
Compiling Inheritance using Partial Evaluation *

Abstract

Siau Cheng Khoo R.S. Sundaresh

Yale University

Department of Computer Science

New Haven, CT 06520

{khoo, sundaresh}@cs. yale. edu

[CP89] presents two semantics - one denotational and
one operational – for inheritance A central concept of

object oriented programming. We show how to use
these semantics to interpret and compile inheritance.
The main result is the elimination of compile time method
lookups within an object instance. More specifically,

this eliminates the inheritance references within an ob-
ject. To the best of our knowledge, this is the first work
on compiling inheritance based on a formal semantics.

We first demonstrate the necessity of converting the

semantics into continuation passing style; then we look
into the result of performing partial evaluation on their

corresponding interpreters. Based on the Futamura Pro-
jections, we have also generated compilers from each of

the interpreters.

1 Introduction

Inheritance, a central concept of object oriented pro-
gramming, has been given a denotational semantics in

[CP89]. By showing the equivalence of this denotational

semantics with the widely accepted operational seman-

tics, Cook and Palsberg [CP89] justify the claim that

it accurately models inheritance. The benefits of in-

heritance as a method to gracefully extend programs
are well known. Indeed, Cook and Palsberg identify

the essence of inheritance as “a mechanism for deriving
modified versions of recursive strictures”.

The benefits of inheritance come with a price: a
naive implementation will be unacceptably slow because

the meaning of a message can only be determined by
traversing the class hierarchy (possibly many times).

“ This work was supported in part by NSF grant CCR-

8809919. The first author was supported by a National Uni-

versity of Singapore overeeaa graduate scholarship. The second

author was supported by an IBM graduate fellowship.

Permission to copy without fee all or part of this material is

granted provided that the copies are not made or distributed for

direct commercial advantage, the ACM copyright notice and the

title of the publication and its date appear, and notice is given

that copying is by permission of the Association for Computing

Machinery. To copy otherwise, or to republish, requires a fee

and/or specific permiaaion.

91991 ACM 0-89791-433-3/91 /00061021 1...$1.50

Most compilers for object oriented languages attempt

to elimina~e this overhead by trying t; de~ermine the
method to be executed corresponding to a message at

compile time. In this paper, we use the semantics of

inheritance given in [CP89] in a prescriptive role by
compiling inherit ante based on them. As such, this
work can be seen as fitting in the overall framework

of semantics-directed compilation, an area which has
been the subject of intense activity (e.g. [Mos76, Jon80,

CK90, CD91b]). To the best of our knowledge, this is
the first work on compiling inheritance based on a for-

mal semantics.

A non-trivial semantic-directed compilation aims at

eliminating as many static operations as possible. Since
the semantic definitions - both operational and deno-

tational - given for inheritance are developed primarily
for explanatory purposes, they lack the distinction be-
tween static and dynamic semantics. Traditionally, such

a lack of distinction forces one to determine the static
semantics by hand. Besides the fact that their sound-

ness are generally difficult to prove, this process is also

error prone [Jon80, Ple87].

Partial evaluation offers a unified approach towards

compiling and generating compiler from interpreters. It
uses a binding time analysis to determine automaticrdly

the static semantics, and a specialize to execute the

etatic operations so detected. This results in a robust
and simple approach to semantic-directed compilation.

A detailed description of such approach can be seen in

[CD91b].

Frequently, how much of the static semantics can be
detected depends on the way the semantics is written.

More specifically, with a semantic definition written in
direct style, it is possible that some static operations

cannot be detected by the binding time analysis, and
thus their corresponding expressions are made residual

at compile time. This is further explained in Section 3.2.

Such a shortcoming can be circumvented by modifying

the semantic definition in a systematic manner so that
more static operations can be detected. In particular,

experience shows that better binding time information
can be achieved by converting the definition into contin-

uation passing style (CPS). This is investigated in detail
by Gonsel and Danvy in [CD91a].

In this paper, we achieve the compilation of inher-

211

itance by first converting the semantic definition into
one in continuation passing style (such conversion algo-
rithms are already available, for example, in [DF90]),
and then partially evaluating the corresponding inter-

preter with respect to some object instances. The pri-
mary result of the partial evaluation is the elimination
of the compile time method lookups. Traditionally, such
optimization is incorporated in the object oriented com-

pilers (e.g. [CU89]).

This experiment is performed using Schism, a par-

tial evaluator for a side-effect free dialect of Scheme

[Con90a, Con90b]. The source programs are written

in pure Scheme: a dynamically typed, applicative or-
der implementation of lambda-calculus. Schism handles

higher order ftmctions as well as the data structures ma-
nipulated by the source programs, even when they are

only partially known. The specialize of Schism is writ-
ten in pure Scheme and is self-applicable. It can gener-

ate a compiler out of the interpretive specification of a
programming language.

To summarize the results of the paper:

● Programs using inheritance are compiled into pro-

grams wit bout inherit ante. In other words, the
decision of which method to execute in response
to a message is done statically. The compiled pro-

gram only needs to perform method dispatch in a
single step.

● This process is provably correct since it is based
on two automatic transformations of a formal se-

mantics: CPS conversion and partial evaluation.

● The programs thus compiled typically show siz-

able speedups over their interpreted counterparts.

The paper is organized as follows: Section 2 de-
scribes method sgstems, the source language we will be
compiling. The next two sections describe the issues
involved in using the semantics for purposes of compi-

lation. The overall strategy for compilation is as fol-
lows: we first derive interpreters from both the denota-

tional and operational semantics. Compilation can be

achieved by specializing these interpreters with a pro-
gram (The first l%tamura projection [Fut71]). Compiler
generation is achieved using the second Fut amura pro-

jection. We present the results of compilation using an

example. In particular, Section 3 derives an interpreter
from the operational semantics of inheritance, and Sec-

tion 4 derives an interpreter from the denotational se-
mantics.

2 Method Systems

Cook and Palsberg [CP89] introduce a simple formal-
ization of object oriented languages called method sgs-
tems. The aim of this language is to encompass only
those language features directly related to inheritance.

Other important features of object oriented languages

Syntactic Domains :

p G Instance Instances
E E Class Classes

m E Key Messages
j E Primitive Primitives
e E Exp Methods

e := Se/~ lSuperla~glnlelme2 l~(el,..., en)

Syntactic Operations :

class : Instance + Class
parent : Class & (Class -I- ETTOT)

methods : Class + Key -+ (Ezp + ETTOT)

Figure 1: Syntactic Domains

(defineType Classes
(Error)
(Root)
(Clss methods

superclass))

(defineType Expr
(Error-exp)

(Exp expression))

(defineType Exp-type

(Self)
(Super)

(Arg)
(Sending el m e2)
(IIumber n)
(Var x)
(Prim-+ ei e2)

(Prim-- el e2)
(Prim-* el e2)

(Prim-< ei e2)

(Prim-sqrt ei)
(Prim-max el e2))

Fimre 2: Abstract Svntax

like instance variables, assignment and object creation

are omitted. Since we are interested in aspects of com-
pilation related to inheritance, we will use this language
for our experiments.

An object is an instance of a class. A class is a
mapping from messages to expressions and may inherit

methods from its parent. The relation between these
syntactic domains can be seen in Figure 1. Also shown
are useful operations on these domains. Self reference
is denoted by Self and reference to the parent by Super.

The argument to the expression is referenced via arg.
Message passing is denoted by el m ez. This sends the

message m with argument e2 to the object el. Note
that objects are fully first class. They can be passed as

arguments and returned as results.

The operation class returns the class to which an

instance belongs. parent returns the parent of a class,
returns an error if applied to the root. methods returns

the method expression when applied to a class and a

message. It returns error if the message is undefined in

the class.

In Schism these domains are encoded using Schism
type constructs. These constructs are simplified ver-
sion of ML constructs. More specifically, the construct

defineType defines a product or a sum, depending on
whether it contains single clause or more. The con-
structs let and let* perform restructuring operations
on elements of products besides creating new bindings.

212

Class Point

class point (a, b)
method x = a
method y = b
method dist FromOrig =

sqrt(self. x * self. x

+ self. y * self. y)
method close rToOrig(p) =

self .dist FromOrig < p .dist FromOrig

Class Circle

class circle (a, b,r) inherit point (a, b)
msthod radius = r

method dist FromOrig =
max(super .dist FromOrig

- self radius, O)

Fi,mre 3: Definitions of Class Circle and Point

Restructuring an element of a sum is obtained via the

construct caseType, which is a conditional on the injec-

tion tag of the components of a sum. The encoding of

the types is shown in Figure 2. The syntactic operations

are coded as functions on these types (in Appendix A).

Figure 3 shows an example program in this language.

The program implements two classes: a circle class,

and a point class. The circle class inherits methods

from the point class. Note the use of self reference in

the method corresponding to closerToOrig in the class

point. In a circle inst ante, this self reference will in-

voke the dist FromOrig method of the circle class, not

the point class. We will use this example later on to

illustrate the results of the compilation process.

3 Operational Semantics and lts Partial Evaluation

In this section, we focus on the operational semantics

of the inheritance, Although the techniques used here

are illustrated on the operational semantics, they are

equally applicable to the denotational semantics, as we

shall see in Section 4. We first look at the problem in-

curred by using the operational semantics as described

in [CP89] in a prescriptive role. We then solve the prob-

lem via systematic transformation of the semantics into

continuation passing style. Next, we obtain an inter-

preter by direct encoding of the transformed semantics,

and describe the result of partial evaluation through

some examples.

The operational semantics of inheritance described

in [CP89] models its method lookup mechanism, and

is shown in Figure 4. The behavior of an instance is

defined to be a mapping from messages to value trans-

formers. The behavior function thus has a mapping for

every message the instance responds to. Note that ob-

jects are first class: They can be passed as arguments

and returned as results of computations. In particu-

lar, expression sel~refers to the behavior of the instance

undo. consider=kbn arid ==p.e..ion .-F.. .efs.. %Q khs

behavior of the parent of the class under consideration.

Together, self and super capture the notion of inheri-

tance in the sense that, when they are passed a message,

they refer to either the instance itself or its parent to

obtain the corresponding method for execution.

The meaning of the model is that of function send,

which takes as arguments an object instance, a mes-

sage key and a message argument. The latter two ar-

guments are used to activate computation. In the con-

text of compilation, it is natural that the instance be

known, but both the message key and message argument

be unknown. Similar static information is provided at

the partial evaluation. Since both the constructs self

and super refer to known instances, any known mes-

sages sent to them can be resolved by performing static

method lookup. Although the message key and message

argument input to the model are unknown, static mes-

sages exist in method expressions defined in the class.

For instance, in the method distFromOrig defined in

point class (Figure 3), all messages sent to self are static.

Therefore, our approach to compilation is to eliminate

inheritance; i. e, to eliminate any static messages sent to

both seJf and super, so that the compiled program can

perform method dispatch in a single step, regardless of

the class in which the method was defined.

3.1 The Problem

Notice that the meaning of a method expression, includ-

ing that of self and super, is defined in the valuation

function do. In order to perform static method lookup,

the first three arguments of function do must be static.

More specifically,

1. Exp argument must be static so that the syntac-

tic constructs (self, super and messages passed to

them) can be identified;

2. Instance argument must be static so that both self

and super can refer to the right instance;

3. Class argument must be static so that super can

refer to the parent class.

Given that, in the context of compilation, the main

function of the semantic definition, send, is passed a

static instance, let us now examine the result of propa-

gating this binding time information to the other valu-

at ion functions. We observe that:

1. Both the arguments class and instance in all the

valuation functions are known at compile time,

2. Function methods returns a dynamic value at com-

pile time.

213

1. Synt attic Domains:

P E Instance Inst antes

c G Class classes

m G Keg Messages

{ ~ P7&rnitive Primitives

Methods

e :== Self I Super I arg I n

2. Semantics Domains :

n ~ Number

elmqlf(el,. ... en)

a E Value = Behavior + Number

U, z G Behavior = Key -+ (Fun + Error)

~ 6 Fun = Value b Valz6e

3. Semantics Functions :

(a) Root Function :

root : Class 4 Boolean

root c = case (pa~erat c) of

C’ G Class --+ False

v G Error + True

(b) Valuation Functions :

send : Instance * Behavior

send p = lookup (class p) p

lookup : Class * Instance ~ Behavior

lookup C p = A m E Key . case (methods c m) of

e G Exp ~ do[e]pc

u e ETrOT + (root c) + ETTOT O

lookup (parent c) p m

do : Exp ~ Instance ~ Class * Fun

1

do selj]pc=~cr. sendp

do super] p c = A CY. lookup (parent c) p

doarg]pc=Aa. a

[

do elmez]pc= A a . (do [el] p c cr)m (do [e21J p c a)

do f(el,. ... e~)]pc=~a .f(do[el] pea,..., do[e~]pca)

Figure 4: Operational Semantics for Inheritance

214

methods : Class ~ Key +. (Exp + Erro,)
methods c m = I

case c of

(d: ds) ~ Class -+ lookup–methods (d : ds) m
v E Ewor * ET TOT

lookup–methods : Mtds +. A“ey d (Exp + ETTOT)

lookup–methods nil m = Error

lookup–methods (d : ds) m =
(mid d=m)~ empdl

lookup–methods ds m

Figure 5: Function methods - direct style I

The last observation comes from the fact that the

value of the message key argument of the function metho-

ds (displayed in Figure 51)-is unknown at compile time.

This means that it is not possible to determine which

method within the object will be chosen. Therefore, the

test in the case statement of function lookup is unknown

and function do (one of the branches of the case state-

ment) will thus have unknown first argument. Conse-

quently, in the context of partial evaluation, the sup-

posedly static method lookup cannot be detected, and

none of them can be eliminated at compilation.

3.2 The Solution

We observe that the semantic definition of inheritance

written in direct style does not provide as much static

information as we expect. As a simple instance of the

problem, consider a conditional expression whose test

result is unknown but whose branches are static: The

static values cannot be passed to the expression enclos-

ing the conditional. This is exactly the case in the given

operational semantics for inheritance, where function

methods is unable to provide static information to its

consumers: functions do and lookup.

This problem can be solved by converting the se-

mantic definition into continuation passing style, Figure

6 displays functions lookup and methods, both in con-

tinuation passing style. Notice that the continuation

argument for methods (i. e., Ke) is passed static infor-

mation (either an expression or an error message) at

each branch of the case expression. As one such con-

tinuation is a call to function do, the latter function is

passed a static Exp argument. Thus, the following prop-

erty about the resulting semantic definition follows:

The first three argnments of function do are

known at compile time.

1As methods 1s a syntactw operation, its meaning M not de-
fined in the operational semantics. Here, we provide its seman-
tics with the assumption that a class contains a list of methods,
denoted by (d : ds), lWrthermore, for each method d, function
mid retrieves the method name, while function exp retrieves the
method expremmn,

lookup : Class * Instance -+ Key

-+ Value -+ Fun + Value
lookup C P =

Ama Kv.

method c m

(A e c (Exp+ Evror) .
case e of

v E ETTOT + (root c) ~ h-u Error [
lookup (parent c) p m & Kv

e~Exp~doepcah”v)

methods ; Class ~ Key

~ ((ExP + Error) - Value) -+ Value
methods c k Ke =

case c oj

(d: ds) c Class 4 lookup–methods (d: ds) m I<e

v G Ewor d Ke Evror

lookup–methods : Mtds d Key d
((Exp + Error) -+ Value) - Value

lookup–methods nil m Ke = Ke Em-ov
lookup–methods (d : d.) m Ke =

(mid d = m) ~ Ke (ezp d) [
lookup–methods ds m Ke

Figure 6: Functions lookup and methods - CPS style

Knowing these arguments implies that occurrences

of both self and super can be determined, and static

messages passed to these inheritance constructs can be

eliminated at compile time. Thus, inheritance is elimi-

nated at compile time.

3.3 The Interpreter

We obtain an interpreter for the model by a direct translit-

eration of the semantics written in continuation style. It

is displayed in Figure 7. Due to space limitation, we use

prim-op to represent binary operators prim-+, prim--,

prim-*, prim-< and prim-max. This interpreter is used

in partial evaluation to produce the compiled program.

3.4 Obtaining Polyvariant Binding Time Behavior

In the context of partial evaluation, compilation is ac-

complished by specializing the interpreter with respect

to the instance argument. This implies that for the

main function S, the instance argument is static, while

the message key and the message argument are left dy-

namic.

As an offline partial evaluator, Schism relies on the

binding time analysis [Con90a] to determine the static

expressions in the interpreter, prior to specialization.

Specifically, this analysis computes binding time signa-

tures for each function in the program. This consists of

215

; main f unct ion

(clef ine (S rho m alpha) (send rho m alpha kid))

(define (send rho m alpha Kv)

(filter (if (and (stat? rho) (stat? m))
UKFOLD SPECIALIZE)

(list rho m alpha XV))

(lookup (class rho) rho m alpha Kv))

(define (lookup k rho m alpha Kv)

(method k m
(lambda (e)

(caseType e
([Error-exp]

(caseType k
([Error] ‘Error)
([Root] ~Error)

([Clss - parent-k]

(lookup parent-k rho m alpha Kv))))
([Exp e] (do} e rho k alpha Kv))))))

(define (do) e rho k alpha Kv)
(filter (if (stat? e) UIFOLD SPECIALIZE)

(list e rho k alpha Kv))

(caseType e
([Sslf]

(Kv (lambda (m alpha Kv’)
(send rho m alpha Kv’))))

([Super]

(Kv (lambda (m alpha Kv’)
(lookup (parent k)

rho m alpha Kv>))))

([Arg] (Kv alpha))
([Slumber n] (Kv n))

([Var x] (Kv (lookup-var (car rho) x)))

([Sending el m e2]

(do’ el rho k alpha
(lambda (vi)

(do’ e2 rho k alpha
(lambda (v2) (vi m V2 Kv))))))

([Prim-op ei e21

(do’ el rho k alpha
(lambda (vi)

(do’ e2 rho k alpha
(lambda (v2) (Kv (OP VI v2)))))))

([Prim-sqrt ell

(do’ el rho k alpha
(lambda (vi)

(XV (sqrt (-> float vi))))))

))

?igure 7: Interpreter Obtained from Operational Se-

nan tics

the binding time information of all its arguments and

that of its result. A function may have more than one

possible binding time signature. In our case, a trace on

the calling pattern of the interpreter reveals that func-

tion Send has two different binding time signatures:

send :: Instance d Key -+ Value ~ Cent 4 Value

send :: Stat 4 Dyn 4 Dyn -+ Cls + Dyn

send :: Stat 4 Stat 4 Dyn -v Cls * Dyn

The first signature of send has dynamic value for its

parameter Key. This is so because the key is propagated

from the user input, which is unknown at partial evalu-

ation time. On the other hand, a method expression of

the form el m ez provides the instance behavior of el

wit h a specific key, m (from the source program); this

means the behavior is passed a static key.

In a rnonovariant binding time analysis, such as the

one in Schism, the various binding time signatures of

a function are folded into one signature. The folding

produces a less accurate binding time signature for the

function, and directly affects the qufllty of the residual

program (since the actions taken by the specialization

to unfold or specialize a function depends on the accu-

racy of the function’s binding time signature). To avoid

this approximation, code is duplicated for those func-

tions that have multiple binding time signatures, and

function calls are adjusted so that different versions of

a function are called at different binding time contexts.

In particular, the code for function do’ is duplicated –

and simplified – to make explicit the call points at which

a behavior is known to be passed with static message

key. This is shown in Appendix B.

Figure 8 displays the call graph of the final inter-

preter, where functions are duplicated once to capture

different binding time contexts. The vertical dotted

line divides the graph into two parts: the left sub-

graph contains functions that are passed dynamic mes-

sage key, whereas the right subgraph contains functions

with static message key. Function Do’ } triggers a se-

quence of calls with this additional static information.

3.5 Results of Partial Evaluation

The upper code segment in Figure 9 shows the result

of compiling away the inheritance when the interpreter

is partially evaluated with respect to a circle instance

whose class definition is given in Figure 3. Variables a,

b and r are free in this program. They represent the

instance variables of the circle class. Their values can

be used to simplify the method expression, Indeed, this

is actually done, as shown in the second code segment

in the figure, with the appropriate values given to the

parameters a, b and r. From the upper code segment,

2For brevity, we only describe three different binding time
values in specifying the binding time signature of a function; we
use Stat for static, Dyn for dynamic and C/s for functional infor-
mation. Readers are referred to [Con90a] for further reformation
on Schism’s binding time analysis.

216

I
I

Dynamic I
I Static

Key I
I Key
I

~ ~ send I

1;

I Send’

1

I
I
I 1
I

Lookup 1 Lookup’
1

I

I
I
I
I !

Method I Method’

\

I
I
I

Do’

Figure 8: Call Graph for the Interpreter (Operational

Semantics)

we notice that the function send haa been specialized

at partial evaluation, whereas the function lookup has

been eliminated. Since the relationship between classes

are available to the instance, Schism is able to compile

away lookup calls to any class in the hierarchy (via Self

and Super). For example, notice that all references to

the circle instance in class Point (via expression Self)

have been resolved. Therefore, methods in a class no

longer refer to other classes; instead, dedicated codes

are produced for different instances, Responding to a

message now involves just a siugle lookup.

Figure 10 shows the result of partially evaluating

the interpreter with respect to an instance that manip-

ulates objects in a first-class manner (by passing them

as arguments). We have also generated a compiler via

self-application of Schism.

4 Denotational Semantics and Its Partial Evaluation

Figure 11 shows the Cook-Palsberg denotational seman-

tics of method systems. An important poiut to note is

that this semantics is compositional whereas the oper-

ational semantics is not. We will briefly explain the

salient features of the semantics. The semantic object

corresponding to an instance is a Behavior which is sim-

ply a mapping from messages to value transformers.

The meaning of an instance is the fixpoint of the gen-

erator of the claas to which the instance belongs. How

Skeleton of Residual Program with parameters a, b and r.

(define (s0 m alpha) (sendl m alpha kid))
(define (sendl m alpha kv)

(cond ((eq? ‘radius m) (kv ‘r))

((eq? ‘distFromOrig XI)

(kv (max (- (sqrt (+ (* a a) (* b b)))
‘r)

)0)))
((eq? ‘x m) (kv ‘a))

((@q? ‘y m) (kv ‘b))

((eq? ‘closerToOrig m)
(alpha ‘distFromOrig ‘-l

(lambda (v4)

(kv (< (max (- (sqrt (+ (* a a)
(* b b)))

r) ‘O) v4)))))

(else ‘Error)))))

Residual Program with a = 3, b = 4 and r = 5.

(clef ine (s0 m alpha) (sendl m alpha kid))

(define (sendl m alpha kv)
(cond ((eq? ‘radius m) (kv ‘5))

((eq? ‘distFromOrig m) (kv ~0))
((eq? ‘x m) (kv ‘3))

((eq? ‘y m) (kv ‘4))

((eq? ‘closerToOrig m)
(alpha ‘distFromOrig ‘-l

(lambda (v4) (kv (< ‘O v4)))))
(else ‘Error)))))

Figure 9: Residual Program for a Circle Inst ante

Olass Circle

class circle (a, b,r) inherit point (a, b)

method radius = r
method distFromOrig = max(super .distFromOrig

- self. radius, O)

Olaes Point

class point (a, b)

method x =a
method y = b
method z = self
method w = (self. z) .x
method u(p) = p. radius
method v = (self .u) (self)
method distFromOrig = sqrt(self. x * self. x

+ self. y ● self. y)

Xesidual Program

(clef ine (s0 m alpha) (sendl m alpha kid))
(define (sendi m alpha kv)

(cond ((eq? ‘radius m) (kv ‘5))
((eq? ‘distFromOrig m) (kv ‘7))
((eq? ‘x m) (kv ‘3))

((eq? ‘y m) (kv ‘4))
((eq? ‘z m) (kv sendl))
((eq? ‘s m) (sendl ‘x ‘1 kv))
((eq? ‘u m) (alpha ‘radius ‘1 kv))
((eq? ‘v m) (sendi ‘radius ‘1 kv))

(else ‘Error)))

Figure 10: Class Definitions and Residual Program of

[nstance with first-class behavior (a= 3, b = 4, r = 5)

217

1. Semantic Domains :

n c Number

a E Value

T, U, T E Behavior

~ c Fun

Q E Generator

u G Wrapper

2. Semantics Functions :

= Behavior + Number

= Key ~ (Fun+ ETTO,)

= Value ~ Value

= Behavior -+ Behavior

= Behavior ~ Generator

(a)

(b)

(c)

(d)

Root Function remains intact.

Layer Operator :

@ : (Behavior x Behavior) ~ Behavior

rl@rz=Am CKeg. case (rlm)of

g$EFun~q5

v e Error -+ r2 m

Inheritance Operator :

❑ : (WraPPeT X G~n~T~toT) + Generator

~ ❑ Q = ~ self ~ Behavior . (w self (Q self)) @ (Q se{f)

Valuation Functions :

behave : Instance ~ Behavior

behave p = fiz (gen (class p))

gen : Class ~ Generator

gen c = (TOOt c) ~ A u c Behavior . A m c Key . ETTOT

D (wrap c)~ (gen (parent c))

wrap : Class ~ Wrapper

wrap c= Au. A~. Am CKey. case (methods cm)of

e c Exp ~ eval [e] a ir

v ~ Error b ET TOT

eval : Ezp d Behavior - Behavior ~ Fun

evai [self] u 7r = A a . u

eval [super] u r = A a . x

eval[arg]az=Acr. a

eval [el m ez] u 7r = A a . (evai [cl] u 7r a)m (eval [ez] u rr a)

eval[f(el,en)]c77r = Aa. f(eval[e~] ura,..., ev[en]u7rcy)y)

Figure 11: Denotational Semantics for Inheritance

218

is this generator functional obtained? This is the key

insight of the semantics. It can be obtained by com-

bining the generator corresponding to the parent class

and a wrapper obtained from the child class. A wrapper

takes two arguments (self and super) and returns a be-

havior which responds to messages defined in the child

Q

class. The definition of the operator D defines the way

of combining the “meanings” of the c ild and the par-

ent. It is interesting to note the delayed binding of self

in the expression. This is crucial in obtaining the late

binding effect of object oriented languages.

Just as the operational semantics, the denotational

semantics is converted into continuation passing style so

that inheritance can be made static.

4.1 Interpreter

The interpreter, in continuation passing style, obtained

from the denotational semantics processes first-order

method system programs (see appendix C). We plan

to extend this to a higher-order language. The contin-

uation in function method of the interpreter now gets

a static argument, after dispatch is done in function

lookup-methods, This ensures that function eval’ re-

ceives static first argument, and we are once again able

to eliminate the inheritance from the residual program

after partial evaluation.

4.2 Binding Time Behavior

The main function of the interpreter, behave, takes three

arguments: an instance, a message and an argument.

Of these only the instance is static. The binding time

analysis of Schism propagates this information to ob-

tain binding time signatures for each function. As men-

tioned in the section on operational semantics, the bind-

ing time analysis of Schism is monovariant. Therefore, it

introduces a loss of information when a function is called

in two places with different binding times for the argu-

ments. This happens in the case of the beh function.

Initially it is called with the key argument dynamic but

later calls (in eval) have a static key argument. This

necessitates a duplication of the beh function, and also

the functions which it refers to.

Figure 12 shows the call graph for the interpreter.

The vertical dotted line separates the graph into two

parts: one with the message key static and the other

with the message key dynamic.

4.3 Results of Partial Evaluation

The result of specializing the interpreter on a simple

method system program can be seen in Figure 13. It

is interesting to note that all functions except beh have

been unfolded. This means that all the method reso-

lution has occurred at specialization time. The class

structure has been collapsed into a single lookup. A

behave

I I
I
I

beh

P
I

gen

I

I

I
I
I
I
I
I
i
I
I
I
I
I
I

beh’

gen’

I
1

eval’ ~ eval”

Figure 12: Call Graph for the Interpreter (Denotational

Semantics)

Class Point

class point (a, b)
method x = a

method y = b
method dist FromOrig = sqrt(self. x * self. x

+ self. y * self. y)

Class Circle

class circle (a, b,r) inherit point (a, b)
method radius = r

method distFromOrig = max(super. distFromOrig
- self radius,

o)

Skeleton of Residual Program with parameters a, b and r.

(define (behaveO m alpha)
(cond ((eq? ‘radius m) r)

((eq? ‘distFromOrig m)

(max (- (sqrt (+ (* a a) (* b b)))
r) O))

((eq? ‘x m) a)

((eq? ‘y m) b)
(else ‘error)))

Figure 13: Example Method System and Its Residual

Program

219

compiler has also been derived from the interpreter via

self-application of the partial evaluator.

References

5 Conclusion

We used the operational aud denotational semantics of

inheritance to construct interpreters for a simple lan-

guage with inheritance called method systems. We first

systematically converted the semantics into one in con-

tinuation passing style. The corresponding interpreters

have the property that inherit antes (i. e., occurrences

of self, super and static messages passed to them) are

known at compilation time. Then, using the Fut amura

projections, these interpreters were used to compile pro-

grams and generate compilers, The implementation is

based on the partial evaluator Schism. The compilation

produces programs where the method lookup associated

wit h inherit ante is removed. The resulting programs

show impressive speedups over their interpreted coun-

terparts. This technique could be used profitably to

extend languages to include inheritance in a simple and

effective manner.

An interesting extension to this framework is the

compilation of multiple inheritance, where a class can

have more than one parent. It should be possible to

compile out the process of deciding which methods will

be executed in response to a message.

Acknowledgments. Thanks to Charles Consel for mak-

ing Schism available, answering many questions and pro-

viding very thoughtful comments on earlier versions of

this paper.

[CD91a]

[CD91b]

[CK90]

[Con90a]

[Con90b]

[CP89]

[CU89]

[DF90]

[Fut71]

[Jon80]

[MOS76]

[Ple87]

C. Consel and O. Danvy, For a better sup-

port of static data flow. Technical Report

CIS-91-3, Kansas State University, Manhat-

tan, Kansas, USA, 1991.

C. Consel and O. Danvy. Static and dynamic

semantics processing. In ACM Symposium on

Principles of Programming Languages, 1991.

Also Yale Research Report 761.

C. Consel and S. C. Khoo. Semantics-directed

generation of a prolog compiler. Research Re-

port 781, YaJe University, New Haven, Con-

necticut, USA, 1990.

C. Consel. Binding time analysis for higher

order untyped functional languages. In ACM

Conference on Lisp and Functional Lan-

guages, 1990.

C. Consel. The Schism Manuai. Yale Uni-

versity, Department of Computer Science,

November 1990.

W. Cook and J. Palsberg. A denotational

semantics of inheritance and its correctness.

In 00PSLA ’89 Conference Proceedings, vol-

ume 24 of SIGPLA N Notices. ACM Press,

1989.

C. Chambers and D. Ungar. Customization:

Optimizing compiler technology for self, a

dynamically-typed object-oriented program-

ming language. In ACM SIGPLA N’89 Con-

ference on Programming Language Design

and Implementation, volume 24 of SIGPLAN

Notices. ACM Press, 1989.

0. Danvy and A. Filinski. Abstracting con-

trol. In ACM Conference on LISP and Func-

tional Programming, 1990.

Y. Futamura. Partial evaluation of com-

putation process-an approach to a compiler-

compiler. Systems, Computers, Controls,

2(5), 1971.

N. D. Jones, editor. Semantics-Directed Com-

piler Generation, volume 94 of Lecture Notes

in Computer Science. Springer Verlag, 1980.

P. D. Mosses. Compiler generation using de-

notational semantics, volume 45 of Lecture

Notes in Computer Science, pages 436-441.

Springer Verlag, 1976.

U. Pleban. Semantics-directed compiler gen-

eration. In ACM Symposium on Principles of

Programming Languages, 1987. Tutorial.

220

A Schism Coding of Syntactic Operations

;class : : Instance ‘-> Class

(define (class instance) (cdr instance))

;Parent : : Class --> Class + Error
(dsfine (parent CIS)

(caseType CIS
([Error] (Error))
([Root] (Error))

([Clss - superclass] superclass)))

; method :: Class --> Key --> Kent-e
--> Exp + Error

~define (method CIS key Ke)
(caseType CIS

([Error] (Ke (Error-exp)))
([Boot] (Ke (Error-exp)))

([CISS mtds -]

(lookup-methods mtds key Ke))))

(define (lookup-methods env key Ke)
(filter (if (stat? env) UIIFOLD SPECIALIZE)

(list env key Ke))
(cond ((null? env) (Ke (Error-exp)))

((eq? (car (car env)) key)

(Ke (cdr (car env))))
(else

(lookup-methods (cdr env) key Ke))))

(define (lookup-var env key)
(filter (if (stat? env) UBFOLD SPECIALIZE)

(list env key))
(cond ((null? env) (Error-exp))

((eq? (car (car env)) key)

(cdr (car env)))
(else (lookup-var (cdr env) key))))

B Duplicating Do to Achieve Polyvariant Behavior

;do> :: Exp --> Instance --> Class --> Value

; --> Kent-v --> Value

(define (do’ e rho k alpha Kv)
(filter (if (stat? e) UMFOLD SPECIALIZE)

(list e rho k alpha Kv))
(caseType e

([Self]

(Kv (lambda (m alpha Kv’)

(send rho m alpha Kv’))))
([Super]

(Kv (lambda (m alpha Kv’)
(lookup (parent k)

rho m alpha Kv}))))

([Arg] (Kv alpha))
([Eumber n] (Kv n))

([Var x] (Kv (lookup-var (car rho) x)))

([Sendingei m e2]

(do” ei rho k alpha

(lambda (vi)

(do’ e2 rho k alpha
(lambda (v2) (vi m V2 Kv))))))

([Prim-+ ei e21

(do’ el rho k alpha
(lambda (vI)

(do) e2 rho k alpha

(lambda (v2) (Kv (+ VI v2)))))))
([Prim--cl e2]

(do’ el rho k alpha

(lambda (vi)

(do’ e2 rho k alpha

(lambda (v2) (Kv (- vi v2)))))))
([Prim-* ei e21

(do’ el rho k alpha

(lambda (vI)
(do’ e2 rho k alpha

(lambda (v2) (Kv (* VI v2)))))))
([Prim-< ei e2]

(do’ el rho k alpha

(lambda (vi)
(do’ e2 rho k alpha

(lambda (v2) (Kv (< V1 v2)))))))

([Prim-sqrt el]

(do’ el rho k alpha

(lambda (vI)
(Kv (sqrt (-> float vI))))))

([Prim-max el e2J

(do’ el rho k alpha

(lambda (v:)
(dop e2 rho k alpha

(lambda (v2) (Kv (max vi v2)))))))

))

(define (do” e rho k alpha Kv)
(filter (if (stat? e) IMFOLD SPECIALIZE)

(list e rho k alpha Kv))

(caseType e
([Self]

(Kv (lambda (m alpha Kv’)

(send rho m alpha Kv’))))
([Super]

(Kv (lambda (m alpha Kv’)
(lookup (parent k)

rho m alpha Kv)))))

([Arg] (Kv (lambda (m alpha’ Kv))

(alpham alpha’ Kv’))))
([Var x]

(Kv (lambda (m alpha Kv’)
((lookup-var (car rho) x)
m alpha Kv)))))

([Sendingel m e2]

(Kv (lambda (m’ alpha’ Kv’)
((do” el rho k alpha

(lambda (vI)
(vI m (do’ e2 rho k alpha kid)

(lambda (x) x))))
m> alpha] KVJ))))

))

C Interpreter Derived from the Denotational Seman-

tics

;behave :: Instance --> Key --> Value --> Value

(define (behave rho m alpha)

(beh rho m alpha))

(define (beh rho m alpha)

(filter SPECIALIZE (list rho m alpha))
(((gen (class rho))

(lambda (m alpha) (beh’ rho m alpha)))
m alpha))

221

(define (beh) rho m alpha)

(filter (if (and (stat? rho) (stat? m))
UMFOLD SPECIALIZE)

(list rho m alpha))
(((gen’ (class rho))

(lsmbda (m alpha) (beh’ rho m alpha)))
m alpha))

;gen :: Class --> (Behavior --> Behavior)

(define (gen k)
(caseType k

([Error]

(lsmbda (beh) (lambda (m alpha) ‘Error)))
([Root]

(lsmbda (beh) (lambda (m alpha) ‘Error)))
([Clss - pk] (sub (wrap k) (gen pk)))

))

;sub :: Urapper --> Generator --> Generator

(define (sub U P)
(lambda (self)

(layer ((U self) (P self))

(P self))))

; wrap :: Class --> Wrapper
;i. e. Class --> Behavior --> Generator

(define (wrap k)

(lambda (sigma)
(lambda (pi)

(lambda (m alpha)

(method k m
(lambda (exp)

(caseType exp
([Error-exp] ‘Error)

([Exp e]
(eval~ e sigma pi alpha)))))))))

; layer :: Behavior --> Behavior --> Key

, --> Value --> Value

(define (layer ri r2)

(lambda (m alpha)

(let ((phi (rl m alpha)))
(if (eq? ‘Error phi)

(r2 m alpha)
phi))

))

;eval } : : Exp --> Behavior --> Behavior

--> Value --> Value

(clef ine (eval’ e sigma pi alpha)
(filter (if (stat? e) UNFOLD SPECIALIZE)

(list e sigma pi alpha))
(caseType e

([Arg] alpha)

([Mumber n] n)
([Sending el m e2]

((eval’ ‘ el sigma pi alpha)
m (eval p e2 sigma

([Prim-+ el f321
(+ (eval~ ei sigma

(eval’ e2 sigma
([Prim-- ei e2]

(- (eval’ el sigma
(eval’ e2 sigma

([Prim-* ei e2]
(* (eval> ei sigma

(eval’ e2 sigma

pi alpha)))

pi alpha)
pi alpha)))

pi alpha)

pi alpha)))

pi alpha)
pi alpha)))

([Prim-< el e2]
(< (.val~ el sigma pi alpha)

(eval’ e2 sigma pi alpha)))
([Prim-sqrt eil

(sqrt (->float (eval’ ei sigma pi alpha))))
([Prim-max ei e21

(max (eval’ el sigma pi alpha)
(eval’ e2 sigma pi alpha)))

))

(define (eval’ ‘ e sigma pi alpha)
(filter (if (stat? e) UMFOLD SPECIALIZE)

(list e sigma pi alpha))
(caseType e

([Self] sigma)
([Super] pi)

))

222

