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Abstract. We study a novel problem of mining significant recurrent
rules from a sequence database. Recurrent rules have the form “when-
ever a series of precedent events occurs, eventually a series of consequent
events occurs”. Recurrent rules are intuitive and characterize behaviors
in many domains. An example is in the domain of software specifications,
in which the rules capture a family of program properties beneficial to
program verification and bug detection. Recurrent rules generalize exist-
ing work on sequential and episode rules by considering repeated occur-
rences of premise and consequent events within a sequence and across
multiple sequences, and by removing the “window” barrier. Bridging the
gap between mined rules and program specifications, we formalize our
rules in linear temporal logic. We introduce and apply a novel notion of
rule redundancy to ensure efficient mining of a compact representative
set of rules. Performance studies on benchmark datasets and a case study
on an industrial system have been performed to show the scalability and
utility of our approach.

1 Introduction

The information age has caused an explosive growth in the amount of data
produced. Mining for knowledge from data has been shown useful for many pur-
poses [12] ranging from finance, advertising, bio-informatics and recently soft-
ware engineering [17,20]. Addressing the same issue of knowledge discovery from
data, we study the problem of mining recurrent rules, each having the following
form:

“Whenever a series of precedent events occurs, eventually another series of
consequent events occurs”

The above rule is intuitive and represent an important form of knowledge
characterizing the behaviors of many systems appearing in various domains.
Examples of rules in this format include:

1. Resource Locking Protocol: Whenever a lock is acquired, eventually it is
released.

2. Internet Banking: Whenever a connection to a bank server is made and an
authentication is completed and money transfer command is issued, eventu-
ally money is transferred and a receipt is displayed.
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3. Network Protocol: Whenever an HDLC connection is made and an acknowl-
edgement is received, eventually a disconnection message is sent and an
acknowledgement is received.

Zooming into the domain of software specification and verification, recurrent
rules correspond to a family of program properties useful for program verifica-
tion (c.f. [9]). The first example given above corresponds to a program property.
Research in software verification addresses rigorous approaches to check the cor-
rectness of a software system with respect to a formal specification which often
corresponds to a set of program properties (c.f., [26,6]). However, specification
might often be outdated or missing due to software evolution, reluctance in
writing formal specification and short-time-to-market cycle of software develop-
ment (c.f., [8,3,5]). Recovering or mining specifications expressed as rules and
automata has been a recent interest in software engineering and programming
language domain [27,29,3,19]. However, recent approaches on mining rules as
specification [27,29] has only focused on two-event rules due to the exponential
complexity associated with mining rules of arbitrary length.

To address the above issue, in this paper we propose a novel extension of
work on pattern mining, in particular sequential pattern mining [2] and episode
mining [22]. Sequential pattern mining first addressed by Agrawal and Srikant
in [2] discovers patterns that are supported by a significant number of sequences.
A pattern is supported by a sequence if the former is a sub-sequence of the later.
On the other hand, Mannila et al. perform episode mining to discover frequent
episodes within a sequence of events [22]. An episode is supported by a window
if it is a sub-sequence of the series of events appearing in the window. Garriga
later extends Mannila et al.’s work to replace a fixed-window size with a gap
constraint between one event to the next in an episode [11]. In both cases, an
episode is defined as a series of events occurring relatively close to one another
(i.e. they occur in the same window). Episode mining focuses on mining from a
single sequence of events.

Rules can be formed from both sequential patterns and episodes as proposed
in [24,22]. Different from a pattern, a rule expresses a constraint involving its
premise (i.e., pre-condition) and consequent (i.e., post-condition). These con-
straints are needed for potential uses of rules in filtering erroneous sequences,
detecting outliers, etc.

However, rules from sequential patterns and episodes have different semantics
from recurrent rules. A sequential rule pre → post states: “whenever a sequence
is a super-sequence of pre it will also be a super-sequence of pre concatenated
with post”. An episode rule pre → post states: “whenever a window is a super-
sequence of pre it will also be a super-sequence of pre concatenated with post”.
Recurrent rules generalize sequential rules where for each rule, multiple occur-
rences of the rule’s premise and consequent both within a sequence and across
multiple sequences are considered. Recurrent rules generalize episode rules by al-
lowing precedent and consequent events to be separated by an arbitrary number
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of events in a sequence database. Also, a set of sequences rather than a single
sequence is considered during mining.

These generalizations are needed in many application areas, and an example
is in mining program properties from execution traces. Because of loops and
recursions, an execution trace can contain repeated occurrences of a particular
property. Also, program properties are often inferred from a set of traces instead
of a single trace (c.f [3,19]). Finally, important patterns for verification, such as,
lock acquire and release or stream open and close (c.f [29]) often have their events
occur at some arbitrary distance away from one another in a program trace.
Hence, there is a need to “break” the “window barrier” or “gap constraints” in
order to capture program properties of interest.

Our goal is to mine a set of rules satisfying given support and confidence
thresholds. To reduce the number of mined rules and improve efficiency, we define
a novel notion of rule redundancy and devise search space pruning strategies to
detect redundant rules “early” in the mining process. The final output is a set
of non-redundant rules satisfying the given support and confidence thresholds.

In order to bridge the gap between mined rules and program specifications, we
formalize our rules using linear temporal logic (LTL) – a widely used formalism
in program verification [6]. By mapping rules to LTL expressions, these rules can
be directly consumed by existing program verifiers.

We carry out a performance study on several standard benchmark datasets
to demonstrate the effectiveness of our search space pruning strategies. We also
perform a case study on traces of JBoss Application Server – the most widely
used J2EE server – to illustrate the usefulness of our technique in recovering the
specifications that a software system obeys.

The contributions of this work are as follows:

1. We present a novel notion of recurrent rules along with its mining algorithm.
2. We introduce and utilize the definition of redundant rules to reduce the

number of mined rules.
3. We employ two “apriori”-like properties and “early” detection of redundant

rules effective in aiding the scalability of rule mining.
4. We bridge the gap between data mining and program verification by trans-

lating mined rules to useful LTL expressions.
5. We show a case study on the utility of our technique in recovering specifica-

tions of a large industrial programs.

The outline of this paper is as follows. In Section 2, we discuss related work.
Section 3 contains important background information on LTL formalizing our
definition of recurrent rules. Section 4 presents the principles behind mining
recurrent rules and the pruning strategies employed. Section 5 presents our al-
gorithm. Section 6 describes the study conducted to evaluate the performance of
our mining framework and the benefits of various pruning strategies. Section 7
describes our case study, and Section 8 concludes this paper and presents some
future work.
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2 Related Work

Two related research threads are sequential pattern mining(e.g., [2,28,25,24])
and episode mining (e.g., [22,11]). This work can be viewed as an extension of
both sequential rules and episode rules. Differences between our work and the
above have been discussed in the introduction section.

In the area of specification mining, a number of studies on mining software
temporal properties have been performed [29,27,3,19]. Most of them mine an
automata (e.g., [3,19]) and hence are very different from our work. Of the most
relevance is the work on mining rule-based specification [29,27], where the rules
have a similar semantics as ours but are limited to two-event rules (e.g., 〈lock〉 →
〈unlock〉). Their algorithms do not scale for mining multi-event rules since they
first list all possible two-event rules and then check the significance of each rules.
For rules of arbitrary lengths, the number of possible rules is arbitrarily large.
Our work generalizes their work by mining a complete set of rules of arbitrary
lengths that satisfy given support and confidence thresholds. To enable efficient
mining, we devise a number of search space pruning strategies.

In [20], we proposed iterative patterns to discover software specifications, which
are defined based on the semantics of Message Sequence Charts (MSC) [15]. Dif-
ferent from [20], this work is based on a different formalism, namely the seman-
tics of Linear Temporal Logic (LTL). LTL has a wider application area than MSC,
ranging from software engineering [29] to security & privacy [4]. In the software do-
main, LTL (but not MSC) is one of the most widely-used formalism for program
verification (i.e., ensuring correctness of a software system) [6]. There are many
standard verification tools readily taking software properties expressed in LTL as
inputs. Since the underlying target formalisms and semantics are different, both
the search space pruning strategies and the mining algorithm are very different
from our previous work in [20].

3 Preliminaries

This section introduces preliminaries on LTL and its verification which dictate the
semantics of recurrent rules. Also, notations used in this paper are described.
Linear-time Temporal Logic Our mined rules can be expressed in Linear Tem-
poral Logic (LTL) [14]. LTL is a logic that works on possible program paths. A
possible program path corresponds to a program trace. A path can be considered
as a series of events, where an event is amethod invocation. For example, (file open,
file read, file write, file close), is a 4-event path.

There are a number of LTL operators, among which we are only interested in the
operators ‘G’,‘F’ and ‘X’. The operator ‘G’ specifies that globally at every point in
time a certain property holds. The operator ‘F’ specifies that a property holds ei-
ther at that point in time or finally (eventually) it holds. The operator ‘X’ specifies
that a property holds at the next event. Some examples are listed in Table 1.

Our mined rules state whenever a series of precedent events occurs eventually
another series of consequent events also occurs. A mined rule denoted as pre →
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Table 1. LTL Expressions and their Meanings

F (unlock)
Meaning: Eventually unlock is called

XF (unlock)
Meaning: From the next event onwards, eventually unlock is called

G(lock → XF (unlock))
Meaning: Globally whenever lock is called, then from the next event onwards,

eventually unlock is called
G(main → XG(lock → (→ XF (unlock → XF (end)))))

Meaning: Globally whenever main followed by lock are called, then from the next
event onwards, eventually unlock followed by end are called

Table 2. Rules and their LTL Equivalences

Notation LTL Notation
a → b G(a → XFb)

〈a, b〉 → c G(a → XG(b → XFc))
a → 〈b, c〉 G(a → XF (b ∧ XFc))

〈a, b〉 → 〈c, d〉 G(a → XG(b → XF (c ∧ XFd)))

post, can be mapped to its corresponding LTL expression. Examples of such cor-
respondences are shown in Table 2. Note that although the operator ‘X’ might
seem redundant, it is needed to specify rules such as 〈a〉→〈b, b〉 where the ‘b’s refer
to different occurrences of ‘b’.The set of LTL expressions minable by our mining
framework is represented in the Backus-Naur Form (BNF) as follows:

rules := G(prepost)
prepost := event → post|event → XG(prepost)

post := XF (event)|XF (event ∧ XF (post))

Checking/Verifying LTL Expressions. LTL expressions are originally devel-
oped for checking software systems expressed in the form of automata [13] (a tran-
sition system with start and end nodes). There are existing tools converting code
to an automata (e.g., [7]). Given an automata and an LTL property one can check
for its satisfaction through a well-known technique of model checking [6].

Consider the example in Figure 1, the pseudo-code on the left corresponds to
the automaton on the right. Given the property 〈main, lock〉 → 〈unlock, end〉,
a model checking tool (c.f, [6]) will ensure that for all states in the model where
lock preceded by a main occurs (marked by the red dashed arrows), eventually
(whichever path is taken) unlock and then eventually end can be reached. For
the above example, the property is violated. The lock immediately before end
is not followed by an unlock. Note however, the property 〈main, lock, use〉 →
〈unlock, end〉 is satisfied. This is the case since the lock immediately before end
is not followed by a use, i.e., the pre-condition of the rule is not satisfied and the
rule vacuously holds.

In this paper, we map this to sequences. We consider a sequence as a form of
automata (a linear one). An event is mapped to a state. A mined rule (or property)



72 D. Lo, S.-C. Khoo, and C. Liu

 

Possible Traces 
main lock use unlock lock end 
main lock use unlock lock use unlock end 
main lock use unlock end 
 

main(x){ 
   if (lock=0) 
       lock;use;unlock;lock; 
   else 
       for i: 1 to 10 
           lock;use;unlock 
} 

main 

lock 

use 

unlock

lock 

use 

unlock 

lock end 

LTL property to check 
<main,lock> -> <unlock,end> 

or formally, 
G(m -> XG(l -> XF (u ^ XF e))) 

where: m= main, l = lock,  
u = unlock, and e = end 

Program 

To 
Check

Automata Model Transform 

Violation 
… 

Fig. 1. Code -> Automata -> Verification

pre → post with a perfect confidence (i.e., confidence=1) states that in the
sequences from all states where the pre holds eventually post occurs. In the above
example, for all points in the sequence (i.e., temporal points) where 〈main, lock〉
occurs (marked with dashed red circle), one need to check whether eventually
〈unlock, end〉 occurs. Based on the definition of LTL properties and how they are
verified, our technique analyzes sequences and captures strong LTL expressions
that satisfy given support and confidence thresholds.

Basic Notations. Let I be a set of distinct events considered. The input to our
mining framework is a sequence database referred to as SeqDB. Each sequence is
an ordered list of events, and is denoted as 〈e1, e2, . . . , eend〉 where ei ∈ I.

We define a pattern P to be a series of events. We use last(P ) to denote the last
event of P . A pattern P1++P2 denotes the concatenation of patterns P1 and P2.
A pattern P1 (〈e1, e2, . . . , en〉) is considered a subsequence of another pattern P2
(〈f1, f2, . . .,fm〉) if there exists integers 1 ≤ i1 < i2 < . . . < in ≤ m such that
e1 = fi1 , e2 = fi2 , · · · , en = fin (denoted as P1 � P2).

4 Generation of Recurrent Rules

Each recurrent rule has the formP1 → P2, where P1 and P2 are two series of events.
P1 is referred to as the premise or pre-condition of the rule, while P2 is referred to
as the consequent or post-condition of the rule. The rules correspond to temporal
constraints expressible in LTL notations. Some examples are shown in Table 2. We
use the sample database in Table 3 as our running example.

Table 3. Example Database – DBEX

Seq ID. Sequence
S1 〈a, b, e, a, b, c〉
S2 〈a, c, b, e, a, e, b, c〉
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4.1 Concepts and Definitions

Mined rules are formalized as Linear Temporal Logic(LTL) expressions with the
format: G( . . . → XF. . .). The semantics of LTL and its verification technique de-
scribed in Section 3 will dictate the semantics of recurrent rules described here.
Noting the meaning of the temporal operators illustrated in Table 1, to be precise,
a recurrent rule expresses:
“Whenever a series of events has just occurred at a point in time (i.e. a temporal

point), eventually another series of events occurs”
From the above definition, to generate recurrent rules, we need to “peek” at inter-
esting temporal points and “see” what series of events are likely to occur next. We
will first formalize the notion of temporal points and occurrences.

Definition 1 (Temporal Points). Consider a sequence S of the form 〈a1, a2,
. . . , aend〉. All events in S are indexed by their position in S, starting at 1 (e.g., aj

is indexed by j). These positions are called temporal points in S. For a temporal
point j in S, the prefix 〈a1, . . . , aj〉 is called the j-prefix of S.

Definition 2 (Occurrences & Instances). Given a pattern P and a sequence
S, the occurrences of P in S is defined by a set of temporal points T in S such that
for each j ∈ T , the j-prefix of S is a super-sequence of P and last(P ) is indexed by
j. The set of instances of pattern P in S is defined as the set of j-prefixes of S, for
each j ∈ T .

Example. Consider a pattern P 〈a, b〉 and the sequence S1 in the example database
(i.e., 〈a, b, e, a, b, c〉). The occurrences of P in S1 form the set of temporal points
{2,5}, and the corresponding set of instances are {〈a, b〉, 〈a, b, e, a, b〉}.

We can then define a new type of database projection to capture events occur-
ring after each temporal point. The following are two different types of projections
and their associated support notions.

Definition 3 (Projected &Sup). A database projected on a pattern p is defined
as:

SeqDBP = {(j, sx) | the jth sequence in SeqDB is s, where s = px++sx, and
px is the minimum prefix of s containing p}

Given a pattern PX , we define sup(PX ,SeqDB) to be the size of SeqDBPX

(equivalently, the number of sequences in SeqDB containing PX). Reference to
the database is omitted if it is clear from the context.

Definition 4 (Projected-all & Sup-all). A database projected-all on a pattern
p is defined as:
SeqDBall

P = {(j, sx) | the jth sequence in SeqDB is s, where s = px++sx, and px
is an instance of p in s }

Given a pattern PX , we define supall (PX , SeqDB) to be the size of SeqDBall
PX

.
Reference to the database is omitted if it is clear from the context.

Definition 3 is a standard database projection (c.f. [28,25]) capturing events occur-
ring after the first temporal point. Definition 4 is a new type of projection capturing
events occurring after each temporal point.
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Example. To illustrate the above concepts, we project and project-all the example
database DBEX with respect to 〈a, b〉. The results are shown in Table 4(a) & (b)
respectively.

Table 4. (a); DBEX〈a,b〉 & (b); DBEXall
〈a,b〉

(a)
Seq ID. Sequence

S1 〈e, a, b, c〉
S2 〈e, a, e, b, c〉

(b)

Seq ID. Sequence
S11 〈e, a, b, c〉
S12 〈c〉
S21 〈e, a, e, b, c〉
S22 〈c〉

The two projection methods’ associated notions of sup and supall are different.
Specifically, supall reflects the number of occurrences of PX in SeqDB rather than
the number of sequences in SeqDB supporting PX .
Example. Consider the example database, sup(〈a, b〉, DBEX) = |DBEX〈a,b〉| =
2. On the other hand, supall (〈a, b〉, DBEX) = |DBEXall

〈a,b〉| = 4.
From the above notions of temporal points, projected databases and pattern

supports, we can define support and confidence of a recurrent rule.

Definition 5 ((S-/I-)Support & Confidence). Consider a recurrent rule RX

(preX→postX). The [prefix-]sequence-support (s-support) of RX is defined as the
number of sequences inSeqDB where preX occurs, which is equivalent to sup(preX ,
SeqDB). The instance-support (i-support) of RX is defined as the number of occur-
rences of pattern preX++postX in SeqDB, which is equivalent to supall(preX++
postX , SeqDB). The confidence of RX is defined as the likelihood of postX hap-
pening after preX . This is equivalent to the ratio of sup(postX ,SeqDBall

preX
) to the

size of SeqDBall
preX

.

Example. Consider DBEX and a recurrent rule RX , 〈a, b〉 → 〈c〉. From the
database, the s-support of RX is the number of sequences in DBEX supporting
(or is a super-sequence of) the rule’s pre-condition – 〈a, b〉. There are 2 of them –
see Table 4(a). Hence s-support of RX is 2. The i-support of RX is the number
of occurrences of pattern 〈a, b, c〉 in DBEX – i.e., the number of temporal points
where 〈a, b, c〉 occurs. There are also 2 of them. Hence, i-support of RX is 2. The
confidence of the rule RX (〈a, b〉 → 〈c〉) is the likelihood of 〈c〉 occurring after each
temporal point of 〈a, b〉. Referring to Table 4(b), we see that there is a 〈c〉 occurring
after each temporal point of 〈a, b〉. Hence, the confidence of RX is 1.

Strong rules to be mined must have their [prefix-] sequence-supports greater
than the min s-sup threshold, their instance-supports greater than the min i-sup
threshold, and their confidences greater the min conf threshold.

In mining program properties, the confidence of a rule (or property), which is
a measure of its certainty, matters the most (c.f., [29]). Support values are con-
sidered to differentiate high confidence rules according to the frequency of their
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occurrences in the traces. Rules with confidences <100% are also of interest due to
the imperfect trace collection and the presence of bugs and anomalies [29]. Similar
to the assumption made by work in statistical debugging (e.g., [10]), simply put,
if a program behaves in one way 99% of the time, and the opposite 1% of the time,
the latter is a possible bug. Hence, a high confidence and highly supported rule is
a good candidate for bug detection using program verifiers.

We denote recurrent rules, expressible in LTL template G(pre → post), as
pre → post, where pre and post correspond to an event or a series of events. We
added the notions of [prefix-] sequence-support, instance-support, and confidence
to the rules. The formal notation of recurrent rules is defined below.

Definition 6 (Recurrent Rules). A recurrent rule RX is denoted by pre →
post (s-sup,i-sup,conf). The series of events pre and post represents the rule pre-
and post-condition and are denoted by RX .Pre and RX .Post respectively. The no-
tions s-sup, i-sup and conf represent the sequence-support, instance-support and
confidence of RX respectively. They are denoted by s-sup(RX), i-sup(RX), and
conf (RX) respectively.

Example. Consider DBEX and the rule RX , 〈a, b〉 → 〈c〉 shown in the previous
example. It has s-support value of 2, i-support value of 2 and confidence of 1. It is
denoted by 〈a, b〉 → 〈c〉(2, 2, 1).

4.2 Apriori Properties and Non-redundancy

Apriori properties have been widely used to ensure efficiency of many pattern min-
ing techniques (e.g., [1,2]). Fortunately, recurrent rules obey the following apriori
properties:

Theorem 1 (Apriori Property – S-Support). If a rule evsP → evsC does not
satisfy the min s-sup threshold, neither will all rules evsQ → evsC where evsQ is a
super-sequence of evsP .

Theorem 2 (Apriori Property – Confidence). If a rule evsP → evsC does
not satisfy the min conf threshold, neither will all rules evsP → evsD where evsD

is a super-sequence of evsC .
To reduce the number of rules and improve efficiency, we define a notion of rule
redundancy defined based on super-sequence relationship among rules having the
same support and confidence values. This is similar to the notion of closed patterns
applied to sequential patterns [28,25].

Definition 7 (Rule Redundancy). A rule RX (preX→postX) is redundant if
there is another rule RY (preY →postY ) where:
(1); RX is a sub-sequence of RY (i.e., preX++postX � preY ++postY )
(2); Both rules have the same support and confidence values

Also, in the case that the concatenations are the same (i.e., preX++postX =
preY ++postY ), to break the tie, we call the one with the longer premise as being
redundant (i.e., we wish to retain the rule with a shorter premise and longer conse-
quent).
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A simple approach to reduce the number of rules is to first mine a full set of rules
and then remove redundant ones. However, this “late” removal of redundant rules
is inefficient due to the exponential explosion of the number of intermediary rules
that need to be checked for redundancy. To improve efficiency, it is therefore neces-
sary to identify and prune a search space containing redundant rules “early” dur-
ing the mining process. The following two theorems are used for ‘early’ pruning of
redundant rules. The proofs are available in our technical report [21].

Theorem 3 (Pruning Redundant Pre-Conds). Given two pre-conditions PX

and PY where PX � PY , if SeqDBPX = SeqDBPY then for all sequences of events
post, rules PX → post is rendered redundant by PY → post and can be pruned.

Theorem 4 (Pruning Redundant Post-Conds). Given two rules RX (pre →
PX) and RY (pre → PY ) if PX � PY and (SeqDBall

pre)PX = (SeqDBall
pre)PY then

RX is rendered redundant by RY and can be pruned.

Utilizing Theorems 3 & 4, many redundant rules can be pruned ‘early’. However,
the theorems only provide sufficient conditions for the identification of redundant
rules – there are redundant rules which are not identified by them. To remove re-
maining redundant rules, we perform a post-mining filtering step based on
Definition 7.

Our approach to mining a set of non-redundant rules satisfying the support and
confidence thresholds is as follows:

Step 1. Leveraging Theorems 1 & 3, we generate a pruned set of pre-conditions
satisfying min s-sup.

Step 2. For each pre-condition pre, we create a projected-all database
SeqDBall

pre.
Step 3. Leveraging Theorems 2 & 4, for each SeqDBall

pre, we generate a pruned
set containing such post-condition post, such that the rule pre → post
satisfies min conf.

Step 4. Checking the rules’ instance-supports, we remove rules from step 3 that
do not satisfy min i-sup.

Step 5. Using Definition 7, we filter any remaining redundant rules.
In the next section, we describe our algorithm in detail.

5 Algorithm

In the previous section, the process ofmining non-redundant rules has been divided
into 5 steps. Steps 1 and 3 sketch how a pruned set of pre- and post- conditions are
mined. The following paragraphs will elaborate them in more detail.

Before proceeding, we first describe a set of patterns called projected database
closed (or LS-Set) first mentioned in [28]. A pattern is in the set if there does not
exist any super-sequence pattern having the same projected database. Patterns hav-
ing the same projected database must have the same support, but not vice versa.
Projected database closed patterns is of special interest to us, as explained in the
following paragraphs.
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At step 1, a pruned set of pre-conditions is generated from the input database
SeqDB. From Theorem 3, a pattern is in the pruned pre-condition set if there does
not exist any super-sequence pattern having the same projected database. Compar-
ing with the definition of projected database closed patterns in the previous para-
graph, we note that this pruned set of pre-conditions corresponds to the projected
database closed set (or LS-Set) mined from SeqDB.

At step 3, starting with a projected-all database SeqDBall
pre, we generate a

pruned set of post-conditions. From Theorem 4, a pattern is in the pruned post-
condition set if there does not exist any super-sequence pattern having the same
projected database. Again, this set of pruned post-condition corresponds to the pro-
jected database closed set (or LS-Set) mined from SeqDBall

pre.
Our mining algorithm (NR3-Miner: Non-Redundant Recurrent Rule Miner) is

shown in Figure 2. First, a pruned set of pre-conditions satisfying the minimum
sequence-support threshold (i.e., min s-sup) is mined using an LS-Set miner modi-
fied from BIDE [25], the state-of-the-art closed sequential pattern miner.1Next, for
each pre-condition mined, a database projected-all on it is formed. Consequently,
another LS-Set Generator is run on each projected-all database to mine the set
of post-conditions of the corresponding candidate rules having enough sequence-
support and confidence values. Next, each candidate rule is further checked for the

Procedure Mine Non-Redundant Recurrent Rules
Inputs: SeqDB : Sequence DB; min s-sup : Min. S-Support Thresh.;
min i-sup : Min. I-Support Thresh.; min conf : Min. Conf. Thresh.
Output:
Rules: Non Redundant Set of Recurrent Rules
Method:
1: Let PreCond = Generate an LS-Set from SeqDB with the threshold

set at min s-sup
2: For every pre in PreCond
3: Let SeqDBall

pre = SeqDB projected-all by pattern pre
4: Let bthd = min conf × |SeqDBall

pre|
5: Let PostCond = Generate an LS-Set from SeqDBall

pre with the
threshold set at bthd

6: For every post in PostCond
7: Add (pre → post) to Rules
8: For every rx in Rules
9: If (i-sup(rx) < min i-sup)
10: Remove rx from Rules
11: If (rx is redundant according to Def. 7)
12: Remove rx from Rules
13: Output Rules

Fig. 2. Mining Algorithm – NR3-Miner

1 BIDE, in effect prunes all search sub-spaces containing patterns not in LS-Set. To mine
LS-Set using BIDE, we keep the search space pruning strategy but remove the closure
check. The details are available in our technical report [21].
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satisfaction of the minimum instance-support threshold (i.e.,min i-sup). Provided
that the pattern pre++post is in the pruned set of pre-conditions computed in the
first step of the mining process (i.e., line 1 of the algorithm), the instance-support
of a rule pre → post has been computed during the second step of the mining pro-
cess (i.e., line 3 of the algorithm). Otherwise, an additional database scan need
to be made to compute the rule’s instance-support value. Finally, a filtering step
to remove any remaining redundant rules based on Definition 7 is performed. To
perform the final filtering step scalably, each remaining rule is first hashed based
on its support and confidence values. Only rules falling into the same hash bucket
need to be checked for super-sequence relationship.

The algorithm can be adapted easily to generate a full set of recurrent rules.
This is performed to serve as a point of reference for investigating the benefit of the
early identification and pruning of redundant rules. To generate the full set we can
simply: (1); Generate a full set of pre- and post- conditions of rules satisfying the s-
support and confidence thresholds at lines 1 and 5 of the algorithmrespectively (we
use PrefixSpan [23] for this purpose), and (2); Skip the final redundancy filtering
step (i.e., lines 11-12 of the algorithm in Figure 2).

6 Performance Evaluation

Experiments have been performed on both synthetic and real datasets on low sup-
port thresholds to evaluate the scalability of our mining framework. The lower the
thresholds, the more difficult it is to mine the rules. Our algorithms are the first
algorithms mining recurrent rules, hence we compare and contrast the runtime
required and the number of rules mined when full and non-redundant sets of re-
current rules are mined to evaluate the effectiveness of our pruning strategies.

Datasets. We use 2 datasets in our experiments: one synthetic and another real.
Synthetic data generator provided by IBM was used with modification to ensure
generation of single-event sequences (i.e., all transactions are of size 1). We also
experimented on a click stream dataset (i.e., Gazelle dataset) from KDD Cup 2000
[16]. It contains 23639 sequences with an average length of 3 and a maximum length
of 651.

Environment and Configuration. All experiments were performed on a Pen-
tium M 1.6GHz IBM X41 tablet PC with 1.5GB main memory, running Windows
XP Tablet PC Edition 2005. Algorithms were written using Visual C#.Net.

Experiment Methodology & Presentation. Experiments were performed by
varyingmin s-sup,min i-sup& min conf thresholds. The results are plotted as line
graphs. ‘Full’ and ‘NR’ correspond to the full set and non-redundant set of rules
respectively. The x-axis of the graph corresponds to the thresholds used while the
y-axis represents the runtime required, or the number of mined rules.

For the experiment with the Gazelle dataset, only the results for mining ‘NR’
rules are plotted. The ‘Full’ set is not mine-able even at the highest min s-sup
threshold shown in Figure 5 & 6 – our attempt produced a gigantic 51 GB file
before we had to stop the process.
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Fig. 3. Varying min s-sup (at min conf=50%,min i-sup=1) for D5C20N10S20 dataset
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Fig. 4. Varying min conf (at min s-sup=0.4%,min i-sup=1) for D5C20N10S20 dataset

Synthetic Dataset Result. The experiment results for the synthetic dataset are
shown in Figure 3 & 4. We produce a synthetic dataset by running the IBM syn-
thetic data generatorwith the following parameter setting:D (number of sequences
- in 1000s) = 5, C (average sequence length) = 20, N (number of unique events -
in 1000s) = 10 and S (average number of events in maximal sequences) = 20.

Comparing the results of mining a non-redundant set with that of mining a full
set of rules, we note that for the non-redundant set both the runtime and the num-
ber of mined rules were reduced by a large amount: up to 147 times less for the
runtime, and 8500 times less for the number of mined rules.

Both the runtime and the number of mined rules are significantly increased
when the min s-sup threshold is lowered. When a full set of rules is mined, low-
ering the min conf threshold from 90% to 50% significantly increases the runtime
and the number of mined rules. Reducing the confidence threshold has less effect
when non-redundant rules are mined.

Varying the i-support threshold does not affect the runtime because we do not
have any apriori property involving the instance support of mined rules. Hence,
i-support threshold is not used to prune the search space. However, the i-support
threshold still affects the number of mined rules: the number decreases as the
threshold increases. Due to the space limitation, experimental results on varying
the i-support threshold is moved to the technical report [21].
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Fig. 5. Varying min s-sup (at min conf=50%, min i-sup=1) for Gazelle dataset
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Fig. 6. Varying min conf (at min s-sup=0.041%, min i-sup=1) for Gazelle dataset

Gazelle Dataset Result. The experiment results of mining non-redundant rules
from the Gazelle dataset are shown in Figure 5 & 6. The runtime is significantly
increased when the min s-sup threshold is lowered. Lowering the min conf thresh-
old does not affect the runtime much. However, we note that the number of mined
rules sharply reduces when the min conf threshold is increased from 50% to 90%.
The results also show that we can efficiently mine recurrent rules from real data
set even at a low min s-sup support of 0.034%.

Summary.The experiment results show the effectiveness of our pruning strategies
in reducing both the runtime and the number of mined rules. A non-redundant set
of recurrent rules can be mined efficiently from both real and synthetic datasets
even at low min s-sup and min i-sup thresholds. We did not experiment with low
min conf thresholds as we believe the usefulness of low confidence rules (if any) is
minimal.

7 Case Study

Acase study was performed on the security component of JBoss ApplicationServer
(JBoss AS). JBoss AS is the most widely used J2EE application server. It contains
over 100,000 lines of code and comments. The purpose of this study is to show the
usefulness of the mined rules to describe the behavior of a real software system.
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Premise Consequent 
XLoginConfImpl.getConfEntry() 
AuthenticationInfo.getName() 
 

ClientLoginModule.initialize() 
ClientLoginModule.login() 
ClientLoginModule.commit() 
SecAssocActs.setPrincipalInfo() 
SetPrincipalInfoAction.run() 
SecAssocActs.pushSubjectContext() 
SubjectThreadLocalStack.push() 
SimplePrincipal.toString() 
SecAssoc.getPrincipal() 
SecAssoc.getCredential() 
SecAssoc.getPrincipal() 
SecAssoc.getCredential() 

Fig. 7. A Rule from JBoss-Security

We instrumented the security component of JBoss-AS using JBoss-AOP and
generated traces by running the test suite that comes with the JBoss-AS distri-
bution. In particular, we ran regression tests testing Enterprise Java Bean (EJB)
security implementation of JBoss-AS. Twenty-three traces of a total size of 4115
events, with 60 unique events, were generated. Running the algorithm with the
minimum support and confidence thresholds set at 15 and 90% respectively, ten
non-redundant rules were mined. The algorithm completed within three seconds.

A sample of themined rules (with abbreviated class andmethodnames) is shown
in Figure 7. The rule, read from top to bottom, left to right, describes authentica-
tion using Java Authentication and Authorization Service (JAAS) for EJB within
JBoss-AS. When authentication scenario starts, first configuration information is
checked to determine authentication service availability – this is described by the
premise of the rule. This is followedby: invocations of actual authentication events,
binding of principal information to the subject being authenticated, and utiliza-
tions of subject’s principal and credential information in performing further ac-
tions – these are described by the consequent of the rule.

8 Conclusion and Future Work

In this paper, we proposed a novel framework to mine recurrent rules from a se-
quence database. Recurrent rules have the form “whenever a series of precedent
events occurs, eventually a series of consequent events occurs”. Recurrent rules are
intuitive and characterize behaviors in many domains. Support and confidence val-
ues are attached to recurrent rules to distinguish significant ones.Two apriori prop-
erties pertaining to the sequence-support and confidence values of rules have been
used to prune the search space of possible rules. Also, we have proposed a novel
definition of rule redundancy. Employing “early” pruning of redundant rules has
further improved the efficiency of the mining process and reduced the number of
mined rules. Our performance study shows the effectiveness of our pruning strate-
gies in reducing runtime (up to 147 times less) and in removing redundant rules
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(up to 8500 times less). Non-redundant recurrent rules can be efficiently mined
even at low support thresholds by our proposed mining framework. A case study
on JBossApplication Server shows the applicability of our rules in mining program
properties.

As future work,weplan to apply our technique to analyze other real-life datasets
from various domains not restricted to software data. A comparative study to com-
pare recurrent rules with other forms of software specifications mined from execu-
tion traces [3,19,20] is another future work. Improving scalability of the mining
process further and extending to mining from stream data are other possible fu-
ture work.
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