
A Compilation Model for Aspect-Oriented Polymorphically
Typed Functional Languages (Technical Report)

Meng Wang
National University of Singapore
wangmeng@comp.nus.edu.sg

Kung Chen
National Chengchi University

chenk@cs.nccu.edu.tw

Siau-Cheng Khoo
National University of Singapore

khoosc@comp.nus.edu.sg

Shu-Chun Weng
National Taiwan University
b92103@csie.ntu.edu.tw

Chung-Hsin Chen
National Chengchi University

g9403@cs.nccu.edu.tw

Abstract
Introducing aspect orientation to a polymorphically typed func-
tional language strengthens the importance oftype-scoped advices;
i.e., advices with their effects being harnessed by type constraints.
As types are typically treated as compile time entities, it is desirable
to be able to performstatic weavingto determine at compile time
the chaining of type-scoped advices to the invocations of their asso-
ciated join points. In this paper, we describe a compilation model,
as well as its implementation, that enables static type inference
and static weaving of programs in an aspect-oriented polymorphi-
cally typed functional language,AspectFun . We describe a type-
directed weaving scheme that successfully, and coherently, weaves
type-scoped advices into base programs, in the presence of nested
and second-order advices. We also demonstrate how control-flow
based pointcuts (such ascflowandcflowbelow) are compiled away,
and describe several type-directed optimization strategies that can
improve the efficiency of woven code.

1. Introduction
Aspect-oriented programming (AOP) thrives in facilitating soft-
ware development through separating and modularising cross-
cutting concerns [8]. It provides a new language feature called
aspectthat encapsulates such concern. It also defines an underly-
ing dynamic semantics that enables interaction between method
invocations/executions at the base program and aspects through a
technique known asweaving.

In addition to addressing cross-cutting concerns, aspects and
their weaving mechanisms also strengthen the practice of incre-
mental software development. Specifically, functional behaviour of
computing objects can be incrementally enhanced through intro-
duction of aspects, includingnestedaspects that further enhance
existing aspects. Such behaviour enhancement can be effectively
managed by aspects withbounded scope, i.e., aspects which are
designed to interact with a controlled class of method invocations.

Bounded-scope aspects are particularly useful when AOP paradigm
is supported by a strongly-typed polymorphic functional language,
such as Haskell or ML. The ability to limit the effect of aspects
through types greatly enhances the usability of aspects in func-
tional program development. For instance, the following code de-
clares three aspects labelled byn3, n4 andn5 respectively, which
designate execution of functionh as their pointcut. They provide
advices to the execution of a group of calls to functionh, which is
defined in the base program.

Example 1

// Aspects
n3@advice around {h} (arg) =

proceed arg;
println "exiting from h"

n4@advice around {h} (arg:[a]) =
println "entering with a list";
proceed arg

n5@advice around {h} // Execution trace
(arg:[Char]) = entering with a list
print "entering with "; entering with c
println arg; exiting from h
proceed arg

// Base program entering with a list
h x = x exiting from h
f x = h x entering with a list
(f "c", f [1], h [2]) exiting from h

�

As with other AOP, we useproceed in this example as a
special function which may be called inside the body of anaround
advice. It is bound to a function the represents “the rest of the
computation at the advised function”. For easy presentation sake,
We usearound advice throughout the paper, and omit the use of
before andafter advices. It is easy to see that both the latter
advices can be simulated byaround advices that always proceed.

In this example, advicen3 renders advice to all executions of
h. Advice n4 limits the scope of its impact through type scoping
on its first argument; this is called atype-scopeadvice. This means
thatn4 is only triggered when executions ofh has an argument of
list type. Lastly, the type-scoped advicen5 only provides special
treatment to executions ofh when the arguments are strings. Using
type-scoped aspects enable us to have customized, type-dependent
tracing message. Note thatString (a list of Char) is treated differ-

ently from ordinary lists. Assuming a textual order of advice trig-
gering, the corresponding trace messages produced by executing
the complete program is displayed to the right of the example code.

Type-scoped advice does not only enable finer control of func-
tions’ behaviors, it can also be used to guide the development of
functions in a type-directed fashion, as advocated by Washburn and
Weirich [20]. In line with the spirit ofwell-typed programs never
go wrong[12], it is imperative to have astatic type checkerthat en-
sures type-scoped advices do not lead to runtime type errors during
program execution.

Furthermore, as types are typically treated as compile-time en-
tities, their use in controlling advices can usually be determined at
compile-time. Consequently, it is desirable to performstatic weav-
ing of advices into based program at compile time to produce an
integrated code without explicit declaration of aspects. Static weav-
ing also brings forth another appealing advantage: As pointed out
by Sereni and de Moor [16], performing static analysis over aspect-
oriented programs has been found to be difficult and non-intuitive,
because of the interwound semantics defined by aspects and base
program. Such difficulty can be circumvented by performing the
corresponding static analysis over the integrated woven code pro-
duced by static weaving.

Despite its benefits, static weaving is never a trial task, espe-
cially in the presence of type-scoped advices. Specifically, it is not
always possible to determinelocally at compile time if a particular
advice should be triggered for weaving. Consider Example 1, from
a syntactic viewpoint, functionh can be called in the body off. If
we were to naively infer that the argumentx to functionh in the
RHS off’s definition is of polymorphic type, we would be tempted
to conclude that (1) advicen3 should be triggered at the call, and
(2) advicesn4 andn5 should not be called as its type-scope is less
general thana → a. As a result, onlyn3 would be statically applied
to the call toh.

Unfortunately, this approach would cause incoherent behavior
of h at run-time, as only the third trace message “exiting from
h” would be printed. This would be incoherent because the invo-
cations(h [1]) (indirectly called from(f [1])) and(h [2])
would exhibit different behaviors even though they would receive
arguments of the same type.

Most of the work on aspect-oriented functional languages does
not address this issue of static and coherent weaving. In AspectML
[3] (a.k.a PolyAML [2]), dynamic type checking is employed to
handle matching of type-scoped pointcuts; on the other hand, As-
pectual Caml [11] takes a syntactic approach which sacrifices co-
herence1 for static weaving.

In this paper, we present a compilation model forAspectFun ,
an aspect-oriented polymorphically typed functional language with
lazy semantics. (Example 1 depicts anAspectFun program.) The
overall compilation process is illustrated in Figure 1. Briefly, the
model comprises the following three major steps: (1) Static type
inference of an aspect-oriented program; (2) Type-directed static
weaving to produce a single woven code and convert advices to
functions; (3) Type-directed optimization of the woven code. In
contrast with our earlier work [19], we have extended our research
in three dimensions:

1. Language features: We have included a suite of features to
our aspect-oriented functional language,AspectFun . They are:
nested advices(i.e., invocation of advice within the body of an-
other advice),second-order advices(i.e., declaration of advices
that aim to advise other named advices), and complex point-

1 Our notion of coherence admits semantic equivalence among different
invocations of a function with the same argument. It should notbe confused
with the coherence concept defined in qualified types [5] which states that
different translations of an expression are semantically equivalent.

Figure 1. Compilation Model forAspectFun

cuts, including control-flow based pointcuts (a.k.a.cflow and
cflowbelow), andany.

2. Algorithms: We have extended our type inference and static
weaving strategy to handle the extension of the language fea-
tures. (Though not presented in this paper, we have devised a
deterministic type-inference algorithm to determine the well-
typedness of aspect-oriented programs.) We have also provided
a strategy for transforming advices with control-flow based
pointcuts, and a set of analysis and optimization strategies to
enhance the performance of woven codes.

3. Systems: We have provided a complete implementation of our
compilation model turning aspect-oriented functional programs
into executable Haskell code.

Under our compilation scheme, the program in example 1 is first
translated through static weaving to an expression in lambda-
calculus with constants for execution. For presentation sake, we
express the result of static weaving in an intermediate form as fol-
lows:

let n3 = \arg -> (proceed arg ;
println ‘exiting from h’) in

let n4 = \arg -> (print \entering h with a list’ ;
proceed arg) in

let n5 = \arg -> (print \entering h with ’ ;
println arg;

proceed arg) in
let h x = x in
let f dh x = dh x in
(f <h,{n3,n4,n5}> ‘‘c’’, f <h,{n3,n4}> [1],

<h,{n3,n4}> [2])

Note that all advice declarations are translated into functions and
are woven in. The intermediate form contains two special syntactic
constructs: The first is a special keywordproceed, which has been
retained from the original aspect-oriented language. The second is
a special syntax〈 , {. . .}〉, calledchain expression, used to chain
together advices and advised functions. For instance,〈h , {n3, n4}〉
denotes the chaining of advicesn4 andn3 to advised functionh.
In the above example, the two invocations ofh, with integer-list
arguments, in the original aspect program have been translated to
invocations of the chain expression〈h , {n3, n4}〉. This shows that
our weaver respects the coherence property.

These two special constructs aim to facilitate our presentation.
In actual implementation, theproceed keyword is replaced by a
parameter namedproceed which is local to the advice (which
has been translated into function). The chain expression is also
expanded into series of function applications.

This coherent weaving of advices toh entails passing appropri-
ate chain expressions ofh to those function calls in the program
text from whichh may be called indirectly. This requirement is sat-
isfied by allowing functions of those affected calls to carry extra
parameters. In the code above, the translated definition off carries
such an additional parameter,dh. The original(f [1]) call is then
translated to(f <h,{n4,n3}> 1), in which the chain expression
for h is passed.

All the technically challenging stages in the compilation process
are explained in detail – in their respective sections – in the rest
of this paper. For ease of presentation, we gather all compilation
processes pertaining to control-flow based pointcuts in Section 4.

The outline of the paper is as follows: Section 2 describes an
aspect-oriented language and provides background information and
terminologies used. In Section 3, we describe our type inference
system and the corresponding type-directed static weaving process.
In section 4, we provide a detailed description of how control-flow
based pointcuts are handled in our compilation model. The various
parts of the compilation process involved include de-sugaring, and
cflow analyses and optimizations. We discuss related work in
Section 5, before concluding in Section 6.

2. AspectFun : The Aspect Language
In this section, we introduce an aspect-oriented functional lan-
guage,AspectFun , for our investigation. Figure 2 presents the syn-
tax of the language. We writēo as an abbreviation for a sequence
of objectso1, ..., on (e.g. declarations, variables etc) andfv(o) as
the free variables ino. Note that we generally assumeō ando de-
note non-related objects which should not be confused. We write
t1 ∼ t2 to specify unification. We also define the match operation
between two typest andt′, denoted byD , in the standard manner.
Specifically,t D t′ iff there exists a substitutionS over type vari-
ables int such thatSt = t′. Besides, we writet ≡ t′ iff t D t′ and
t′ D t. For simplicity, we leave out type annotations, user defined
data types,if expressions, sequencings (;) and pattern matchings
but may make use of them in examples.

In AspectFun , a program is a sequence of declarations followed
by a main expression. Besides global variables and functions, we
can also declare aspects. Anaspectis an advice declaration which
includes a piece of advice and its targetpointcuts. An advice is
a function-like expression that executes when the functions desig-
nated at the pointcut are about to execute. As stated earlier, we only
supportaroundadvice. Pointcuts are denoted by{pc} (arg), where

Programs π ::= d in e | e
Declarations d ::= x = e | f x = e

n@advice around {pc} (arg) = e
Arguments arg ::= x | x :: t
Pointcuts pc ::= ppc | pc + cf | pc − cf
Primitive PC’s ppc ::= f | any | any\[f] | n
Cflows cf ::= cflow(f) | cflow(f(:: t)) |

cflowbelow(f) |
cflowbelow(f(:: t))

Expressions e ::= c | x | proceed | λx.e | e e |
let x = e in e

Types t ::= Int | Bool | a | t → t | [t]
Advice Predicates p ::= (f : t)
Advised Types ρ ::= p.ρ | t
Type Schemes σ ::= ∀ā.ρ

Figure 2. Syntax of theAspectFun Language

pc stands for either aprimitive pointcut, represented byppc, or a
composite pointcut.

As with other aspect-oriented languages, pointcuts pick out cer-
tain join points in the program flow for advising. Since our lan-
guage is a functional one, we focus on join points of function in-
vocations. Thus the primitive pointcut,ppc, specifies which func-
tion invocations will be selected for advising. Furthermore, since
functions are first-class values in our langauge, a function can be
invoked directly through name-based calls as well as indirectly
through aliasing or functional arguments which are passed to a
higher-order function. Therefore, in order to catch all potential in-
vocations of a function, our pointcuts behave like theexecution
pointcuts of AspectJ, though after translations advices are chained
with function identifiers, which are then executed at call invoca-
tions.

The specification of a primitive pointcut can be a function’s
name (f), a catch-all keywordany, or any with an exclusion list of
function names. For example, the pointcutany\[f, g] will select all
functions exceptf andg. Besides, since advices are also named, we
allow advices advising other advices. We will see such an example
shortly. The sequence of pointcuts,{pc}, indicates the union of all
the sets of join points selected by thepc’s. The argument variable
arg is bound to the actual argument of the function call and it may
contain a type scope. Note that only global functions and advices
are subject to advising; and invocations of anonymous function
are not considered as join points, even whenany is used. Alpha
renaming is applied to local declarations beforehand so that to
avoid name capturing. We shall describe the composite pointcuts
later.

Our aspect language is polymorphic and statically typed. Ba-
sic types such as booleans, integers, characters, tuples, and lists are
predefined and their constructors are recorded in some initial en-
vironment. We also have the standard constructs of types and type
schemes found in the Hindley-Milner type system. In addition, cen-
tral to our approach is the construct ofadvised types, ρ in Figure 2,
inspired by thepredicated types[18] used in Haskell’s type classes.
These advised types augment common type schemes withadvice
predicates, (f : t), which are used to capture the need of advice
weaving dependent on the type context. We shall explain them in
detail in Section 3.1. In the subsequent subsections, we use exam-
ples to illustrate the major features ofAspectFun .

2.1 Handling Crosscutting Concerns

Lists are the most used data structures in functional programming.
For instance, consider thereverse function which reverses first
input list and stores result in the second.

Example 2

reverse [] accum = accum
reverse x accum = reverse (tail x)

(cons (head x) accum)

�

This code pattern is very common among important list operations
such asappend, mergeSort etc, to name a few. The first clause
is to be executed whenx is empty. However, a non-experienced
programmer may easily define the two clauses in the wrong order.

reverse x accum = reverse (tail x)
(cons (head x) accum)

reverse [] accum = accum

Calling this function with any lists will end up with a run-
time error whenhead is applied to an empty list. To remove the
dangling base-case handling, we can use an aspect to crosscut all
list functions of this code pattern and provide tests on empty list as
follows.

n@advice {reverse, append, mergeSort, ...} (arg) =
\x . if arg == [] then x

else (proceed arg) x

reverse x accum = reverse (tail x)
(cons (head x) accum)

Here the pointcut lists all the applicable list functions. When those
functions are invoked, the advice will be triggered to check if the
argument is an empty list. If so, it will replace the underlying invo-
cation with the identity function (i.e. returning theaccum parame-
ter); otherwise, the invocation is resumed byproceed.

Enumeration of function names can be troublesome and non-
extensible. In this case, we can consider the catch-all pointcutany
augmented with a type scope. Better still, if we extend our syntax
and generalize theany pointcut to include module quantifiers, such
asList.any, we can quantifyingany over a module of list opera-
tions of the above mentioned pattern as follows.

n@advice {List.any} (arg::[a]) =
\x . if arg == [] then x

else (proceed arg) x

2.2 Control-flow Based Pointcuts

The composite pointcuts of our aspect language are mainly those
related to the control flow of a program. Specifically, we can write
pointcuts which identify a subset of the invocations of a specific
function based on whether they occur in the dynamic context of
other functions. For example, the pointcutf + cflow(g) selects
those invocations off which are made when the functiong is still
executing (i.e. invoked but not returned yet). On the other hand, if
the operator before thecflow designator is a minus sign, it means
the opposite, namely only invocations off which are not under the
dynamic context ofg will be selected.

Following AspectJ, our aspect langauge also provides two kinds
of pointcut designators for specifying control flow restrictions. The
first one is expressed ascflow(f), and it captures all the join
points in the control flow of the specified functionf , including the
function itself. The second one is expressed ascflowbelow(f),
and it excludes the specified function. Their difference is best

illustrated by the case when the function specified is recursive. For
example, in the following simple aspect program, we intend to use
advicen to advise the recursivefac function only once, when it is
first executed, via the pointcut ”fac-cflowbelow(fac)”. Had we
used ”fac-cflow(fac)”, the advice would not be executed at all.

n@advice around {fac - cflowbelow(fac)} (arg) =
println "Entering fac"; proceed arg in

fac x = if x==0 then 1 else x * fac (x-1) in
fac 3

The ability of control-flow based pointcuts to inspect the run-
time stack is important to many security applications. Suppose a
functionf’s access to some sensitive code is only enabled by being
called from a highly trusted functiong; Failing in doing so,f can
only be executed as partially trusted. This policy can be enforced
by an aspect.

Example 3

n@advice around {f + cflow(g)} (arg)
= ... // fully trusted execution

f = ... // partially trusted execution

�

The above aspect effectively performs a stack walk whenf is
executed and only grants fully trusted execution wheng is in the
dynamic context.

In addition to un-scoped control-flow based pointcuts,Aspect-
Fun allows us to specify fine grained ones by augmenting the argu-
ments with type scopes. The advicen in the above example can be
refined to

n@advice around {f + cflow(g(_::[Bool}))} (arg)
= ... // fully trusted execution

In this case, thecflowpointcut is only matched when ag-call with
input of type[Bool] is found inside the dynamic context. Note that
we use to indicate no value binding is allowed in control-flow
based pointcuts.

However, deriving an efficient static weaving scheme for ad-
vices with control-flow based pointcuts is not straightforward, par-
ticularly in a statically typed functional language . We employ an
implementation scheme similar to that of AspectJ [10], which uses
a stack counter to spare the efforts of maintaining a run-time stack
with the aspects. Furthermore, we also perform some static analy-
sis to reduce the runtime overhead of executing control-flow based
advices. The detailed scheme will be presented in 4.

2.3 Advising Advices and Advice Bodies

In our langauge, aspects are not limited to observing executions of
the base program. As shown in Figure 2, the syntactic category of
primitive pointcuts,ppc, also includes advicen. In other words,
we can develop advice which advises other advices. We refer to
such advices assecond-order advices. In contrast, the two-layered
design of AspectJ like languages only allow advices to advise other
advices in a very restricted way. The loss of expressiveness of such
an approach has been well argued in [15].

The following program shows an example of using second-
order advices. Its purpose is to compute the total amount of a cus-
tomer order and apply discount rates according to certain business
rules.

Example 4

calcPrice cart = sum (map discount cart) in
discount item = (getRate item) * (getPrice item)

�

In addition to regular discount rules, there are also other ad-hoc
sale discounts that may be put into effect in certain occasions, such
as special holiday-sales, anniversary-sales, etc. Due to their ad-hoc
nature, it is better to separate them from the functional modules and
put them in aspects that advise on the discount rate query function.

n1@advice around {getRate} (arg) =
(getHolidayRate arg) * (proceed arg) in

n2@advice around {getRate} (arg) =
(getAnniversaryRate arg) * (proceed arg)

Furthermore, it is common to have some business rules that
govern all the sales promotions offered to customers. For example,
there may be a rule stipulating the maximum discount rate that is
applicable to any product item, regardless of the multiple discounts
it qualifies. Such business rules can be realized using aspects of
second-order in a modular manner.

n3@advice around {n1,n2} (arg) =
let finalRate = proceed arg
in if (finalRate < 0.5) then 0.5 else finalRate

Here the second-order advicen3 has meta-control over advices
n1 andn2. The call toproceedgets the compounded discount rate
and the rule that no product can be sold under50% of its list price
is applied.

In addition to direct advising, we can also write advice that
advises other advice indirectly. Specifically, inside the body of an
advice definition, there may be calls to other functions that are
advised by other advices. We call themnested advices. This is par-
ticularly important in security applications. Consider a different
attempt to invoke the restricted functionf from Example 3.

Example 3a

n@advice around {f + cflow(g)} (arg)
= ... // fully trusted execution

n1@advice around {w} (arg) = f arg in
f x = ... // partially trusted execution
h x y = x y in
g x = h w x in
g 1

⊓⊔
In the main expression, the application ofg invokes the execution
of w which indirectly callsf through application of advicen1. In
a secure system, this silent execution off must be observed and
advicen is triggered.

There is a special kind of nested advices, which apply to the ex-
ecution of their own bodies, directly or indirectly. Our system does
not allow them for the reason that circulararoundadvices together
with potential recursive functions that they are advising may form a
scenario similar to polymorphic mutual recursion which threatens
the decidability of type inference. We leave this to future investiga-
tion.

3. Static Weaving
In this section, we present a type inference system which guaran-
tees type safety and, at the same time, weaves the aspect language
through a type directed translation. The static weaving system ig-
nore control-flow based pointcuts by treating advices with compos-
ite pointcuts such asf +cflow(g) as ones having pointcutsf . The
treatment of control-flow based pointcuts such ascflow(g) will be
handled in Section 4.

3.1 Type directed weaving

As introduced in Section 2,advised type denoted asρ is used
to capture function names and their types that may be required for
advice resolution. We further illustrate this concept with our tracing
example given in Section 1.

For instance, functionf in the introductionin Example 1 pos-
sesses the advised type∀a.(h : a → a).a → a, in which
(h : a → a) is called anadvice predicate. It signifies thatthe
execution of any application off may require advices ofh applied
with a type which should be no more general thana′ → a′ where
a′ is a fresh instantiation of type variablea.

The notion ofmore generalis formally defined as:

Definition 1 We say a typet is more general than or equivalent to
a typet′, if t D t′. Whent D t′ but t 6≡ t′, we sayt is more
general thant′. Similarly, we say a typet is more specific than a
typet′ if t′ D t andt 6≡ t′.

Note that advised types are used to indicate the existence of
someindeterminate advices. If a function contains only applica-
tions whose advices are completely determined, then the function
will not be associated with an advised type; it will be associated
with a normal (and possibly polymorphic) type. As an example,
the type of the advised functionh in Example 1 is∀a.a → a since
it does not contain any application of advised functions in its defi-
nition.

(GEN) gen(Γ, σ) = ∀ā.σ whereā = fv(σ)\fv(Γ)

(CARD) |o1...ok| = k

Figure 3. Auxiliary Definitions

Figure 3 defines a set of auxiliary functions/relations that as-
sists type inference. We define a generalization procedure, (GEN),
which turns a type into a type scheme by quantifying type vari-
ables that do not appear free in the type environment. The (CARD)
function, denoted by| · |, returns the cardinality of a sequence of
objects.

The main set of type inference rules, as described in Figure 4,
is an extension to the Hindley-Milner system. We introduce a judg-
mentΓ ⊢ e : σ e′ to denote that expressione has typeσ under
type environmentΓ and it is translated toe′. We assume that the ad-
vice declarations are preprocessed and all the names which appear
in any of the pointcuts are recorded in an initial global storeA. We
also assume that the base program is well typed in Hindley-Milner
and the type information of all the functions are stored inΓbase.

The typing environmentΓ contains not only the usual type
bindings (of the formx : σ e) but alsoadvice bindingsof the
form n : σ ⊲⊳ x̄. This states that an advice with namen of typeσ is
defined on a set of functions̄x. We may drop the⊲⊳ x̄ part if found
irrelevant. When the bound function name is advised (i.e.x ∈ A),
we use a different binding:∗ to distinguish from the non-advised
case so that it may appear in a predicate as in rule (PRED). We also
use the notation:(∗) to represent a binding which is either: or :∗.
When there are multiple bindings of the same variable in a typing
environment, the newly added one shadows previous ones.

Note that while it is possible to present the typing rules without
the translation detail by simply deleting the ‘ e’ portion, it is not
possible to present the translation rules independently since typing
controls the translation.

(VAR)
x : ∀ā.p̄.t e ∈ Γ

Γ ⊢ x : [t̄/ā]p̄.t e
(VAR-A)

x :∗ ∀ā.p̄.tx ∈ Γ t′ = [t̄/ā]tx wv(x : t′) Γ ⊢ ni : t′ ei

n̄ : ∀b̄.q̄.tn ⊲⊳ x n̄′ ∈ Γ {ni | ti D t′} |ȳ| = |p̄|

Γ ⊢ x : [t̄/ā]p̄.tx λȳ.〈x ȳ , {ei}〉

(APP)
Γ ⊢ e1 : t1 → t2 e′1

Γ ⊢ e2 : t1 e′2
Γ ⊢ e1 e2 : t2 (e′1 e′2)

(ABS)
Γ.x : t1 x ⊢ e : t2 e′

Γ ⊢ λx.e : t1 → t2 λx.e′
(LET)

Γ ⊢ e1 : ρ e′1 σ = gen(Γ, ρ)

Γ, f : σ f ⊢ e2 : t e′2
Γ ⊢ let f = e1 in e2 : t let f = e′1 in e′2

(PRED)
x :∗ ∀ā.p̄.tx ∈ Γ [t̄/ā]tx D t

Γ, x : t xt ⊢ e : ρ e′t x ∈ A

Γ ⊢ e : (x : t).ρ λxt.e
′
t

(REL)
Γ ⊢ e : (x : t).ρ e′

Γ ⊢ x : t e′′ x ∈ A x 6= e

Γ ⊢ e : ρ e′ e′′

Figure 4. Typing rules for expressions

(GLOBAL)
Γ ⊢ e : ρ e′ σ = gen(Γ, ρ) Γ.id :(∗) σ id ⊢ π : t π′

Γ ⊢ id = e in π : t id = e′ in π′

(ADV)
Γ.proceed : t ⊢ λx.ea : p̄.t e′a fi : ∀ā.ti ∈ Γbase

t D [t̄/ā]ti Γ.n : σ ⊲⊳ f̄ n ⊢ π : t′ π′ σ = gen(Γ, p̄.t)

Γ ⊢ n@advice around {f̄} (x) = eain π : t′ n = e′a in π′

(ADV-AN)
Γ.proceed : t ⊢ λx.ea : p̄.tx → t e′a fi : ∀ā.ti → t′i ∈ Γbase

S = [t̄/ā]ti D tx t D S[t̄/ā]t′i Γ.n : σ ⊲⊳ f̄ n ⊢ π : t′ π′ σ = gen(Γ, p̄.tx → t)

Γ ⊢ n@advice around {f̄} (x :: tx) = eain π : t′ n = e′a in π′

Figure 5. Typing rules for declarations

3.1.1 Predicating and Releasing

Before illustrating the main typing rules, we introduce aweavable
constraint of the formwv(f : t) which indicates that advice
application of thef -call of type t can be decided. It is formally
defined as:

Definition 2 Given a functionf and its typef : t2 → t′2, if
∀n.n :(∗) ∀ā.p̄.t1 → t′1 ⊲⊳ f ∈ Γ ∧ t1 ∼ t2 ⇒ t1 D t2,
thenwv(f : t2 → t′2).

This condition basically means that under a given typing environ-
ment, a function’s type is no more general than any of its advices.
For instance, under the environment{n : ∀a.[a] → [a] ⊲⊳ f,
n1 : Int → Int ⊲⊳ f}, wv(f : b → b) is false because the type
is not specific enough to determine whethern1 andn2 should ap-
ply whereaswv(f : Bool → Bool) is vicuously true and, in this
case, no advice applies. Note that since unification and matching
are defined on types instead of type schemes, quantified variables
are freshly instantiated to avoid name capturing.

There are two rules for variable lookups. Rule (VAR) is stan-
dard. In the case that variablex is advised, rule (VAR-A) will cre-
ate a fresh instancet′ of the type scheme bound tox in the environ-
ment. Then we check weavable condition of(x : t′). If the check
succeeds (i.e., x’s input type is more general or equivalent to any
of the advice’s),x will be chained with the translated forms of all
those advices defined on it, having equivalent or more general types
thanx has. We give all these selected advices a non-advised type
in the translation of themΓ ⊢ ni : [[σ′]] ei. This ensures cor-
rect weaving of nested advices advising the bodies of the selected
advices. The detail will be elaborated in Section 3.1.3. Finally, the
final translated expression isnormalizedby bringing all the advice
abstractions ofx outside the chain〈. . .〉. This ensures type compat-
ibility between the advised call and its advices.

If the weavable condition check fails, there must exists some
advices forx with more specific types, and rule (VAR-A) fails to
apply. Sincex ∈ A still holds, rule (PRED) can be applied. This
rule introduces anadvice parameterto the program (through the
corresponding translation scheme). This advice parameter enables
concreteadvice-chained functionsto be passed in at a later stage,
calledreleasing, through the application of rule (REL).

Before we describe rules (PRED) and (REL) in detail, we il-
lustrate the application of these rules by deriving the type and the
woven code for the program shown in Example 1. We useC as an
abbreviation forChar. During the derivation of the definition off ,
we have:

Γ = { h :∗ ∀a.a → a h, n3 : ∀a.a → a ⊲⊳ h n3,
n4 : ∀a.[a] → [a] ⊲⊳ h n4, n5 : ∀b.[C] → [C] ⊲⊳ h n5}

h : t → t dh ∈ Γ2
(VAR)

Γ2 ⊢ h : t → t dh

x : t x ∈ Γ2
(VAR)

Γ2 ⊢ x : t x
(APP)

Γ2 = Γ1, x : t x ⊢ (h x) : t (dh x)
(ABS)

Γ1 = Γ, h : t → t dh ⊢ λx.(h x) : t → t λx.(dh x)
(PRED)

Γ ⊢ λx.(h x) : (h : t → t).t → t λdh.λx.(dh x)

Next, for the derivation of the first element of the main expression,
we have:

Γ3 = { h :∗ ∀a.a → a h, n3 : ∀a.a → a ⊲⊳ h n3,
n4 : ∀a.[a] → [a] ⊲⊳ h n4, n5 : ∀b.[C] → [C] ⊲⊳ h n5,
f : ∀a.(h : a → a).a → a f}

f : ∀a.(h : a → a).a → a f ∈ Γ3
(VAR)

Γ3 ⊢ f : (h : [C] → [C]).[C] → [C] f
a©

(REL)
Γ3 ⊢ f : [C] → [C] (f 〈h , {n3, n4, n5}〉)

...

(APP)
Γ3 ⊢ (f “c”) : [Char] (f 〈h , {n3, n4, n5}〉 “c”)

a© =
h :∗ ∀a.a → a h ∈ Γ3 ...

(VAR-A)
Γ3 ⊢ h : [C] → [C] 〈h , {n3, n4, n5}〉

We note that rules (ABS),(LET) and (APP) are rather standard.
Rule (LET) only bind f with : which signalizes locally defined
functions are not subject to advising.

Rules (PRED) and (REL) respectively introduces and eliminates
advice predicates. Rule (PRED) adds an advice predicate to a type
(Note that we only allow sensible choices oft constrained bytx D

t). Correspondingly, its translation yields a lambda abstraction with
an advice parameter. At a later stage, rule (REL) is applied to
release (i.e.,remove) an advice predicate from a type. Its translation
generates a function application with an advised expression as
argument.

3.1.2 Handling Advices

On top of expressions, declarations define top-level bindings in-
cluding advices. The typing rules are presented in Figure 5. We use
a judgementΓ ⊢ π : σ π′ which closely reassembles the one
for expressions.

The rule (GLOBAL) is very similar to (LET) with the tiny
difference that (GLOBAL) will bind id with : when it is not inA;
and with:∗ otherwise.

There are two type-inference rules for handling advices. Rule
(ADV) handles non-type-scoped advices, whereas rule (ADV-AN)
handles type-scoped advices. In rule (ADV), we firstly infer the
(possibly advised) type of the advice as a functionλx.ea under
the type environment extended withproceed. The advice body is
therefore translated. Note that this translation does not necessarily
complete all the chaining because the weavable condition may not
hold. In this case, just like functions, the advice is parameterized.
At the same time, an advised type is assigned to it and only released
when it is chained in rule (VAR-A).

After type inference of the advice, we ensure that the advice’s
type is more general than or equivalent to all functions’ in the
pointcut. Note that the type information of all the functions is stored
in Γbase. Then, this advice is added to the environment. It does not
appear in the translated program, however, as it is translated into a
function awaiting for participation in advice chaining.

In rule (ADV-AN), variablex can only be bound to a value
of type tx such thattx is no more general than the input type
of those functions in the pointcut. This constraint is similar to
the subsumption rule used for type annotations which requires the
annotated type to be no more general than the inferred one. For
each function in the pointcut, we match a freshly instantiation of
the input typeti to tx which results in a substitutionS. The output
type of the advicet is expected to be more general or equivalent to
the type of each functions under the substitutionS.

In addition, as all the advices are of function types, attempts to
advice a non-function type expression will be rejected by the type
system.

3.1.3 Advising Advice Bodies

As mentioned in the previous (sub)section, the rules (ADV) and
(ADV-AN) make an attempt to translate advice bodies. However,
just like the translation of function bodies, the local type contexts
may not be specific enough to satisfy the weavable condition. Con-
sider a variant of Example 3a. The control-flow based pointcut
cflow(g) is removed, and, for illustration purpose, a type scope
is added. This is to concentrate on translation of the nested advice
and to leave weaving ofcflow to the next section.

Example 3b

n@advice around {f} (arg::Int)

= ... // fully trusted execution
n1@advice around {w} (arg) = f arg in
h x y = x y in
h w 1

⊓⊔

Here, advicen1 calls f which is in turn being advised. The
goal of our translation is to chain advices which are applicable to
the execution off inside an advice. Concretely, when a call tow
is chained with advicen1, the body ofn1 must also be advised.
Moreover, the choice of advices must be coherent.

At the time when the declaration ofn1 is translated, the body
of the advice is translated. An advised type is given to it since the
weavable conditionwv(f : a → a) from the current context is not
satisfied.

When the translation attempts to chain an advice in rule (VAR-A),
the judgmentΓ ⊢ ni : t′ ei in the premise forces the advice
to have a non-advised type. This is to ensure that all the advice
abstractions are fully released so that chaining can take effect.

In the case that this derivation fails, it signifies that the current
context is not sufficiently specific for advising some of the calls in
this advice’s body, and chaining has to be delayed. In example 3,
the call tow by passing it as an argument toh is of typeInt → Int.
This is sufficiently specific for advisingw, sincen1 is the only
candidate. Consequently, the call tof inside the body ofn1 is also
of typeInt → Int. Now, the weavable condition,wv(f : Int →
Int), is satisfied and the program is translated as follows.

n = \arg. ...//fully trusted execution
n1 df = \arg. df arg in
h x y = x y in
h <w,{n1 <f,{n}>}> 1

Advice n is only chained in the main expression where the
context is sufficiently specific for both the calls tow andf.

The translation of candidate advicesΓ ⊢ ni : t′ ei in rule
(VAR-A)’s premise not only translates bodies of advices but also
takes care of chainings of second-order advices.

However, in the premises of rule (ADV) and (ADV-AN), we note
that type information of advices is not stored inΓbase. Thus, we
replacefi : ∀ā.t′ ∈ Γbase byni :∗ ∀ā.q̄.t′ ∈ Γ.2 By doing this, we
assume advised advices are translated before the advices defined on
them. This is valid because circular cases are precluded.

Thus, example 4 is translated into

n1 = \arg.(getHolidayRate arg)*(proceed arg) in
n2 = \arg.(getAnniversaryRate arg)*(proceed arg) in
n3 = \arg.let finalRate = proceed arg

in if (finalRate < 0.5)
then 0.5 else finalRate in

calcPrice cart = sum (map discount cart) in
discount item = (<getRate,{<n1,{n3}>,<n2,{n3}>}>

item)
*(getPrice item)

Note that advicesn1 and n2 are chained withn3 before the
chaining togetRate.

3.1.4 Advising Recursive Functions

We have seen our predicating/releasing system working well for
non-recursive function. However, if we apply rule (REL) to a call
of an advised recursive function, it may end up looping indefinitely.

2 Advices defined on functions cannot be treated this way because of possi-
ble recursiveness of the functions.

Let’s illustrate this with our reverse example. The code is repro-
duced below.

n@advice {List.any} (arg::[a]) =
\x . if arg == [] then x

else (proceed arg) x in
reverse x accum = reverse (tail x)

(cons (head x) accum) in
reverse [1,2] []

After the type inference of advicen and functionreverse, we get
the following result (we omit the irrelevant translation part for the
moment). We writetr as an abbreviation of[a] → [a] → [a].

Γ = { n : ∀ab.[a] → b → b, reverse :∗ ∀a.(reverse : tr).tr}

looping
(REL)

Γ ⊢ reverse : [Int] → [Int] → [Int]
...

(REL)
Γ ⊢ reverse : [Int] → [Int] → [Int] ...

(APP)
Γ ⊢ (reverse [1, 2]) : [Int] → [Int]

(APP)
Γ ⊢ (reverse [1, 2] []) : [Int]

The above derivation clearly shows that rule (REL) will repeat-
edly apply on the same judgement when an advised type has a pred-
icate that is the same as the base type.

Our solution is to break the loop by devising a different releas-
ing rule for recursive functions which predicate on themselves.

(REL-F)
Γ ⊢ f : (f : t).ρ e′ F fresh f ∈ A

Γ ⊢ f : ρ let F = (e′ F) in F

Rule (REL-F) uses a fixed point combinator as the translation
result. Note that it only releases the recursive predicate(f : t).
Should there be any predicates of other functions, rule (REL) is
applied. As a result, the main expression in the above program is
translated to

let F = \y.<reverse y,{n}> F
in F [1,2] []

3.2 Translating Chain Expressions

After the process of type inference and type-directed weaving, pro-
grams ofAspectFun will be transformed into an intermediate form
which is essentially a sugared lambda calculus with a special con-
struct ofchain expressions. In the subsequent step, our compilation
model will conduct a syntactic transformation to expand the chain
expressions and convert the input program to a Haskell program.

Since the specific execution trace of a chain expression depends
mainly on the use of the special keyword,proceed, inside the
chained advices, the key task of our transformation is to properly
handle the occurrences ofproceed. As stated earlier, any occur-
rences of proceed inside an advice should be bound to a function
that represents the rest of computation (i.e., continuation). Hence
the transformation is designed to realize this requirement. In prac-
tice, the transformation consists of two steps. The first step con-
cerns the advices in a program. It adds an additional parameter
called proceed to all advices, namely lambda abstractingproceed.
The second step converts any chain expression in a program into
a form of function application in continuation passing style. Ba-
sically, the conversion it performs can be defined inductively as
follows.

<f, {}> = f
<f, {n1, n2, ..., nk}> = (n1 <f, {n2, ..., nk}>)

For example, the translation of Example 3b presented earlier
will be converted to the following form.

n = \proceed.\arg. ...//fully trusted execution
n1 df = \proceed.\arg. df arg in
h x y = x y in
h (n1 (n f) w) 1 //was h <w,{n1 <f,{n}>}> 1

Admittedly, the chain expansion step is rather straightforward.
One may suggest that the step should be integrated into the weaving
step, thus eliminating the need of generating programs in the inter-
mediate form. However, we argue that a staged translation process
with chain expression as an intermediate form opens a wide scope
of opportunities for optimizing the translated code. For instance, it
is obvious that some advices will never invokeproceed. For these
advices, all other advices chained after any of them are considered
dead code and should be eliminated. We can therefore prune such
chains by performingdead-code eliminationanalysis on the wo-
ven code. In the next section, we show yet another optimization of
control-flow based pointcuts which take advantage of the explicit
intermediate form.

4. Compiling Control-Flow Based Pointcuts
In this section, we present our compilation model for compos-
ite pointcuts – control-flow based pointcuts. Despite the fact that
control-flow information are only available fully during run-time,
we strive to discover as much information as possible during com-
pilation. In particular, we transform type scopes within such point-
cuts and then compile these type scopes away using our static type-
directed weaver. When a pointcut designator depends on the dy-
namic state of the join point, we insert dynamic test to capture
such dependency. These dynamic tests are implemented in a state-
based fashion without the need to maintain call stacks, and is sim-
ilar to that used in AspectJ as well as that used by Masuhara et al.
[10]. We also consider the strategy to eliminate such tests at com-
pile time. Our compilation process for composite pointcuts thus
involves three steps:

1. Pre-processing source code to eliminate the use of type-scoped
control flow (eg.cflow(f(:: Int))) andcflow.

2. Installing state-based mechanism in woven code.

3. Analyzing and optimizing woven code produced at step 2 to
compile away as many dynamic tests as possible.

We shall describe these steps in more detail in the rest of this
section.

4.1 De-sugaring

The objective of this step is to transform the source language into
one that is amenable to static type inference and weaving. Specif-
ically, type-scoped control flow (eg.cflow(f(:: Int))) and
cflow can be considered syntactic sugar in our source language.
They are therefore translated away before we conduct static analy-
sis on the source code.

Type-scoped control-flow based pointcuts can be replaced by
ones without type scopes. For instance,

n@advice around {k + cflow(f(_::Int))} (arg) = ...

is translated into

n’@advice around {f} (arg :: Int) = proceed arg
n@advice around {k + cflow(n’)} (arg) = ...

Note thatcflow(f(::Int)) has been translated intocflow(n’),
wheren’ is a newly defined type-scoped advice onf which simply
passes the argument toproceed. As a language design decision, we
only allow the introduction of advice name as argument tocflow
as part of compiler internal; it is not part of the source language.

In addition, we can translate allcflow-pointcuts into pointcuts
involving cflowbelow. Doing so reduces the number of cases to

be considered during compilation. The translation rules forcflow
translation are listed below. They are applied repetitively on point-
cuts until there is no more change. The notation+o refers toother
pointcuts which are not the target of current iteration of translation.

Original Translated

f + cflow(f)+o f+o

f + cflow(g)+o f + cflowbelow(g)+o whenf 6= g

any + cflow(f)+o any + cflowbelow(f)+o and f+o

f − cflow(f)+o FALSE

f − cflow(g)+o f − cflowbelow(g)+o whenf 6= g

any − cflow(f)+o any\[f] − cflowbelow(f)+o

Note that the pointcutany + cflow(f)+o is translated to two
pointcuts:any + cflowbelow(f)+o andf+o. Also, the pointcut
f −cflow(f)+o does not refer to any feasible join points, and will
be omitted from the translated code.

4.2 State-based Implementation

Information pertaining tocflowbelow pointcuts is ignored during
static weaving. It is instead captured in a data structure, called
IFAdvice, which is then used in the latter stages of compilation.
An example of a woven code after static weaving is show here (in
pseudo-code format):

Example 5

// meta-data: IFAdvice [k+cflowbelow(g)] (n,...)
n proceed arg = arg+123 in
k x = x + 1 in
g x = <k, {n}> x in
f x = if x == 0 then g x else <k, {n}> x in
(f 0, f 1)

�

This first line in the code above displays a meta-data structure
capturing the association of the advicen with the cflowbelow
pointcutk+cflowbelow(g). This implies that dynamic testing is
needed at call to functionk to determine ifn should be invoked; ie.,
if k is called in the context of a call tog. We callg thecflowbelow
advised function.

In general, in order to enable matching ofcflowbelow point-
cuts dynamically, we maintain a global state of function invoca-
tions, and insert state-update and state-lookup operations at proper
places in the woven code. Specifically, the encoding is done at two
kind of locations: At the definitions ofcflowbelow advised func-
tions and at the uses ofcflowbelow advices.

At the definition of acflowbelow advised function, such asg
in Example 5, we set up aglobal stateto record the entry into and
exit from the advised function. These are encoded in the body of
the advised function. In the spirit of pure functional language, we
implement this encoding using areader monad[6]. In pseudo-code
format, the encoding ofg will be as follows:3

g x = enter "g";
<k, n> x;
restore state

Here,enter records into the global state the entry into functiong,
andrestore erases this record from the global state.

Next, uses ofcflowbelow advices appear in various chain ex-
pressions, such as<k,n> occurring in two places in Example 5. For

3 This technique does not work satisfactorily when the cflow-advised func-
tions are built-in functions, and will require additional function wrapping.
We shall omit the detail in this paper.

these uses, we insert code to encode the lookup for the presence of
the respective pointcuts in the global state. The encoding is a form
of guarded expressiondenoted by<| guard, n |>. Semantically,
the advicen will be executed only ifguard evaluates toTrue. The
translated (pseudo) code for Example 5 is as follows:

Example 5a

// meta-data: IFAdvice [k+cflowbelow(g)] (n,...)
n proceed arg = arg+123 in
k x = x + 1 in
g x = enter "g";

<k, { <| isIn "g", n|> } > x;
restore state in

f x = if x == 0
then g x
else <k, { <| isIn "g", n |> } > x in

(f 0, f 1)

⊓⊔
The guard (isIn "g") determines ifg has been invoked and not yet
returned. If so, advicen is executed. In this case,n is not triggered
when evaluatingf 1, but it is when evaluatingf 0.

4.3 Control-Flow Pointcut Analysis and Optimization

From Example 5a, we note that the guard occurring in the definition
of g is always true, and can thus be eliminated. Similarly, the guard
occurring in the definition of f is always false, and the associated
advicen can be removed from the code. Indeed, many of such
guards can be eliminated during compile time, thus speeding up
the execution of the woven code.

We share the sentiment with Avgustino et al. [1] that such op-
timization and its associated analysis can be more effectively per-
formed on the woven code. In our system, we employ two inter-
procedural analysis to determine the opportunity for optimizing
guarded expressions. They aremayCflow andmustCflow analy-
sis (cf. [1]).

Since the subject language is polymorphically typed and higher-
order, we adoptannotated-type and effectsystems for our analysis.
This approach has been described in detail in [13]. Judgments for
bothmayCflow andmustCflow analysis are of the form

Γ̂ ⊢ e : τ̂1
ϕ′

−→τ̂2 & ϕ

FormayCflow analysis (resp.mustCflow analysis), this means that
under an annotated-type environmentΓ̂, an expressione has an

annotated typêτ1
ϕ′

−→τ̂2 and a contextϕ comprising the names of
those functions which may be (resp. must be) invoked and not yet
returned during the execution ofe. The annotationϕ′ above the
arrow→ is the context in which the functione will be invoked. It is
the union (resp. intersection) of all possible invocation contexts of
e. Thus,ϕ andϕ′ both represent context, but the former captures all
contexts in whiche is evaluated, whereas the latter captures those
in whiche is invoked.

4.3.1 Lazy Semantics

The lazy semantics ofAspectFun may appear to entail a different
analysis than those with strict semantics. A plausible argument
for this is that calls are only invoked on demand. Consider the
following code:

// meta-data: IFAdvice [f+cflowbelow(g)] (n,...)
n proceed arg = ... in
f x = x in
g x = x + 1 in
g (f 3)

(CONST) Γ̂ ⊢may c : τ̂c & ϕ (VAR) Γ̂ ⊢may x : Γ(x) & ϕ

(LAMBDA)
Γ̂[x 7→ τ̂x] ⊢may e : τ̂e & ϕ

Γ̂ ⊢may λx.e : τ̂x
ϕ′

−→τ̂e & ϕ
(IF)

Γ̂ ⊢may e1 : Bool & ϕ Γ̂ ⊢may e1 : τ̂ & ϕ Γ̂ ⊢may e2 : τ̂ & ϕ

Γ̂ ⊢may if e1 then e2 else e3 : τ̂ & ϕ

(LET)
Γ̂[x 7→ τ̂x] ⊢may e1 : τ̂1 & ϕ

Γ̂[x 7→ τ̂x] ⊢may e2 : τ̂ & ϕ

Γ̂ ⊢may let x = e1 in e2 : τ̂ & ϕ

(APP)
Γ̂ ⊢may e1 : τ̂2

ϕF−→τ̂ & ϕ

Γ̂ ⊢may e2 : τ̂2 & ϕ ϕ ⊆ ϕF

Γ̂ ⊢may (e1 e2) : τ̂ & ϕ

(DECL)
Γ̂[f 7→ τ̂x

ϕF−→τ̂][x 7→ τ̂x] ⊢may ef : τ̂ ′ & ϕF ∪ {f} Γ̂[f 7→ τ̂x
ϕF−→τ̂] ⊢may p : τ̂ & ∅

Γ̂ ⊢may f x = e in p : τ̂ & ∅

(CHAIN)
Γ̂ ⊢may e1(e2(. . . (en e) . . .)) : τ̂ & ϕ

Γ̂ ⊢may 〈e, {e1, . . . , en}〉 : τ̂ & ϕ
(GUARDED)

Γ̂ ⊢may e1 : Bool & ϕ Γ̂ ⊢may e : τ̂ & ϕ

Γ̂ ⊢may < |e1, e| > : τ̂ & ϕ

(SUB)
Γ̂ ⊢may e : τ̂ & ϕ

Γ̂ ⊢may e : τ̂ ′ & ϕ
if τ̂ ≤ τ̂ ′

Figure 6. mayCflow inference rules

Under the lazy semantics,(f 3) will be executed within the body
of g. This gives the impression thatf is called within the calling
context ofg. Thence, advicen will be triggered at thef-call.

However, upon closer examination, we find this argument fal-
lacious. Specifically, during the evaluation ofg (f 3), the sub-
expression(f 3) is first converted into athunk, which captures the
current calling context to be used for future evaluation. This calling
context, which is the true context in whichf-call is evaluated, does
not containg. As such,n will not be triggered.

In summary, while lazy semantics delays the execution of a call
until it is needed, it does not induce a different calling context
for the call from its strict semantics counterpart. Therefore, our
control-flow pointcut analysis are oblivious to the call semantics
of the language.

4.3.2 The Analysis and Optimization Details

Figure 6 presents our type-and-effect system formayCflow analy-
sis. Subtyping of annotated type is defined as

τ̂ ≤ τ̂
τ̂ ′
1 ≤ τ̂1 τ̂2 ≤ τ̂ ′

2 ϕ′ ⊆ ϕ

τ̂1
ϕ

−→τ̂2 ≤ τ̂ ′
1

ϕ′

−→τ̂ ′
2

The above rule means that a functionf of the LHS type can replace
another functionf ′ of the RHS type if:

1. f accepts all arguments thatf ′ can accept (̂τ ′
1 ≤ τ̂1),

2. Results produced byf can be used in the context off ′ (τ̂2 ≤
τ̂ ′
2), and

3. f can be used in all the possible contexts off ′, and possibly
more (ϕ′ ⊆ ϕ).

Note that the rules specified in figure 6 together yield a set
of constraints over context variablesϕ. The least solution of the
constraints is the one containing the most information.

Applying the analysis over the woven code given in Example 5a,
we obtain the following contexts for the body of each of the func-
tions:

ϕmay

k = {f, g} May-context for body ofk

ϕmay
g = {f} May-context for body ofg

ϕmay

f = ∅ May-context for body off

Since the type-and-effect system formustCflow analysis is similar
to that formayCflow analysis, we omit the detail in this paper, but
simply to point out the resulting contexts produced by performing
mustCflow analysis over the same example:

ϕmust
k = ∅ Must-context for body ofk

ϕmust
g = {f} Must-context for body ofg

ϕmust
f = ∅ Must-context for body off

After collecting all themayCflow and mustCflow informa-
tion, we perform optimization over the woven ocde by eliminating
guarded expressions. The basic principles for optimization are:

Given a guarded expression of the form<| isIn f , e |>
occurring in a program:

1. If the mayCflow analysis yields a contextϕmay for the
expression such thatf 6∈ ϕmay, then the guard always
fails, and the guarded expression will be eliminated from
the program.

2. If themustCflow analysis yields a contextϕmust for the
expression such thatf ∈ ϕmust, then the guard always
succeeds, and the guarded expression will be replaced
by the subexpressione.

In both cases, the guarded expression is successfully elimi-
nated.

Going back to Example 5a, we are thus able to eliminate all the
guarded expressions, yielding the following woven code:

Example 5b

// meta-data: IFAdvice [k+cflowbelow(g)] (n,...)
n proceed arg = arg+123 in
k x = x + 1 in
g x = enter "g";

<k, {n}> x;
restore state in

f x = if x == 0
then g x
else <k, {} > x in

(f 0, f 1)

⊓⊔
The expression<k,{}> indicates that no advice is chained, and

thusk will be called as usual.
As a final example, consider a program that uses higher order

functions:

Example 6

// meta-data: IFAdvice [k+cflowbelow(f)] (n,...)
n proceed arg = proceed (arg + 1) in
f x = enter "f"; x 1 ; restore state in
g y = y 2 in
k z = z * 2 in
(f <k, {<| isIn "f", n|>}>,
g <k, {<| isIn "f",n|>}>)

�

The resulting annotated type ofk used as an argument tof is

Int
{f}
−→Int in mustCflow analysis, makingn to be statically woven

on it. Furthermore, the one used as an argument ofg has anno-

tated type Int
{g}
−→Int in mayCflow analysis; this results in the full

removal of the associated advice. The final code is thus:

n proceed arg = proceed (arg + 1) in
f x = enter "f"; x 1 ; restore state in
g y = y 2 in
k z = z * 2 in
(f <k,{n}>, g <k,{}>)

5. Related Work
5.1 Aspect-Oriented Languages

Recently, researchers in functional languages have started to study
various issues of adding aspects to strongly typed functional lan-
guages. Two notable works in this area, AspectML [3, 2] and As-
pectual Caml [11], have made many significant results in support-
ing polymorphic pointcuts and advices in strongly typed functional
languages such as ML. While these works have introduced some
expressive aspect mechanisms into the underlying functional lan-
guages, they have not successfully reconciled coherent and static
weaving – two essential features of a compiler for a Aspect-
Oriented functional language.

AspectML [3, 2] advocates first-class join points for construct-
ing generic aspect libraries. In order to support non-parametric
polymorphic advice, AspectML includes case-advices which are
subsumed by our type-scoped advices. Its type system is a con-
servative extension to the Hindley-Milner type inference algorithm
with a form of local type inference based on some required anno-
tations. During execution, advices are looked-up through the labels
and runtime type analysis are performed to handle the matching
of type-scoped pointcuts. This complete dynamic mechanism gives
additional expressiveness by allowing run-time advice introduc-
tion. However, many optimization opportunities are lost as advice
application information is not present during compilation. Lastly,
advices are anonymous in AspectML and apparently not intended
to be the targets of advising,i.e.no second-order advices.

Aspectual Caml [11], on the other hand, carries out type infer-
ence on advices without consulting the types of the functions desig-
nated by the pointcuts. Similar to AspectML, it allows a restricted
form of type-scoped advices. Static weaving is achieved by travers-
ing type-annotated base program ASTs to insert advices at matched
joint points. The types of the applied advices must be more general
than those of the joint points, through which, type safety is guar-
anteed. This design has the advantage of clear separate compilation
as aspects can be compiled completely independently from the base

program. In our case, we value correctness and understandability of
program more than the ease of compilation.

Aspectual Caml’s syntactic approach also makes it easy to ad-
vise anonymous functions. However, for polymorphic functions in-
voked indirectly through aliases or functional arguments, this ap-
proach cannot achieve coherent weaving results. It is also not clear
how to extend the syntactic weaving scheme to handle nested ad-
vices, second-order advices or control flow based pointcuts such as
cflow.

The current work is a conservative extension of our previous
work [19], where we developed a type-directed weaving strategy
for functional languages featuring higher-order functions, curried
pointcuts and overlapping type-scoped advices.Around advices
are woven into the base program based on the underlying type
context using a Hindley-Milner type inference system extended
with advised types and source translation. Coherent translations are
achieved without using any dynamic typing mechanisms. However,
in that work, advices and functions are still kept in two completely
different levels: advices can never invoke advised functions. More-
over, control-flow based pointcuts were absent from the language.
All these shortcomings are fully addressed in this paper.

5.2 Type-Scoped Programming

Our type-directed translation was originally inspired by the dictio-
nary translation of Haskell type classes [18]. A number of subse-
quent applications of it [9, 7] also share some similarities. How-
ever, the issues discussed in this paper are unique, which make our
translation substantially different from the others.

There has been some recent effort in encoding core features of
AO functional languages with Haskell type classes [17]. The en-
coding is light-weight and allows easy integration with existing ad-
vanced language features such as type classes and GADTs [14]. In
that work, all candidate advices are piled up at function calls and
correct advice chainings are done implicitly by the type class reso-
lution. This approach does not allow AOP specific static optimizers
to take advantage of the chaining information, which defies one of
the main thrusts of our compilation model. Moreover, there is also
no clue on how control-flow based pointcuts and second-order ad-
vices can be incorporated.

On the other dimension, Washburn and Weirich demonstrated
type-directed programming in AspectML [20]. They showed as-
pects together with a run-time type check mechanism can be used
as an alternative of type classes and even performs better in cases
where type classes struggle.

5.3 Static Optimization

The implementation and optimization ofAspectFun took inspi-
rations from the AspectBench Compiler for AspectJ (ABC) [1].
ABC implemented a series of optimizations which significantly
improved AspectJ’s run-time performance. Despite having a sim-
ilar aim, the differences between object-oriented and functional
paradigms do not allow most existing techniques to be shared.
For example, the concerns ofclosuresand inlining can be more
straightforwardly encoded with higher-order functions and function
calls inAspectFun ; whereas the complex control flow of higher-
order functional languages makes the cflow analysis much more
challenging. As a result, our typed cflow analysis has little resem-
blance with the one in ABC which was based on call graphs of an
imperative language.

It is also worth mentioning that even though a number of op-
timizations have been done forAspectFun , the main purpose of
this paper is to present a compilation model which supports static
weaving and optimization for a polymorphic functional language.
We leave further enhancements and empirical results to future in-
vestigation.

In [10], Masuhara, Kiczales and Dutchyn proposed a compi-
lation and optimization model for aspect-oriented programs. Their
approach was employing partial evaluation to optimize an evaluator
for aspect-oriented languages implemented in Scheme. The limited
power of the partial evaluator makes their work differ from ours in
at least three ways: 1. Dynamic execution pointcuts are not stati-
cally determined. 2. The dealing of type scopes relies on dynamic
type testing. 3. There is no mention of ways to reduce dynamic
cflow checks.

6. Conclusion and Future Work
Static typing, static and coherent weaving are our main concerns
in constructing a compilation model for functional languages with
higher-order functions and parametric polymorphism. As a sequel
to our previous results, this paper has advanced our investigation in
a variety of ways. Firstly, while the basic structure of our type sys-
tem remains the same, the typing rules have been significantly re-
fined and extended beyond the two-layered model of functions and
advices. Consequently, advices and advice bodies can also be ad-
vised. Secondly, we have devised new typing and translation rules
to handle the weaving of advices on recursive functions which are
polymorphic. Thirdly, we seamlessly incorporated a wide range of
control-flow based pointcuts into our model and implemented a
number of novel static optimization techniques which took advan-
tage of the static nature of our weaver.

Moving ahead, we shall continue this line of investigation in a
few directions. Currently, the type system bans mutual recursion
and circular around advice execution. It will be interesting to see
how these limitations can be removed. Since one of the major ad-
vantages of static weaving is the ease of static analysis and op-
timization, we will investigate additional optimization techniques
and conduct empirical experiments of performance gain.

On another frontier, we plan to explore applying our static
weaving system to other language paradigms. Java 1.5 has been
extend with parametric polymorphism by the introduction ofgener-
ics. The following example is taken from [4]

class List<T extends Comparable<T>> {
T[] contents; ...
List<T> max(List<T> x) {
// general code for general types

} }

This class implements a list with a methodmax. When the input
is an Boolean list, we may want to use bit operations for a more
efficient implementation. This can be done with a type-scoped
aspect.

aspect BooleanMax {
List<Boolean> around(List<Boolean> x): args(x) &&
execution(List<Boolean>

List<Boolean>.max(List<Boolean>)) {
// special code for boolean arguments

} }

However, as mentioned in [4], the above aspect cannot be handled
by their aspect language because the type-erasure semantics of
Java prohibits any dynamic type test here. We speculate our type-
directed weaving could be a key to the solution of the problem.

References
[1] Pavel Avgustinov, Aske Simon Christensen, Laurie Hendren, Sascha

Kuzins, Jennifer Lhot́ak, Onďrej Lhot́ak, Oege de Moor, Damien
Sereni, Ganesh Sittampalam, and Julian Tibble. Optimising AspectJ.
In PLDI ’05: Proceedings of the 2005 ACM SIGPLAN conference on
Programming language design and implementation, pages 117–128,
New York, NY, USA, 2005. ACM Press.

[2] Daniel S. Dantas, David Walker, Geoffrey Washburn, and Stephanie
Weirich. PolyAML: a polymorphic aspect-oriented functional
programmming language. InProc. of ICFP’05. ACM Press,
September 2005.

[3] Daniel S. Dantas, David Walker, Geoffrey Washburn, and Stephanie
Weirich. AspectML: A polymorphic aspect-oriented functional
programming language.ACM Transactions on Programming
Languages and Systems (TOPLAS), 2006, to appear.

[4] Radha Jagadeesan, Alan Jeffrey, and James Riely. Typed parametric
polymorphism for aspects.Science of Computer Programming, 2006,
to appear.

[5] M. P. Jones.Qualified Types: Theory and Practice. D.phil. thesis,
Oxford University, September 1992.

[6] Mark P. Jones. Functional programming with overloading and higher-
order polymorphism. InAdvanced Functional Programming, pages
97–136, 1995.

[7] Mark P. Jones. Exploring the design space for type-basedimplicit
parameterization. Technical report, Oregon Graduate Institute of
Science and Technology, 1999.

[8] Gregor Kiczales, John Lamping, Anurag Menhdhekar, ChrisMaeda,
Cristina Lopes, Jean-Marc Loingtier, and John Irwin. Aspect-
oriented programming. In Mehmet Akşit and Satoshi Matsuoka,
editors,Proceedings European Conference on Object-Oriented
Programming, volume 1241, pages 220–242. Springer-Verlag, Berlin,
Heidelberg, and New York, 1997.

[9] Jeffrey R. Lewis, Mark Shields, John Launchbury, and Erik Meijer.
Implicit parameters: Dynamic scoping with static types. In
Symposium on Principles of Programming Languages, pages 108–
118, 2000.

[10] Hidehiko Masuhara, Gregor Kiczales, and Christopher Dutchyn. A
compilation and optimization model for aspect-oriented programs. In
CC, pages 46–60, 2003.

[11] Hidehiko Masuhara, Hideaki Tatsuzawa, and Akinori Yonezawa.
Aspectual Caml: an aspect-oriented functional language. InProc. of
ICFP’05. ACM Press, September 2005.

[12] R. Milner. A theory of type polymorphism in programming.Journal
of Computer and System Sciences, 17:348–375, Dec 1978.

[13] Flemming Nielson, Hanne R. Nielson, and Chris Hankin.Principles
of Program Analysis. Springer-Verlag New York, Inc., Secaucus, NJ,
USA, 1999.

[14] S. Peyton Jones, D.Vytiniotis, G. Washburn, and S. Weirich. Simple
unification-based type inference for GADTs, 2005. Submittedto
PLDI’06.

[15] Hridesh Rajan and Kevin J. Sullivan. Classpects: unifying aspect-
and object-oriented language design. InICSE ’05: Proceedings of the
27th international conference on Software engineering, pages 59–68,
New York, NY, USA, 2005. ACM Press.

[16] Damien Sereni and Oege de Moor. Static analysis of aspects. In
Mehmet Aksit, editor,2nd International Conference on Aspect-
Oriented Software Development (AOSD), pages 30–39. ACM Press,
2003.

[17] Martin Sulzmann and Meng Wang. Aspect-oriented programming
with type classes. http://www.comp.nus.edu.sg/˜ sulzmann,2006.

[18] Philip Wadler and Stephen Blott. How to make ad-hoc polymorphism
less ad-hoc. InConference Record of the 16th Annual ACM
Symposium on Principles of Programming Languages, pages 60–
76. ACM, January 1989.

[19] Meng Wang, Kung Chen, and Siau-Cheng Khoo. Type-directed
weaving of aspects for higher-order functional languages.In PEPM
’06: Workshop on Partial Evaluation and Program Manipulation.
ACM Press, 2006.

[20] G. Washburn and S. Weirich. Good advice for type-directed
programming. InWorkshop on Generic Programming 2006. ACM
Press, 2006.

