that is semantically equivalent to the original program, given a partic-
ular program input. Other program slicing techniques, noticeably the
conditional slicing [3], do not state any requirement for the correctness
of program slices in the situation when the input does not satisfy the
WPC of a program with respect to the post-condition. Therefore, it
allows the derivation of a pre-condition that is weaker than WPC .
Tom Reps et al. have done a similar work, applying program slicing
on functional programs [22], thus achieving the effect of program spe-
cialization. However, they have not looked into expressing the output
slicing criteria in terms of constraints, and the resulting program is
a program slice, not really an adapted program with optimization in
mind. On the other hand, theirs was the first work that looked into
specialization with respect to output conditions. We believe that more
research is needed to attain a synergy between program slicing and
program specialization.

Our work shares similar spirit with the work on inverse computation
[1, 24]. Both attempt to find a class of inputs that can lead to an
output constraint. While the inverse computation produces an inverse
program, we do not reverse the control flow of the original program.

On the analysis aspect, there is abundant work on deriving weakest
pre-conditions from a given program output. The basic idea behind the
backward derivation of weakest pre-condition was already present in
the inductive iteration method, pioneered by Suzuki and Ishihata[25],
and more recently improved by Xi et al. [30] and Flanagan et al.[13].
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An earlier version of forward context analysis appeared in [6], with the
intention to find total- and partial-redundant checks in a program. A
similar version, without introducing sized types, can be found in [26].
In this paper, we rely heavily on contextual information, both to derive
weakest pre-conditions, and to characterize program inputs.

8. Conclusions

In this paper we introduce a novel concept of program specialization
based on output constraints. We describe how an efficient specialized
program should behave, and illuminate an approach to attain this
efficiency, while minimizing the number of additional tests required in
specialized programs. In the process, we translate output constraints to
a characterization function for program’s input, and define a specializer
that uses this characterization to guide the specialization process. We
argue that full characterization of inputs can reduce the number of
tests, and provide a sufficient condition for detecting the existence of
full characterization.

The theorem of full characterization assumes that derived pre-
conditions are stronger than theoretical WPC . This is in the spirit
of must-analysis. Because we capture both positive and negative pre-
conditions We can easily extend this full-characterization theorem to
work on “pre-conditions” which are weaker than the theoretical WPC
— in the spirit of may-analysis.

The specializer presented only serves as a proof of concept. Much
work is still required to fine-tune our specializer. In particular, the
termination issue of our specialization has not been addressed.

Lastly, our work can be extended in many ways:

1. By combining techniques for input-constraint specialization (a.ka.
partial evaluation) and output-constraint specialization, we now
have better insight into specializing programs with respect to a
constraint occurring anywhere in a program. We believe this will
broaden the applicability of program specialization, and make the
latter a promising tool for program adaptation.

2. Instead of one output constraint, we may wish to assert multiple
constraints in a program. These constraints need not be identical.
We believe the technique for handling them remains almost the
same: searching for a full characterization of program inputs with
respect to different combinations of such constraints.

3. The work can be deployed to different paradigms of programming
languages. Specifically, it may be interesting to find out the formal
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relationship between output-constraint specialization and program
slicing with WPC [8]. Moreover, we are currently looking into ap-
plication of this work to languages with imperative features, as
well as other programming features such as non-determinism and
concurrency.

We believe this work will broaden the scope of program specializa-
tion, and provide a framework for building more generic and versatile
program adaptation techniques.
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Appendix

A. Proof of Theorem 1

Theorem 1 [WPC of Functional Programs] Given a program P
and an assertion Φ about its output. Denote the result of performing
C over P by Ctx (P). Let P ′ be the corresponding PGCL program
translated from P . Then,

wpc.P ′.Φ = ∀X.(Ctx(P ) ⇒ Φ).

where X contains all free variables in the formula, except the input size
variables.

Proof

It suffices to prove that for any expression e which constitutes the body (ie.,
right hand side) of P , if π is the corresponding translated sub-program in PGCL
language, then we have

wpc.π.Φ = ∀X.(Ctx(e) ⇒ Φ)

where X contains all free (size) variables in the formula, except the size variables
associated with free variables of e (in other words, these free variables are viewed
as inputs to the expression.)

We first translate e to a program π in Passified Guarded Command Language
(PGCL) [13]. This gives us the ability to describe the weakest pre-condition of e in
terms of the weakest pre-condition of π.

PGCL Overview: PGCL is a variant of Dijkstra’s guarded command lan-
guage [11]. PGCL includes assume and assert statements, sequential composition,
demonic (non-deterministic) choice, and function calls. assume φ act as a “guard”,
and terminates normally if the predicate φ evaluates to True, and simply cannot
be executed from a state where φ evaluates to False . The execution of the choice
statement A [] B arbitrary chooses either A or B to execute. This non-determinism
can be tamed by assume statement: Consider the following statement:

(assume φ ; A) [] (assume ¬φ ; B)

It is deterministic because there is only one valid branch to choose for execution.
There is no assignment statement in PGCL. Assignment has been translated into

the assume statement by a function call passify. The basic idea is to replace each
assignment statement

x := e

by an assumption
assume x′ = e
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where x′ is a fresh variable, and to change subsequent references to x to refer to x′.
Defining wp and ctx: Given a program π in PGCL and an assertion Φ about

its output. Define a context of π called ctx(π) as shown in Table 1. The second
column of Table 1 defines the weakest pre-condition semantics of PGCL (this is
given by the semantics of PGCL, which was described in [20]). The third column
defines the context of π in a syntax-directed manner. Together, the second and third
column shows the relationship between the weakest pre-condition of statements in
PGCL and the context of the corresponding statements. We first prove that this
relation asserts the following properties:

wp.π.Φ = (ctx(π) ⇒ Φ).

Table I. Syntax-directed Rules

Syntax of π wp.π.Q ctx(π)

skip Q True

assume e e⇒ Q e

A;B wp.A.(wp.B.Q) ctx(A)∧ ctx(B)

A[]B wp.A.Q ∧ wp.B.Q ctx(A)∨ ctx(B)

p(x, y) ctx(p) ⇒ Q ctx(p)

[π = assume e ] wp.π.Φ = e⇒ Φ
= ctx(π) ⇒ Φ

[π = A;B ] wp.π.Φ = wp.A.(wp.B.Φ)
= ctx(A) ⇒ wp.B.Φ (structural induction)
= ctx(A) ⇒ (ctx(B) ⇒ Φ) (structural induction)
= (ctx(A) ∧ ctx(B)) ⇒ Φ (p⇒ (q ⇒ r) = (p ∧ q) ⇒ r)
= ctx(A;B) ⇒ Φ

[π = A[]B ] wp.π.Φ = wp.A.Φ ∧ wp.B.Φ
= (ctx(A) ⇒ Φ) ∧ (ctx(B) ⇒ Φ) (structural induction)
= (ctx(A)∨ ctx(B)) ⇒ Φ ((p⇒ r) ∧ (q ⇒ r) = (p ∨ q) ⇒ r)
= ctx(A[]B) ⇒ Φ

The case for π = skip and π = p(x, y) is obvious. Thus, by structural induction on
the syntax of passified Guarded Command Language(PGCL), we have shown

wp.π.Φ = (ctx(π) ⇒ Φ)

Translating to PGCL: Next, we show in Fig. 13 the rules to transform a
program Prog to its PGCL form. These rules are extended from the rules of context
computation defined in Figure 3.

The function D takes in an expression, e, in our language, and returns a triple
comprising of a sized type of e, a contextual constraint φ, expressed in terms of the
size variables, and a PGCL code π composed using size variables. Note that Ctx(e),
the result of performing C over e, is the same as φ defined in D. Furthermore, we
define ctx(π) = φ.

Proof of the theorem: Now, we can link together an expression e in our
language and the corresponding program π in PGCL, through the common size
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D, Cmain :: Exp → Env → F → ( AnnType × F × PGCL)
where Env = Var → AnnType × F

PGCL = PGCL programs
Cmain [[ e ]] Γ ψ = let (τ v , φ, π) = D [[ e ]] Γ ψ

π′ = [[ assume r = v ; ]]
in ( , φ ∧ (r = v), π;π′)

D [[ x ]] Γ ψ = let (τ v1 , φ) = Γ [[ x ]]
v = newVar

in (τ v , (v = v1), [[ assume v = v1; ]])
D [[ n ]] Γ ψ = let v = newVar in (Intv , (v = n), [[ assume v = n; ]])
D [[ f (x1, . . . , xn ) ]] Γ ψ =

let ((τ1
v1 , . . . , τn

vn ) → τ, φf ) = α (Γ [[ f ]])
Y = ∪n

i=1 {vi}
(τ ′i

v′
i , φi) = Γ [[ xi ]] ∀ i ∈ {1, . . . ,n}

φ = ∃ Y . ( φf ∧ (∧n
i=1 ( v ′

i = vi)))
πi = [[ assume vi = v ′

i ; ]]
π = π1;π2; . . . ; πn ; f (v1, . . . , vn );

in (τ, φ, π)

D [[ if e0 then e1 else e2 ]] Γ ψ =
let (Boolv , φ, π0) = D [[ e0 ]] Γ ψ

(τ1
v1 , φ1, π1) = D [[ e1 ]] Γ (ψ ∧ φ ∧ (v = 1) )

(τ2
v2 , φ2, π2) = D [[ e2 ]] Γ (ψ ∧ φ ∧ (v = 0))

τ3
v3 = α (τ1

v1)
Y = { v , v1, v2 }
φ3 = ∃ Y . φ ∧ (((v1 = v3) ∧ (v = 1) ∧ φ1)

∨ ((v2 = v3) ∧ (v = 0) ∧ φ2))
π = π0; ( (assume v = 1; π1; assume v3 = v1; )

[] (assume v = 0; π2; assume v3 = v2))
in (τ3, φ3, π)

D [[ let x = e1 in e2 ]] Γ ψ =
let (τ1, φ1, π1) = D [[ e1 ]] Γ ψ

(τ, φ2, π2) = D [[ e2 ]] Γ [(τ1, φ1)/x ] ψ
Y = fv(τ1)
φ = ∃ Y . φ1 ∧ φ2

in (τ, φ, π1;π2)

Figure 13. Translation to PGCL with context information

variables expressed in φ. We define wpc.π.Φ to be the weakest pre-condition of π
with respect to Φ, where π is obtained by executing D on e. That is to say,

wpc.π.Φ = ∀Y.wp.π.Φ

where Y is all free variables in the formula, excluding the input variables of π.
In order to show that wpc.π.Φ = ∀X . Ctx(e) ⇒ Φ, we just need to show that
∀Y . wp.π.Φ = ∀ X . Ctx(e) ⇒ Φ, for some X and Y which captures all the free
variables in the respective formulae, except the input variables (since both formulae
are expressed in terms of size variables, their input variables will be the same.)

The cases for variables and constants are trivial. We prove here the other cases:
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case [[ f (x1, . . . , xn) ]] :
∀ X . wp.(π1; . . . ; πn ; f (v1, . . . , vn )).Φ
= ∀ X . wp.(π1; . . . ; πn).(wp.(f (v1, . . . , vn )).Φ
= ∀ X . wp.(π1; . . . ; πn).(Ctx(f (v1, . . . , vn)) ⇒ Φ)
= ∀ X . wp.(π1; . . . ; πn).(φf ⇒ Φ)
= ∀ X . (v1 = v ′

1) ⇒ (. . . (vn = v ′
n ) ⇒ (φf ⇒ Φ)))

= ∀ X . ((∧n
i=1 ( vi = v ′

i ) ∧ φf ) ⇒ Φ)
= ∀ X ′∀ Y . ((∧n

i=1 ( vi = v ′
i ) ∧ φf ) ⇒ Φ)

where Y = ∪n
i=1 vi and X = X ′ ∪ Y

= ∀ X ′. ((∃ Y . (∧n
i=1 ( vi = v ′

i ) ∧ φf )) ⇒ Φ) since Y ∩ fv(Φ) = ∅
= ∀ X ′. (Ctx([[ f (x1, . . . , xn ) ]]) ⇒ Φ)

case [[ if e0 then e1 else e2 ]] :
wp.π0; ((assume v = 1; π1; assume v3 = v1; )

[] (assume v = 0; π2; assume v3 = v2)).Φ
= ∀ X . wp.π0.(((v = 1) ∧ φ1 ∧ (v3 = v1)) ⇒ Φ

∧ wp.(assume v = 0; π2; assume v3 = v2).Φ)
= ∀ X . wp.π0.(((v = 1) ∧ φ1 ∧ (v3 = v1)) ⇒ Φ

∧ ((v = 0) ∧ φ2 ∧ (v3 = v2)) ⇒ Φ)
= ∀ X . wp.π0.(((v = 1) ∧ φ1 ∧ (v3 = v1)

∨ (v = 0) ∧ φ2 ∧ (v3 = v2)) ⇒ Φ)
= ∀ X . φ ⇒ (((v = 1) ∧ φ1 ∧ (v3 = v1)

∨ (v = 0) ∧ φ2 ∧ (v3 = v2)) ⇒ Φ)
= ∀ X . (φ ∧ ((v = 1) ∧ φ1 ∧ (v3 = v1)

∨ (v = 0) ∧ φ2 ∧ (v3 = v2))) ⇒ Φ)
= ∀ X ′∀ Y . (φ ∧ ((v = 1) ∧ φ1 ∧ (v3 = v1)

∨ (v = 0) ∧ φ2 ∧ (v3 = v2))) ⇒ Φ)
where Y = { v , v1, v2 }, v ∈ fv(φ), and X = X ′ ∪ Y

= ∀ X ′. (∃ Y . (φ ∧ ((v = 1) ∧ φ1 ∧ (v3 = v1)
∨ (v = 0) ∧ φ2 ∧ (v3 = v2)))) ⇒ Φ)

since Y ∩ fv(Φ) = ∅
= ∀ X ′. (Ctx([[ if e0 then e1 else e2 ]]) ⇒ Φ)

case [[ let x = e1 in e2 ]] :
∀ X . wp.π1;π2.Φ
= ∀ X . wp.π1.(wp.π2.Φ)
= ∀ X . (φ1 ⇒ (φ2 ⇒ Φ))
= ∀ X . ((φ1 ∧ φ2) ⇒ Φ)
= ∀ X ′ ∀ Y . ((φ1 ∧ φ2) ⇒ Φ)

where Y = fv(τ1), D [[ e1 ]] evaluates to (τ1, φ1, π1), and X = X ′ ∪ Y
= ∀ X ′. ((∃ Y . (φ1 ∧ φ2)) ⇒ Φ) since Y ∩ fv(Φ) = ∅
= ∀ X ′. (Ctx([[ let x = e1 in e2 ]]) ⇒ Φ)

Thus, we have wpc.P ′.Φ = ∀ X . Ctx(P) ⇒ Φ. �
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