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Abstract Bounded-scope aspects are particularly useful when AOP paradigm

is supported by a strongly-typed polymorphic functional language,
such as Haskell or ML. The ability to limit the effect of aspects
through types greatly enhances the usability of aspects in func-
tional program development. For instance, the following code de-
clares three aspects labelled 18, n4 andn5 respectively, which
designate execution of functidnas their pointcut. They provide
advices to the execution of a group of calls to functipavhich is
defined in the base program.

Introducing aspect orientation to a polymorphically typed func-
tional language strengthens the importanceypé-scoped advices
i.e., advices with their effects being harnessed by type constraints.
As types are typically treated as compile time entities, it is desirable
to be able to perfornstatic weavingo determine at compile time
the chaining of type-scoped advices to the invocations of their asso-
ciated join points. In this paper, we describe a compilation model,
as well as its implementation, that enables static type inference
and static weaving of programs in an aspect-oriented polymorphi-
cally typed functional languagéspectFun . We describe a type- Example 1

directed weaving scheme that successfully, and coherently, weaves

type-scoped advices into base programs, in the presence of nested’ Aspects

and second-order advices. We also demonstrate how control-flown3@advice around {h} (arg) =
based pointcuts (such eBowandcflowbelovy are compiled away, proceed arg;

and describe several type-directed optimization strategies that can _Println "exiting from h"

improve the efficiency of woven code. ndQadvice around {h} (firg: [a]). =
println "entering with a list";

proceed arg
1. Introduction n5Qadvice around {h} // Execution trace

Aspect-oriented programming (AOP) thrives in facilitating soft- (arg: [Char]) = entering with a list

. - print "entering with "; entering with c
ware development through separating and modularising cross- rintln are: exitine from h
cutting concerns [8]. It provides a new language feature called proceed arg’ &
aspectthat encapsulates such concern. It also defines an underly-// gase ro rim entering with a list
ing dynamic semantics that enables interaction between method X = x PTog exitin gfrom h
invocations/executions at the base program and aspects through @ . _px enteriig with a list
technigue known ageaving (f "c", £ [11, b [2]) exiting from h

In addition to addressing cross-cutting concerns, aspects and
their weaving mechanisms also strengthen the practice of incre- O
mental software development. Specifically, functional behaviour of
computing objects can be incrementally enhanced through intro-  As with other AOP, we useroceed in this example as a
duction of aspects, includingestedaspects that further enhance special function which may be called inside the body o&éasund
existing aspects. Such behaviour enhancement can be effectivelyadvice. It is bound to a function the represents “the rest of the
managed by aspects withbunded scope.e., aspects which are  computation at the advised function”. For easy presentation sake,
designed to interact with a controlled class of method invocations. We usearound advice throughout the paper, and omit the use of
before andafter advices. It is easy to see that both the latter
advices can be simulated hyound advices that always proceed.
In this example, advica3 renders advice to all executions of
h. Advice n4 limits the scope of its impact through type scoping
on its first argument; this is calledtgpe-scopedvice. This means
thatn4 is only triggered when executions bfhas an argument of
list type. Lastly, the type-scoped adviaé only provides special
treatment to executions afwhen the arguments are strings. Using
type-scoped aspects enable us to have customized, type-dependent
tracing message. Note thatring (a list of Cha) is treated differ-



ently from ordinary lists. Assuming a textual order of advice trig-

gering, the corresponding trace messages produced by executing

the complete program is displayed to the right of the example code.
Type-scoped advice does not only enable finer control of func-
tions’ behaviors, it can also be used to guide the development of

functions in a type-directed fashion, as advocated by Washburn and

Weirich [20]. In line with the spirit ofwell-typed programs never
go wrong[12], it is imperative to have atatic type checkehat en-

sures type-scoped advices do not lead to runtime type errors during built-in fanctionz

program execution.

Furthermore, as types are typically treated as compile-time en-
tities, their use in controlling advices can usually be determined at
compile-time. Consequently, it is desirable to perfatatic weav-
ing of advices into based program at compile time to produce an
integrated code without explicit declaration of aspects. Static weav-
ing also brings forth another appealing advantage: As pointed out
by Sereni and de Moor [16], performing static analysis over aspect-
oriented programs has been found to be difficult and non-intuitive,

because of the interwound semantics defined by aspects and base

program. Such difficulty can be circumvented by performing the
corresponding static analysis over the integrated woven code pro-
duced by static weaving.

Despite its benefits, static weaving is never a trial task, espe-
cially in the presence of type-scoped advices. Specifically, it is not
always possible to determimecally at compile time if a particular
advice should be triggered for weaving. Consider Example 1, from
a syntactic viewpoint, functioh can be called in the body df. If
we were to naively infer that the argumento functionh in the
RHS off’s definition is of polymorphic type, we would be tempted
to conclude that (1) advice3 should be triggered at the call, and
(2) advicesn4 andn5 should not be called as its type-scope is less
general tham — a. As aresult, only.3 would be statically applied
to the call toh.

Unfortunately, this approach would cause incoherent behavior
of h at run-time, as only the third trace messageiting from
h” would be printed. This would be incoherent because the invo-
cations(h [1]) (indirectly called from(f [1]1)) and (h [2])
would exhibit different behaviors even though they would receive
arguments of the same type.

Most of the work on aspect-oriented functional languages does
not address this issue of static and coherent weaving. In AspectML
[3] (a.k.aPolyAML [2]), dynamic type checking is employed to
handle matching of type-scoped pointcuts; on the other hand, As-
pectual Caml [11] takes a syntactic approach which sacrifices co-
herenceé for static weaving.

In this paper, we present a compilation model AgpectFun ,
an aspect-oriented polymorphically typed functional language with
lazy semantics. (Example 1 depicts AspectFun program.) The
overall compilation process is illustrated in Figure 1. Briefly, the
model comprises the following three major steps: (1) Static type
inference of an aspect-oriented program; (2) Type-directed static

functions; (3) Type-directed optimization of the woven code. In
contrast with our earlier work [19], we have extended our research
in three dimensions:
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Figure 1. Compilation Model forAspectFun

cuts, including control-flow based pointcuts (a.kelow and
cflowbelow), andany

Algorithms: We have extended our type inference and static
weaving strategy to handle the extension of the language fea-
tures. (Though not presented in this paper, we have devised a
deterministic type-inference algorithm to determine the well-
typedness of aspect-oriented programs.) We have also provided
a strategy for transforming advices with control-flow based
pointcuts, and a set of analysis and optimization strategies to
enhance the performance of woven codes.

weaving to produce a single woven code and convert advices to 3. Systems: We have provided a complete implementation of our

compilation model turning aspect-oriented functional programs
into executable Haskell code.

Under our compilation scheme, the program in example 1 is first
translated through static weaving to an expression in lambda-

1. Language features: We have included a suite of features tocaicylus with constants for execution. For presentation sake, we

our aspect-oriented functional languagepectFun . They are:
nested advice§.e., invocation of advice within the body of an-
other advice)second-order advicgse., declaration of advices

that aim to advise other named advices), and complex point- 1et n3 =

10ur notion of coherence admits semantic equivalence amoneretitf
invocations of a function with the same argument. It shouldoeatonfused
with the coherence concept defined in qualified types [5] tvsiates that
different translations of an expression are semanticalljvedent.

express the result of static weaving in an intermediate form as fol-
lows:

\arg -> (proceed arg ;
println ‘exiting from h’) in

let n4 = \arg -> (print \entering h with a list’ ;
proceed arg) in
let n5 = \arg -> (print \entering h with ’ ;

println arg;



proceed arg) in

let h x = x in Programs T x= dine|e
let £ dh x = dh x in Declarations d n= z=e|fT=¢
(f <h,{n3,n4,n5}> ‘‘c’’, f <h,{n3,n4}> [1], n@advice around {pc} (arg) = e
<h,{n3,n4}> [2]) Arguments arg = x|zt
Pointcuts pc == ppc|pc+cf | pc—cf
Note that all advice declarations are translated into functions and Primitve PC's  ppc == f | any | any\[f] [ n
are woven in. The intermediate form contains two special syntactic Cflows cf u= cflow(f) | cflow(f(-:: 1)) |
constructs: The first is a special keywartbceed, which has been cflowbelow(f) |
retained from the original aspect-oriented language. The second is _ cflowbelow(f(- :: t))
a special syntax_ , {...}), calledchain expressiorused to chain Expressions e = c¢|x|proceed|Az.c|ee|
together advices and advised functions. For instafice{n3, n4}) letz = eine
denotes the chaining of adviceg andn3 to advised functiorh.
In the above example, the two invocationsiofwith integer-list Types . ¢ == Int|Bool|a|t—t][t]
arguments, in the original aspect program have been translated to Advice Predicates p = (f:1)
invocations of the chain expressidn, {n3,n4}). This shows that Advised Types  p = pplt
our weaver respects the coherence property. Type Schemes o = Va.,p
These two special constructs aim to facilitate our presentation.
In actual implementation, thgroceed keyword is replaced by a Figure 2. Syntax of theAspectFun Language

parameter nameg@roceed which is local to the advice (which
has been translated into function). The chain expression is also
expanded into series of function applications.

This coherent weaving of advicestantails passing appropri-
ate chain expressions afto those function calls in the program
text from whichh may be called indirectly. This requirement is sat-

isfied by allowing functions of those affected calls to carry extra ;. stands for either @rimitive pointcut represented bypc, or a

parameters. In the code above, the translated definitidrcafries composite pointcut

such an additional parameteh. The original(f [1]) callis then As with other aspect-oriented languages, pointcuts pick out cer-
translated tof <h,{n4,n3}> 1), in which the chain expression  tain join points in the program flow for advising. Since our lan-
for h is passed. guage is a functional one, we focus on join points of function in-

All the technically challenging stages in the compilation process yocations. Thus the primitive pointcytpc, specifies which func-
are explained in detail — in their respective sections — in the rest tjon invocations will be selected for advising. Furthermore, since
of this paper. For ease of presentation, we gather all compilation functions are first-class values in our langauge, a function can be
processes pertaining to control-flow based pointcuts in Section 4. invoked directly through name-based calls as well as indirectly

The outline of the paper is as follows: Section 2 describes an through aliasing or functional arguments which are passed to a
aspect-oriented language and provides background information anchigher-order function. Therefore, in order to catch all potential in-
terminologies used. In Section 3, we describe our type inference yocations of a function, our pointcuts behave like thescution
system and the corresponding type-directed static weaving processpointcuts of AspectJ, though after translations advices are chained
In section 4, we provide a detailed description of how control-flow ith function identifiers, which are then executed at call invoca-
based pointcuts are handled in our compilation model. The various tjgns.
parts of the compilation process involved include de-sugaring, and  The specification of a primitive pointcut can be a function’s
cflow analyses and optimizations. We discuss related work in name ), a catch-all keywordny, or any with an exclusion list of
Section 5, before concluding in Section 6. function names. For example, the pointeuy\ [, g] will select all
functions excepf andg. Besides, since advices are also named, we
. allow advices advising other advices. We will see such an example
2. AspectFun : The Aspect Language shortly. The sequence of pointcu{gc}, indicates the union of all
In this section, we introduce an aspect-oriented functional lan- the sets of join points selected by thés. The argument variable
guageAspectFun , for our investigation. Figure 2 presents the syn- arg is bound to the actual argument of the function call and it may
tax of the language. We write as an abbreviation for a sequence contain a type scope. Note that only global functions and advices
of objectso, ..., 0, (€.9. declarations, variables etc) afido) as are subject to advising; and invocations of anonymous function
the free variables im. Note that we generally assumendo de- are not considered as join points, even wheg is used. Alpha
note non-related objects which should not be confused. We write renaming is applied to local declarations beforehand so that to
t1 ~ to to specify unification. We also define the match operation avoid name capturing. We shall describe the composite pointcuts
between two typesandt’, denoted by> , in the standard manner.  later.
Specifically,t > ¢’ iff there exists a substitutio over type vari- Our aspect language is polymorphic and statically typed. Ba-
ables int such thatSt = t'. Besides, we write¢ = ¢’ iff ¢ > ¢’ and sic types such as booleans, integers, characters, tuples, and lists are
t’ > t. For simplicity, we leave out type annotations, user defined predefined and their constructors are recorded in some initial en-
data typesif expressions, sequencingg @nd pattern matchings  vironment. We also have the standard constructs of types and type
but may make use of them in examples. schemes found in the Hindley-Milner type system. In addition, cen-

In AspectFun , a program is a sequence of declarations followed tral to our approach is the constructasfvised types in Figure 2,
by a main expression. Besides global variables and functions, weinspired by thepredicated typefl8] used in Haskell's type classes.
can also declare aspects. Agpectis an advice declaration which ~ These advised types augment common type schemesaditice
includes a piece of advice and its targetintcuts An adviceis predicates (f : t), which are used to capture the need of advice
a function-like expression that executes when the functions desig- weaving dependent on the type context. We shall explain them in
nated at the pointcut are about to execute. As stated earlier, we onlydetail in Section 3.1. In the subsequent subsections, we use exam-
supportaroundadvice. Pointcuts are denoted ¢} (arg), where ples to illustrate the major features dpectFun .



2.1 Handling Crosscutting Concerns

Lists are the most used data structures in functional programming.

For instance, consider thesverse function which reverses first
input list and stores result in the second.
Example 2

reverse [] accum =
reverse x accum =

accum
reverse (tail x)
(cons (head x) accum)

O

illustrated by the case when the function specified is recursive. For
example, in the following simple aspect program, we intend to use
advicen to advise the recursiveac function only once, when it is
first executed, via the pointcutac-cflowbelow(fac)”. Had we
used fac-cflow(fac)”, the advice would not be executed at all.

n@advice around {fac - cflowbelow(fac)} (arg) =

println "Entering fac"; proceed arg in
fac x = if x==0 then 1 else x * fac (x-1) in
fac 3

The ability of control-flow based pointcuts to inspect the run-
time stack is important to many security applications. Suppose a

This code pattern is very common among important list operations functionf’s access to some sensitive code is only enabled by being

such asappend, mergeSort etc, to name a few. The first clause
is to be executed when is empty. However, a non-experienced
programmer may easily define the two clauses in the wrong order.

reverse (tail x)
(cons (head x) accum)
accum

reverse X accum =

reverse [] accum =

Calling this function with any lists will end up with a run-
time error wherhead is applied to an empty list. To remove the

dangling base-case handling, we can use an aspect to crosscut all
list functions of this code pattern and provide tests on empty list as

follows.

n@advice {reverse, append, mergeSort,
\x . if arg == [] then x
else (proceed arg) x

...} (arg) =

reverse (tail x)
(cons (head x) accum)

reverse X accum =

Here the pointcut lists all the applicable list functions. When those
functions are invoked, the advice will be triggered to check if the
argument is an empty list. If so, it will replace the underlying invo-
cation with the identity function (i.e. returning thecum parame-
ter); otherwise, the invocation is resumedgxpceed.

Enumeration of function names can be troublesome and non-

extensible. In this case, we can consider the catch-all poiatgut

called from a highly trusted functiog; Failing in doing sof can
only be executed as partially trusted. This policy can be enforced
by an aspect.

Example 3

n@advice around {f + cflow(g)} (arg)
= ... // fully trusted execution
f = ... // partially trusted execution

O

The above aspect effectively performs a stack walk wheis
executed and only grants fully trusted execution whés in the
dynamic context.

In addition to un-scoped control-flow based pointciétspect-
Fun allows us to specify fine grained ones by augmenting the argu-
ments with type scopes. The advitcén the above example can be
refined to

n@advice around {f + cflow(g(_::[Bool}))} (arg)
= ... // fully trusted execution

In this case, theflowpointcut is only matched whengacall with
input of type[ Bool] is found inside the dynamic context. Note that
we use_ to indicate no value binding is allowed in control-flow
based pointcuts.

However, deriving an efficient static weaving scheme for ad-

augmented with a type scope. Better still, if we extend our syntax vices with control-flow based pointcuts is not straightforward, par-

and generalize theny pointcut to include module quantifiers, such
asList.any, we can quantifyinginy over a module of list opera-
tions of the above mentioned pattern as follows.

n@advice {List.any} (arg::[al) =
\x . if arg == [] then x
else (proceed arg) x

2.2 Control-flow Based Pointcuts

ticularly in a statically typed functional language . We employ an
implementation scheme similar to that of AspectJ [10], which uses
a stack counter to spare the efforts of maintaining a run-time stack
with the aspects. Furthermore, we also perform some static analy-
sis to reduce the runtime overhead of executing control-flow based
advices. The detailed scheme will be presented in 4.

2.3 Advising Advices and Advice Bodies
In our langauge, aspects are not limited to observing executions of

The composite pointcuts of our aspect language are mainly thosethe base program. As shown in Figure 2, the syntactic category of

related to the control flow of a program. Specifically, we can write
pointcuts which identify a subset of the invocations of a specific

primitive pointcuts,ppc, also includes advice. In other words,
we can develop advice which advises other advices. We refer to

function based on whether they occur in the dynamic context of such advices asecond-order adviee In contrast, the two-layered

other functions. For example, the pointcfit} cflow(g) selects
those invocations of which are made when the functignis still

design of AspectJ like languages only allow advices to advise other
advices in a very restricted way. The loss of expressiveness of such

executing (i.e. invoked but not returned yet). On the other hand, if an approach has been well argued in [15].

the operator before thef1ow designator is a minus sign, it means
the opposite, namely only invocations pfvhich are not under the
dynamic context ofy will be selected.

The following program shows an example of using second-
order advices. Its purpose is to compute the total amount of a cus-
tomer order and apply discount rates according to certain business

Following AspectJ, our aspect langauge also provides two kinds rules.

of pointcut designators for specifying control flow restrictions. The
first one is expressed aslow(f), and it captures all the join
points in the control flow of the specified functighincluding the
function itself. The second one is expressectfisowbelow(f),

and it excludes the specified function. Their difference is best

Example 4

calcPrice cart =
discount item =

sum (map discount cart) in
(getRate item) * (getPrice item)



O

3.1 Type directed weaving
As introduced in Section Zdvised type denoted ap is used

In addition to I‘egulal‘ diSCOUnt I‘uleS, there are a|SO Other ad-hOC to Capture function names and their types that may be required for

sale discounts that may be put into effect in certain occasions, suchadvice resolution. We further illustrate this concept with our tracing
as special holiday-sales, anniversary-sales, etc. Due to theiread-ho example given in Section 1.

nature, it is better to separate them from the functional modules and
put them in aspects that advise on the discount rate query function.sesses the advised typé.(h :

nil@advice around {getRate} (arg) =
(getHolidayRate arg) * (proceed arg) in

n2@advice around {getRate} (arg) =
(getAnniversaryRate arg) * (proceed arg)

Furthermore, it is common to have some business rules that
govern all the sales promotions offered to customers. For example,

For instance, functiod in the introductionin Example 1 pos-
a — a).a — a, in which
(h : a — a) is called anadvice predicatelt signifies thatthe
execution of any application @ may require advices af applied
with a type which should be no more general thén— o’ where
o’ is a fresh instantiation of type variable

The notion ofmore generals formally defined as:

Definition 1 We say a type is more general than or equivalent to

there may be a rule stipulating the maximum discount rate that is 3 typet/, if t > /. Whent > ¢ butt # ¢, we sayt is more

applicable to any product item, regardless of the multiple discounts general thant’. Similarly, we say a type is more specific than a
it qualifies. Such business rules can be realized using aspects ofype’ if ' > tandt  t'.

second-order in a modular manner.

n3@advice around {n1,n2} (arg) =
let finalRate = proceed arg
in if (finalRate < 0.5) then 0.5 else finalRate

Here the second-order adviag has meta-control over advices
n1 andn2. The call toproceedgets the compounded discount rate
and the rule that no product can be sold ung#r of its list price
is applied.

In addition to direct advising, we can also write advice that
advises other advice indirectly. Specifically, inside the body of an
advice definition, there may be calls to other functions that are
advised by other advices. We call themsted advices his is par-
ticularly important in security applications. Consider a different
attempt to invoke the restricted functidérirom Example 3.

Example 3a

n@advice around {f + cflow(g)} (arg)
. // fully trusted execution
nil@advice around {w} (arg) = f arg in

f x = ... // partially trusted execution
hxy=xyin

gx=hwx in

g1

a
In the main expression, the applicationginvokes the execution
of w which indirectly callsf through application of advice1. In
a secure system, this silent executionfafnust be observed and
advicen is triggered.

There is a special kind of nested advices, which apply to the ex-
ecution of their own bodies, directly or indirectly. Our system does
not allow them for the reason that circumoundadvices together
with potential recursive functions that they are advising may form a
scenario similar to polymorphic mutual recursion which threatens
the decidability of type inference. We leave this to future investiga-
tion.

3. Static Weaving

In this section, we present a type inference system which guaran-

Note that advised types are used to indicate the existence of
someindeterminate advicedf a function contains only applica-
tions whose advices are completely determined, then the function
will not be associated with an advised type; it will be associated
with a normal (and possibly polymorphic) type. As an example,
the type of the advised functianin Example 1 isva.a — a since
it does not contain any application of advised functions in its defi-
nition.

(GEN) gen(T', o) =Va.c wherea = fv(o)\fv(I)

(CARD) |o01...0k] =k

Figure 3. Auxiliary Definitions

Figure 3 defines a set of auxiliary functions/relations that as-
sists type inference. We define a generalization procedumey),G
which turns a type into a type scheme by quantifying type vari-
ables that do not appear free in the type environment. Th& (¢
function, denoted by - |, returns the cardinality of a sequence of
objects.

The main set of type inference rules, as described in Figure 4,
is an extension to the Hindley-Milner system. We introduce a judg-
mentl’ - e : o ~ ¢’ to denote that expressierhas types under
type environmenk and it is translated te’. We assume that the ad-
vice declarations are preprocessed and all the names which appear
in any of the pointcuts are recorded in an initial global stéréVe
also assume that the base program is well typed in Hindley-Milner
and the type information of all the functions are store@'ins.-

The typing environmenI’ contains not only the usual type
bindings (of the formz : o ~~ €) but alsoadvice bindingf the
formn : o > z. This states that an advice with namef typeo is
defined on a set of functions We may drop the< z part if found
irrelevant. When the bound function name is advised fi.€. A),
we use a different binding. to distinguish from the non-advised
case so that it may appear in a predicate as in ruke (. We also
use the notationy. to represent a binding which is eitheor :...

tees type safety and, at the same time, weaves the aspect languag&/hen there are multiple bindings of the same variable in a typing

through a type directed translation. The static weaving system ig-

nore control-flow based pointcuts by treating advices with compos-
ite pointcuts such ag+ cflow(g) as ones having pointcuys The
treatment of control-flow based pointcuts suclk#sow(g) will be
handled in Section 4.

environment, the newly added one shadows previous ones.

Note that while it is possible to present the typing rules without
the translation detail by simply deleting the:‘e’ portion, it is not
possible to present the translation rules independently since typing
controls the translation.
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Figure 4. Typing rules for expressions
Fe:ipwe o=genT,p) Tid:o~idb m:t~ 7
GLOBAL
( ) 'k id=cinm:t~ id=¢ inn
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Figure 5. Typing rules for declarations

3.1.1 Predicating and Releasing

Before illustrating the main typing rules, we introduce/@avable
constraint of the formwv(f : t) which indicates that advice
application of thef-call of typet can be decided. It is formally
defined as:

Definition 2 Given a functionf and its typef : to — t5, if
Vnoan iy Vapts — ty 0 f € DAt ~ ta = t1 > i,
thenwv(f : ta — t5).

This condition basically means that under a given typing environ-

ment, a function’s type is no more general than any of its advices.

For instance, under the environmeft : Va.[a] — [a] > f,
nl : Int — Int > f}, wo(f : b — b) is false because the type
is not specific enough to determine whethgrandn2 should ap-
ply whereaswv(f : Bool — Bool) is vicuously true and, in this

case, no advice applies. Note that since unification and matching (app
are defined on types instead of type schemes, quantified variables

are freshly instantiated to avoid name capturing.

There are two rules for variable lookups. Rulea@y is stan-
dard. In the case that variabieis advised, rule (¥R-A) will cre-
ate a fresh instanaé of the type scheme bound xan the environ-
ment. Then we check weavable condition(of: ¢). If the check
succeedsife., z's input type is more general or equivalent to any
of the advice’s);x will be chained with the translated forms of all

those advices defined on it, having equivalent or more general types
thanz has. We give all these selected advices a non-advised type

in the translation of them  n; : [o'] ~ e;. This ensures cor-

rect weaving of nested advices advising the bodies of the selected

advices. The detail will be elaborated in Section 3.1.3. Finally, the
final translated expressionii®rmalizedby bringing all the advice
abstractions of outside the chai. . .). This ensures type compat-
ibility between the advised call and its advices.

If the weavable condition check fails, there must exists some
advices forz with more specific types, and rule A%-A) fails to
apply. Sincex € A still holds, rule (RED) can be applied. This
rule introduces amdvice parameteto the program (through the
corresponding translation scheme). This advice parameter enables
concreteadvice-chained function® be passed in at a later stage,
calledreleasing through the application of rule @).

Before we describe rules &D) and (ReL) in detail, we il-
lustrate the application of these rules by deriving the type and the
woven code for the program shown in Example 1. Weds#s an
abbrr]eviation folC har. During the derivation of the definition ¢f,
we have:

I'={ h: Va.a — a~>h,nz:Va.a — axh~>ns3,
n4 : Va.la] — [a] < h ~> ng,ns : V0. [C|] — [C] < h ~> ns}
h:t—t~dhels
ToF hit—t~dh Tohait~a
IFo=T1,z:t~xt (hz):t~ (dhz)
I'i=T,h:t—t~dht Ax.(hz):t—t~ Ax.(dh x)
Ik Xx.(ha): (h:t—t)t—t~ Adh.Ax.(dh x)

Tt~z el

(VAR) (VAR)

(ABS)
(PRED)

Next, for the derivation of the first element of the main expression,
we have:

I's={ h:Va.a — a~>h,nz:Va.a— axh~ns,

ng : Va.[a] — [a] > h ~> ng,ns : Vb.[C] — [C] > h ~> ns,
f:Va.(h:a—a)a—a~ f}

f:Va(h:a—a)a—a~ fels

(VAR)
(ReL) Pz = f:(h:[Cl = [CD.[C] = [C] ~ f
g = f:[C] = [C]~ (f (h,{n3,n4,n5}))
(APP)

Ts = (f “c”) : [Char] ~ (f (h ,{nz,na,n5}) “c”)



= ... // fully trusted execution
nl@advice around {w} (arg) = f arg in

@= (VaR-A) h:xVa.a —a~~hels .. hxy=xyin
T's k- h:[C]— [C]~ (h,{n3,na,n5}) hwi
We note that rules (Bs),(LET) and (APP) are rather standard. a
Rule (LET) only bind f with : which signalizes locally defined
functions are not subject to advising. Here, advicen1 calls £ which is in turn being advised. The

Rules (RRED) and (ReL) respectively introduces and eliminates  goal of our translation is to chain advices which are applicable to
advice predicates. Rule gBD) adds an advice predicate to a type the execution oft inside an advice. Concretely, when a calkito

(Note that we only allow sensible choicestafonstrained by.. > is chained with advica1, the body ofn1 must also be advised.
t). Correspondingly, its translation yields a lambda abstraction with Moreover, the choice of advices must be coherent.
an advice parameter. At a later stage, rulee(Ris applied to At the time when the declaration afl is translated, the body

releasei(e.,remove) an advice predicate from a type. Its translation of the advice is translated. An advised type is given to it since the
generates a function application with an advised expression asweavable conditiomv(f : a — a) from the current context is not

argument. satisfied.
) i When the translation attempts to chain an advice in ruber(A),
3.1.2 Handling Advices the judgment” F n; : t' ~ ¢; in the premise forces the advice

On top of expressions, declarations define top-level bindings in- to have a non-advised type. This is to ensure that all the advice
cluding advices. The typing rules are presented in Figure 5. We useabstractions are fully released so that chaining can take effect.

ajudgement - 7 : ¢ ~ 7’ which closely reassembles the one In the case that this derivation fails, it signifies that the current

for expressions. context is not sufficiently specific for advising some of the calls in
The rule (G.0BAL) is very similar to (LET) with the tiny this advice’s body, and chaining has to be delayed. In example 3,

difference that (G&oBAL) will bind id with : when it is not inA; the call tow by passing it as an argumenttds of type/nt — Int.

and with:, otherwise. This is sufficiently specific for advising, sinceni is the only
There are two type-inference rules for handling advices. Rule candidate. Consequently, the callftinside the body oh1 is also

(ADV) handles non-type-scoped advices, whereas ruta/¢AN) of type Int — Int. Now, the weavable conditiomyv(f : Int —

handles type-scoped advices. In rulendd, we firstly infer the Int), is satisfied and the program is translated as follows.

(possibly advised) type of the advice as a functiane, under
the type environment extended witltoceed. The advice body is
therefore translated. Note that this translation does not necessarilyn = \arg. ...//fully trusted execution
complete all the chaining because the weavable condition may notnl df = \arg. df arg in
hold. In this case, just like functions, the advice is parameterized. b x y = x y in
Atthe same time, an advised type is assigned to it and only releasech <w,{n1 <f,{n}>}> 1
when it is chained in rule (MrR-A). ) ) ) ) ) )

After type inference of the advice, we ensure that the advice’s ~ Advice n is only chained in the main expression where the
type is more general than or equivalent to all functions’ in the contextis sufficiently specific for both the callst@nds.
pointcut. Note that the type information of all the functions is stored _ The translation of candidate advicEst- n; : t ~ e; in rule
in Thase. Then, this advice is added to the environment. It does not (VAR-A)'s premise not only translates bodies of advices but also
appear in the translated program, however, as it is translated into atakes care of chainings of second-order advices.
function awaiting for participation in advice chaining. However, in the premises of rule (&) and (ADv-AN), we note

In rule (ADV-AN), variablez can only be bound to a value that type information of advices is not storezdImdse_. Thu_s, we
of type ¢, such thatt, is no more general than the input type replacef; : Va.t' € Lvase by ni :x Va.g.t' € T'.* By doing this, we
of those functions in the pointcut. This constraint is similar to assume advised advices are translated before the advices defined on
the subsumption rule used for type annotations which requires thethem. This is valid because circular cases are precluded.
annotated type to be no more general than the inferred one. For ~ Thus, example 4 is translated into
each function in the pointcut, we match a freshly instantiation of _,
the input typet; to ¢, which results in a substitutiofi. The output
type of the advice is expected to be more general or equivalent to n3 =
the type of each functions under the substitution

In addition, as all the advices are of function types, attempts to
advice a non-function type expression will be rejected by the type
system.

\arg. (getHolidayRate arg)*(proceed arg) in
\arg. (getAnniversaryRate arg)*(proceed arg) in
\arg.let finalRate = proceed arg

in if (finalRate < 0.5)

then 0.5 else finalRate in

calcPrice cart = sum (map discount cart) in
discount item = (<getRate,{<n1,{n3}>,<n2,{n3}>}>
3.1.3 Advising Advice Bodies item)

*(getPrice item)

As mentioned in the previous (sub)section, the rules\(Aand

(ADV-AN) make an attempt to translate advice bodies. However,  Note that advicesi1 andn2 are chained witm3 before the
just like the translation of function bodies, the local type contexts chaining togetRate.

may not be specific enough to satisfy the weavable condition. Con-

sider a variant of Example 3a. The control-flow based pointcut 3.1.4 Advising Recursive Functions

cflow(g) is removed, and, for illustration purpose, a type SCOPe \we have seen our predicating/releasing system working well for
is added. This is to concentrate on translation of the nested advice,gn-recursive function. However. if we apply rulegR to a call

and to leave weaving aff 1ow to the next section. of an advised recursive function, it may end up looping indefinitely.

Example 3b - - - ) .
P 2 Advices defined on functions cannot be treated this way tsecatipossi-

n@advice around {f} (arg::Int) ble recursiveness of the functions.



Let’s illustrate this with our reverse example. The code is repro- n = \proceed.\arg. ...//fully trusted execution
duced below. nl df = \proceed.\arg. df arg in
hxy=xyin

n@advice {List.any} (arg::[al) = h (nl (nf) w) 1 //was h <w,{n1 <f,{n}>}> 1

\x . if arg == [] then x

else (proceed arg) x in Admittedly, the chain expansion step is rather straightforward.
reverse x accum = reverse (tail x) One may suggest that the step should be integrated into the weaving
(cons (head x) accum) in step, thus eliminating the need of generating programs in the inter-
reverse [1,2] [] mediate form. However, we argue that a staged translation process

with chain expression as an intermediate form opens a wide scope
of opportunities for optimizing the translated code. For instance, it
is obvious that some advices will never invakeoceed. For these
advices, all other advices chained after any of them are considered
I'={ n:Vab.[a] = b— b,reverse :. Ya.(reverse : t.).t,} dead code and should be eliminated. We can therefore prune such
chains by performinglead-code eliminatioanalysis on the wo-

ven code. In the next section, we show yet another optimization of

After the type inference of adviaeand functionreverse, we get
the following result (we omit the irrelevant translation part for the
moment). We writg,. as an abbreviation d&] — [a] — [a].

(ReL) looping control-flow based pointcuts which take advantage of the explicit
ReD I’ b reverse: [Int] — [Int] — [Int] intermediate form.
(appy L Teverse:[nt] — [Inf] — [Inf] . 4. Compiling Control-Flow Based Pointcuts
I' F (reverse [1,2]) : [Int] — [Int] . . o
(APP) In this section, we present our compilation model for compos-
I' b (reverse [1,2] []) : [Int] ite pointcuts — control-flow based pointcuts. Despite the fact that
o . control-flow information are only available fully during run-time,
The above derivation clearly shows that rulee(R will repeat- we strive to discover as much information as possible during com-
edly apply on the same judgement when an advised type has a predpjjation. In particular, we transform type scopes within such point-
icate that is the same as the base type. _ cuts and then compile these type scopes away using our static type-
_ Our solution is to break the loop by devising a different releas- gjrected weaver. When a pointcut designator depends on the dy-
ing rule for recursive functions which predicate on themselves. namic state of the join point, we insert dynamic test to capture
Tk f:(f:t)p~eé Ffresh feA such dependency. These dynamic tests are implemented in a state-
(REL-F) based fashion without the need to maintain call stacks, and is sim-

N
DEfip—letF=( F)inF ilar to that used in AspectJ as well as that used by Masuhara et al.
Rule (REL-F) uses a fixed point combinator as the translation [10]. We also consider the strategy to eliminate such tests at com-
result. Note that it only releases the recursive predi¢gte t). pile time. Our compilation process for composite pointcuts thus
Should there be any predicates of other functions, ruleLjRs involves three steps:

applied. As a result, the main expression in the above program is

translated to 1. Pre-processing source code to eliminate the use of type-scoped

control flow (eg.cflow(£(_ :: Int)))andcflow.
let F = \y.<reverse y,{n}> F 2. Installing state-based mechanism in woven code.

in F [1,2] ] . Lo
3. Analyzing and optimizing woven code produced at step 2 to

3.2 Translating Chain Expressions compile away as many dynamic tests as possible.

After the process of type inference and type-directed weaving, pro- ~ We shall describe these steps in more detail in the rest of this

grams ofAspectFun will be transformed into an intermediate form  section.

which is essentially a sugared lambda calculus with a special con- .

struct ofchain expressionsn the subsequent step, our compilation 4.1 De-sugaring

model will conduct a syntactic transformation to expand the chain The objective of this step is to transform the source language into

expressions and convert the input program to a Haskell program.  one that is amenable to static type inference and weaving. Specif-
Since the specific execution trace of a chain expression dependscally, type-scoped control flow (eg:flow(f(_ :: Int))) and

mainly on the use of the special keyworfgboceed, inside the cflow can be considered syntactic sugar in our source language.

chained advices, the key task of our transformation is to properly They are therefore translated away before we conduct static analy-

handle the occurrences pfoceed As stated earlier, any occur-  sijs on the source code.

rences of proceed inside an advice should be bound to a function  Type-scoped control-flow based pointcuts can be replaced by

that represents the rest of computation (i.e., continuation). Hence ones without type scopes. For instance,

the transformation is designed to realize this requirement. In prac-

tice, the transformation consists of two steps. The first step con- n@advice around {k + cflow(f(_::Int))} (arg) = ...

cerns the advices in a program. It adds an additional parameter,; ;

called proceed to all advices, namely lambda abstragtingeed. 's translated into

The second step converts any chain expression in a program inton’@advice around {f} (arg :: Int) = proceed arg

a form of function application in continuation passing style. Ba- n@advice around {k + cflow(n’)} (arg) = ...

sically, the conversion it performs can be defined inductively as e thatcfLow (£ (_: : Int)) has been translated intdlow(n’)

follows. wheren’ is a newly defined type-scoped advicefowhich simply
<f, {}> = f passes the argumenteoceed. As a language design decision, we
<. {n1, n2, . nk}> = (nl <f, {n2 nk}>) only allow the introduction of advice name as argumentfow

as part of compiler internal; it is not part of the source language.
For example, the translation of Example 3b presented earlier  In addition, we can translate alf1ow-pointcuts into pointcuts
will be converted to the following form. involving cflowbelow. Doing so reduces the number of cases to



be considered during compilation. The translation rulesfarow
translation are listed below. They are applied repetitively on point-
cuts until there is no more change. The notati@nrefers toother
pointcuts which are not the target of current iteration of translation.

Original Translated
f + cflow(f)+o ft+o
f+cflou(g)+to [+ cflowbelow(g)+0 whenf # g
any + cflow(f)+0 any + cflowbelow(f)+0 and f+o
7 — ctlow(f)+0 FALSE

| — cflou(g)+o
any — cflow(f)+0

f — cflowbelow(g)+o whenf # g
any\[f] — cflowbelow(f)+0

Note that the pointcutny + cflow(f)+0 is translated to two
pointcuts:any + cflowbelow(f)+0 and f+o. Also, the pointcut
f —cflou(f)+o does not refer to any feasible join points, and will
be omitted from the translated code.

4.2 State-based Implementation

Information pertaining taflowbelow pointcuts is ignored during
static weaving. It is instead captured in a data structure, called
IFAdvice, which is then used in the latter stages of compilation.
An example of a woven code after static weaving is show here (in
pseudo-code format):

Example 5
// meta-data: IFAdvice [k+cflowbelow(g)] (n,...)

n proceed arg = arg+123 in

kx=x+11in

g x = <k, {n}> x in

f x = if x == 0 then g x else <k, {n}> x in
(f 0, £1)

O

This first line in the code above displays a meta-data structure

capturing the association of the advigewith the cflowbelow
pointcutk+cflowbelow(g). This implies that dynamic testing is
needed at call to functiaato determine it should be invoked; ie.,
if k is called in the context of a call @ We callg thecflowbelow
advised function

In general, in order to enable matching«fflowbelow point-
cuts dynamically, we maintain a global state of function invoca-

these uses, we insert code to encode the lookup for the presence of
the respective pointcuts in the global state. The encoding is a form
of guarded expressiodenoted by | guard, n |>. Semantically,

the advicen will be executed only ijuard evaluates t@rue. The
translated (pseudo) code for Example 5 is as follows:

Example 5a

// meta-data: IFAdvice [k+cflowbelow(g)] (n,...)

n proceed arg = arg+123 in
kx=x+1 in
g x = enter "g";
<k, { <| isIn "g", nl|> } > x;
restore state in
x = if x ==
then g x
else <k, { <| isIn "g", n |[> } > x in
(£ 0, £1)

0
The guard{sIn "g")determines ig has been invoked and not yet
returned. If so, advice is executed. In this case,is not triggered
when evaluating 1, but it is when evaluating 0.

4.3 Control-Flow Pointcut Analysis and Optimization

From Example 5a, we note that the guard occurring in the definition
of g is always true, and can thus be eliminated. Similarly, the guard
occurring in the definition of f is always false, and the associated
advicen can be removed from the code. Indeed, many of such
guards can be eliminated during compile time, thus speeding up
the execution of the woven code.

We share the sentiment with Avgustino et al. [1] that such op-
timization and its associated analysis can be more effectively per-
formed on the woven code. In our system, we employ two inter-
procedural analysis to determine the opportunity for optimizing
guarded expressions. They arayCflow and mustCflow analy-
sis (cf. [1]).

Since the subject language is polymorphically typed and higher-
order, we adopannotated-type and effesystems for our analysis.
This approach has been described in detail in [13]. Judgments for
bothmayCflow andmustCflow analysis are of the form

I'kFe 2 & %)

FormayCflow analysis (respnustCflow analysis), this means that

tions, and insert state-update and state-lookup operatlons at prope(inder an annotated -type environméhtan expressior has an

places in the woven code. Specifically, the encoding is done at two
kind of locations: At the definitions afflowbelow advised func-
tions and at the uses ef lowbelow advices.

At the definition of acflowbelow advised function, such as
in Example 5, we set up global stateto record the entry into and
exit from the advised function. These are encoded in the body of
the advised function. In the spirit of pure functional language, we
implement this encoding usingeader monad6]. In pseudo-code
format, the encoding qf will be as follows®

g x = enter "g";
<k, n> x;
restore state

Here,enter records into the global state the entry into functgn
andrestore erases this record from the global state.

Next, uses otflowbelow advices appear in various chain ex-
pressions, such &% ,n> occurring in two places in Example 5. For

3 This technique does not work satisfactorily when the cflalised func-
tions are built-in functions, and will require additionalniction wrapping.
We shall omit the detail in this paper.

annotated typél—m and a contextr comprising the names of
those functions which may be (resp. must be) invoked and not yet
returned during the execution ef The annotationy’ above the
arrow— is the context in which the functionwill be invoked. It is

the union (resp. intersection) of all possible invocation contexts of
e. Thus,p andy’ both represent context, but the former captures all
contexts in whicle is evaluated, whereas the latter captures those
in which e is invoked.

4.3.1 Lazy Semantics

The lazy semantics dispectFun may appear to entail a different
analysis than those with strict semantics. A plausible argument
for this is that calls are only invoked on demand. Consider the
following code:

// meta-data: IFAdvice [f+cflowbelow(g)] (n,...)

n proceed arg = . in
f x=x1in
gx=x+11in

g (£ 3
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Figure 6. mayCflowinference rules

Under the lazy semanticéf 3) will be executed within the body Since the type-and-effect system foustCflow analysis is similar

of g. This gives the impression thétis called within the calling to that formayCflow analysis, we omit the detail in this paper, but

context ofg. Thence, advice will be triggered at the-call. simply to point out the resulting contexts produced by performing
However, upon closer examination, we find this argument fal- mustCflow analysis over the same example:

lacious. Specifically, during the evaluation gf (£ 3), the sub- st

expressior(f 3) is first converted into ¢hunk which captures the e =0 Must-context for body ok
current calling context to be used for future evaluation. This calling 5** = {f} Must-context for body of
context, which is the true context in whighcall is evaluated, does oSt = () Must-context for body of

not containg. As suchn will not be triggered.

In summary, while lazy semantics delays the execution of acall  After collecting all themayCflow and mustCflow informa-
until it is needed, it does not induce a different calling context tion, we perform optimization over Fhe_Woven OCd_e by e_Ilmlnatlng
for the call from its strict semantics counterpart. Therefore, our guarded expressions. The basic principles for optimization are:
control-flow pointcut analysis are oblivious to the call semantics Given a guarded expression of the forh isIn f, e |>
of the language. occurring in a program:

4.3.2

Figure 6 presents our type-and-effect systermiayCflow analy-
sis. Subtyping of annotated type is defined as

The Analysis and Optimization Details 1. If the mayCflow analysis yields a context™ for the
expression such thgt ¢ ©™, then the guard always
fails, and the guarded expression will be eliminated from
the program.

N A A N /
P ST T2S7 hd o 2. If the mustCflow analysis yields a context™s* for the
- P12y < 27 expression such that € ¢™*%, then the guard always
) succeeds, and the guarded expression will be replaced
The above rule means that a functipof the LHS type can replace by the subexpressian
another functiory’ of the RHS type if: o o
. In both cases, the guarded expression is successfully elimi-
1. f accepts all arguments thAt can accept#] < 71), nated.
2. Results produced by can be used in the context gf (72 < Going back to Example 5a, we are thus able to eliminate all the
72), and guarded expressions, yielding the following woven code:
3. f can be used in all the possible contextsf6f and possibly
more (o' C o). Example 5b

Note that the rules specified in figure 6 together yield a set // meta-data: IFAdvice [k+cflowbelow(g)]l (m,...)
of constraints over context variablgs The least solution of the  n proceed arg = arg+123 in

constraints is the one containing the most information. kx=x+11in
Applying the analysis over the woven code given in Example 5a, g x = enter "g";
we obtain the following contexts for the body of each of the func- <k, {n}> x;

tions:

restore state in

ma: f x=if x ==
oY ={f,g} May-context for body ok then g x

wo =1{f} May-context for body of else <k, {} > x in
oy’ =0 May-context for body oft (£ 0, £1)
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program. In our case, we value correctness and understandability of

The expressiork, { }> indicates that no advice is chained, and program more than the ease of compilation.

thusk will be called as usual.

Aspectual Caml’s syntactic approach also makes it easy to ad-

As a final example, consider a program that uses higher order vise anonymous functions. However, for polymorphic functions in-

functions:

Example 6

// meta-data: IFAdvice [k+cflowbelow(f)] (n,...)
n proceed arg = proceed (arg + 1) in

f x = enter "f"; x 1 ; restore state in
gy=y2in

kz=2zx% 2 in

(f <k, {<| isIn "f", n|>}>,

g <k, {<| isIn "£",n[>}>)

O

The resulting annotated type af used as an argument s

intLnt in mustCflow analysis, making to be statically woven
on it. Furthermore, the one used as an argumerg bés anno-

tated type Inént in mayCflow analysis; this results in the full
removal of the associated advice. The final code is thus:

n proceed arg = proceed (arg + 1) in

voked indirectly through aliases or functional arguments, this ap-
proach cannot achieve coherent weaving results. It is also not clear
how to extend the syntactic weaving scheme to handle nested ad-
vices, second-order advices or control flow based pointcuts such as
cflow.

The current work is a conservative extension of our previous
work [19], where we developed a type-directed weaving strategy
for functional languages featuring higher-order functions, curried
pointcuts and overlapping type-scoped advicksund advices
are woven into the base program based on the underlying type
context using a Hindley-Milner type inference system extended
with advised types and source translation. Coherent translations are
achieved without using any dynamic typing mechanisms. However,
in that work, advices and functions are still kept in two completely
different levels: advices can never invoke advised functions. More-
over, control-flow based pointcuts were absent from the language.
All these shortcomings are fully addressed in this paper.

5.2 Type-Scoped Programming
Our type-directed translation was originally inspired by the dictio-

nary translation of Haskell type classes [18]. A number of subse-
quent applications of it [9, 7] also share some similarities. How-
ever, the issues discussed in this paper are unique, which make our
translation substantially different from the others.

There has been some recent effort in encoding core features of
AO functional languages with Haskell type classes [17]. The en-
coding is light-weight and allows easy integration with existing ad-
vanced language features such as type classes and GADTSs [14]. In
that work, all candidate advices are piled up at function calls and
Xorrect advice chainings are done implicitly by the type class reso-
lution. This approach does not allow AOP specific static optimizers
to take advantage of the chaining information, which defies one of
the main thrusts of our compilation model. Moreover, there is also
no clue on how control-flow based pointcuts and second-order ad-
vices can be incorporated.

On the other dimension, Washburn and Weirich demonstrated
Gype-directed programming in AspectML [20]. They showed as-
pects together with a run-time type check mechanism can be used
as an alternative of type classes and even performs better in cases
where type classes struggle.

f x = enter "f"; x 1 ; restore state in
gy =y 2in

kz=2z%2in

(f <k,{n}>, g <k,{}>)

5. Related Work
5.1 Aspect-Oriented Languages

Recently, researchers in functional languages have started to stud
various issues of adding aspects to strongly typed functional lan-
guages. Two notable works in this area, AspectML [3, 2] and As-
pectual Caml [11], have made many significant results in support-
ing polymorphic pointcuts and advices in strongly typed functional
languages such as ML. While these works have introduced some
expressive aspect mechanisms into the underlying functional lan-
guages, they have not successfully reconciled coherent and stati
weaving — two essential features of a compiler for a Aspect-
Oriented functional language.

AspectML [3, 2] advocates first-class join points for construct-
ing generic aspect libraries. In order to support non-parametric
polymorphic advice, AspectML includes case-advices which are . Lo
subsumed by our type-scoped advices. Its type system is a con->-3 Static Optimization
servative extension to the Hindley-Milner type inference algorithm The implementation and optimization @&fspectFun took inspi-
with a form of local type inference based on some required anno- rations from the AspectBench Compiler for Aspectd (ABC) [1].
tations. During execution, advices are looked-up through the labels ABC implemented a series of optimizations which significantly
and runtime type analysis are performed to handle the matchingimproved AspectJ’s run-time performance. Despite having a sim-
of type-scoped pointcuts. This complete dynamic mechanism givesilar aim, the differences between object-oriented and functional
additional expressiveness by allowing run-time advice introduc- paradigms do not allow most existing techniques to be shared.
tion. However, many optimization opportunities are lost as advice For example, the concerns ofosuresandinlining can be more
application information is not present during compilation. Lastly, straightforwardly encoded with higher-order functions and function
advices are anonymous in AspectML and apparently not intended calls in AspectFun ; whereas the complex control flow of higher-
to be the targets of advisinge. no second-order advices. order functional languages makes the cflow analysis much more

Aspectual Caml [11], on the other hand, carries out type infer- challenging. As a result, our typed cflow analysis has little resem-
ence on advices without consulting the types of the functions desig- blance with the one in ABC which was based on call graphs of an
nated by the pointcuts. Similar to AspectML, it allows a restricted imperative language.
form of type-scoped advices. Static weaving is achieved by travers- It is also worth mentioning that even though a number of op-
ing type-annotated base program ASTSs to insert advices at matchedimizations have been done féspectFun , the main purpose of
joint points. The types of the applied advices must be more generalthis paper is to present a compilation model which supports static
than those of the joint points, through which, type safety is guar- weaving and optimization for a polymorphic functional language.
anteed. This design has the advantage of clear separate compilatioMe leave further enhancements and empirical results to future in-
as aspects can be compiled completely independently from the basesestigation.
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