
Efficient Mining of Iterative Patterns for Software
Specification Discovery

David Lo and Siau-Cheng Khoo
Department of Computer Science
National University of Singapore

{dlo,khoosc}@comp.nus.edu.sg

Chao Liu
Department of Computer Science

University of Illinois-UC

chaoliu@cs.uiuc.edu

ABSTRACT
Studies have shown that program comprehension takes up
to 45% of software development costs. Such high costs are
caused by the lack-of documented specification and further
aggravated by the phenomenon of software evolution. There
is a need for automated tools to extract specifications to aid
program comprehension. In this paper, a novel technique to
efficiently mine common software temporal patterns from
traces is proposed. These patterns shed light on program
behaviors, and are termed iterative patterns. They capture
unique characteristic of software traces, typically not found
in arbitrary sequences. Specifically, due to loops, interesting
iterative patterns can occur multiple times within a trace.
Furthermore, an occurrence of an iterative pattern in a trace
can extend across a sequence of indefinite length.Since a pro-
gram behavior can be manifested in numerous ways, analyz-
ing a single trace will not be sufficient . Iterative pattern
mining extends sequential pattern and episode minings to
discover frequent iterative patterns which occur repetitively
both within a program trace and across multiple traces. In
this paper, we present CLIPER (CLosed Iterative Pattern
minER) to efficiently mine a closed set of iterative patterns.
A performance study on several simulated and real datasets
shows the efficiency of our mining algorithm and effective-
ness of our pruning strategy. Our case study on JBoss Ap-
plication Server confirms the usefulness of mined patterns
in discovering interesting software behavioral specification.

Categories and Subject Descriptors
H.2.8 [Database Management]: Database Applications—
Data Mining ; D.2.1 [Software Engineering]: Require-
ments/Specifications—Tools

General Terms
Algorithms, Performance, Experimentation

Keywords
Closed Iterative Patterns, Software Specification Discovery

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGKDD’07August 12–15, 2007, San Jose, California, USA.
Copyright 2007 ACM 978-1-59593-609-7/07/0008 ...$5.00.

1. MOTIVATION AND BACKGROUND
It’s best if all programs and software projects are de-

veloped with clear, precise and documented specifications.
However, due to hard deadlines and ‘short-time-to-market’
requirement [6], software products often come with poor, in-
complete and even without any documented specifications.
This situation is further aggravated by a phenomenon termed
as software evolution [4, 21]. As software evolves the docu-
mented specification is often not updated. This might ren-
der the original documented specification of little use after
several cycles of program evolution [10].

The above factors has contributed to high software main-
tenance costs. It has been investigated that up to 90% of
software cost is due to maintenance [12] and 50% of the
maintenance cost is due to comprehending or understand-
ing the code base [27] (see also [5]). Hence, approximately
45% of software cost is due to difficulty in comprehending
an existing code base. This is especially true for software
developed by many developers over a long period of time.

The above needs motivate work on building automated
tools to extract or mine specifications from programs. An
interesting form of specifications to be mined is patterns of
software temporal behaviors.

Our motivating application is in the emerging area of dy-
namic analysis where program traces (each being a series
of method invocations) are analyzed in order to infer or
mine temporal program properties or patterns of behavior.
Some existing work in this domain includes: [2, 22], which
mine temporal program behavioral model expressed as an
automata. In this paper, we propose mining interesting pro-
gram temporal properties expressed as patterns rather than
an automata. These patterns are intuitive and commonly
found in software documentations, such as:

1. Resource Locking Protocol : 〈lock, unlock〉
2. Telecommunication Protocol (c.f., [16]): 〈off hook,

dial tone on, dial tone off, seizure int, ring tone, an-
swer, connection on〉

3. Java Authentication and Authorization Service (JAAS)
Authorization Enforcer Strategy Pattern (c.f., [28]):
〈Subject.getPrincipal, PrivilegedAction.create, Sub-
ject.doAsPrivileged, JAAS Module.invoke, Policy.-
getPermission, Subject.getPublicCredential, Privile-
gedAction.run〉

4. Java Transaction Architecture (JTA) Protocol
(c.f., [26]): 〈TxManager.begin, TxManager.commit〉,
〈TxManager.begin, TxManager.rollback〉, etc.



Each of these patterns reflecting interesting program be-
havior can be mined by analyzing a set of program traces
– each being a series of method invocations. These traces
can in turn be generated through running a test suite. From
data mining viewpoint, each trace can be considered a se-
quence. A pattern (e.g., lock-unlock) can appear a repeated
number of times within a sequence. Each event can be sep-
arated by an arbitrary number of unrelated events (e.g., lock
→ resource use → . . . → unlock). Since a program behav-
ior can be manifested in numerous ways, analyzing a sin-
gle trace will not be sufficient. Usually, a set of test cases
satisfying certain code coverage (i.e., every statements are
executed) or branch coverage (i.e., every branch decision is
taken) criterion (c.f., [3]) is required to test the correct-
ness of a software system. Running this test suite over an
instrumented software will generate the desired traces.

To mine software temporal patterns having the above char-
acteristics from traces, iterative pattern mining is proposed.
It leverages the techniques found in sequential pattern min-
ing and episode mining to handle software specification min-
ing.

Sequential pattern mining first addressed by Agrawal and
Srikant in [1] discovers temporal patterns that are supported
by a significant number of sequences. A pattern is supported
by a sequence if it is a sub-sequence of it. It has applica-
tion in many areas, from analysis of market data to gene se-
quences. On the other hand, Mannila et al. perform episode
mining to discover frequent episodes within a sequence of
events [23]. An episode is defined as a series of events oc-
curring relatively close to one another (i.e. they occur at
the same window). An episode is supported by a window if
it is a sub-sequence of the series of events appearing in the
window. Episode mining focuses on mining from a single se-
quence of events, and has its application in analyzing events
from telecommunication alarm management system.

Iterative pattern is a series of events supported by a sig-
nificant number of instances repeated within and across se-
quences. Similar to sequential pattern mining, we consider
a database of sequences rather than a single sequence. How-
ever, we also mine patterns occurring repeatedly within a
sequence. This is similar in spirit to episode mining, but we
remove the restriction that related events must happen in
the same window.

Due to looping, a trace can contain repeated occurrences
of interesting patterns. In fact, a series of events in an alarm
management system used by Manilla et al. is similar to a
series of system calls in a software system. However, there
are 2 notable differences.

First, program properties are often inferred from a set of
traces instead of a single trace. These are either produced
by executing a test suite [32] or generated statically from
the source code [30]. Secondly, important patterns for ver-
ification, such as, lock acquire and release or stream open
and close (c.f [32, 7]) often have their events occur at some
arbitrary distance away from each other in a program trace.
Hence, there is a need to ‘break’ the ‘window barrier’ in or-
der to capture these patterns of interest. Interestingly, these
two notable differences between analysis of events from an
alarm management system and program traces are observed
by sequential pattern miner first introduced in [1].

To support iterative pattern mining, we need a clear defi-
nition and semantics of iterative pattern different from episo–
des and sequential patterns. Our definition of iterative pat-

tern is inspired by the common languages for specifying
software behavioral requirements, namely Message Sequence
Chart (MSC) [16] and Live Sequence Chart (LSC) [9].

MSC and LSC are variants of sequence diagram speci-
fying how a system should behave. An example of such
chart is a simplified telephone switching protocol (c.f., [16]).
Abstracting caller and callee information, it can be repre-
sented as a pattern: 〈off hook, dial tone on, dial tone off,
seizure int, ring tone, answer, connection on〉. Such proto-
col must possess a total-ordering property and satisfy one-
to-one correspondence requirements between events in the
chart and events in a trace segment satisfying the chart.
(Please refer to Section 3.2 for detail.)

The full language of MSC/LSC is complicated and it is
not our intention to mine MSC/LSC. In this paper, itera-
tive pattern mined abstracts away the caller and callee infor-
mation but ensures total-ordering property and one-to-one
correspondence between a pattern and its instance (i.e., a
segment of a trace).

Pattern mining in general is an NP-hard problem. For
it to be practical, efficient search space pruning strategies
need to be employed. One of the most important property
to help in ensuring scalability is the apriori property. There
are several variants of it. Iterative pattern obeys the follow-
ing apriori property utilized by depth-first search sequen-
tial pattern miners (e.g., FreeSpan [14] and PrefixSpan [25])
which states:

If P is not frequent then P++evs (where evs is a series of
events) is also not frequent.

Apriori property holds for both sequential patterns and
episodes. To ensure efficiency, it is desirable to maintain this
property for iterative patterns. Fortunately, the formulation
of iterative pattern guarantees this property as described in
Section 3.

Due to possibly combinatorial number of frequent subse-
quences of a long pattern, it’s best to mine a closed set of
patterns (c.f., [31] & [29]). Closed pattern mining discovers
patterns without any super-sequence having corresponding
set of instances. Resultant pattern set is likely to be more
compact and yet still complete (i.e. every frequent pattern
is represented by a closed pattern). Closed pattern min-
ing can also lead to more efficient pattern mining strategy.
Early identification and pruning of non-closed patterns can
reduce the runtime significantly.

In this paper, we mine a closed set of iterative patterns.
A search space pruning strategy employed by early identifi-
cation and pruning of non-closed patterns is used to mine a
closed set of iterative patterns efficiently. Our performance
study on synthetic and real-world datasets shows the major
success of our pruning strategy: it runs with over an order
of magnitude speedup especially on low support thresholds
or when the frequent patterns are long.

As a case study we experimented with traces collected
from transaction sub-component of JBoss Application Server.
Our mined patterns highlight important design patterns shed-
ding light on program behavior.

The contributions of this work are as follows:

1. We propose an efficient algorithm to mine a closed set
of software iterative patterns from program execution
traces.

2. We present a novel formulation of iterative pattern in-
spired by standards adopted for specifying software be-
havioral requirements (i.e., MSC and LSC).



3. We extend episode mining by: (1) analyzing multiple
sequences, (2) removing the ‘window’ barrier and (3)
extracting a closed set of patterns for software speci-
fication mining purpose.

4. We extend closed pattern mining by considering re-
peated pattern occurrences within a sequence and
across multiple sequences for software specification
mining purpose.

The outline of the paper is as follows: We present related
work in Section 2. Section 3 provides an in-depth discussion
on semantics of iterative pattern. Section 4 presents the
principles behind the generation of closed iterative patterns
and its associated pruning strategy. Section 5 describes our
closed pattern mining algorithm. Section 6 presents the re-
sults of our performance study. Section 7 discusses a case
study on mining program behavioral design from traces of
JBoss Application Server. We conclude in Section 8.

2. RELATED WORK
Our work is a variant of sequential pattern mining, which

was originated by Agrawal and Srikant [1]. To remove re-
dundant patterns, closed sequential pattern mining was pro-
posed by Yan et al. [31] and later improved by Wang and
Han [29]. Different from sequential pattern, our pattern cap-
ture multiple occurrences of pattern not only across multiple
sequences but also those repeated within each sequence. In
this aspect, iterative pattern mining resembles episode min-
ing initiated by Mannila et al. [23] which was later extended
by Casas-Garriga to replace a fixed-window size with a gap
constraint between one event to the next in an episode [13].
Both versions of episode mining mine events occurring close
to one another, expressed by “window size” and gap con-
straint respectively. This is different with iterative pattern
mining, which does not have the notion of “episode”. This
deviation is significant, since important program behavioral
patterns, for example: lock acquire and release or file open
and close (c.f [32, 7]), often have their events occur at some
arbitrary distance away from one another in a trace. In
addition, both versions of episode mining handle only one
single sequence, whereas iterative pattern mining operates
over a set of sequences.

In mining DNA sequences, Zhang et al. introduced the
idea of “gap requirement” in mining periodic patterns from
sequences [33]. Similar to ours, they detect repeated oc-
currences of patterns within a sequence and across multiple
sequences. However, the gap requirement used there does
not always hold for other purposes. Consider analyzing soft-
ware traces, the useful patterns of lock acquire followed-by
lock release can be separated by any number of events, and
will violate the gap requirement. In addition, the pattern
definition proposed in [33] does not follow apriori property
and hence potentially reduces the efficiency of the mining
process. Lastly, the method only guarantees the mining of a
complete set of patterns, all with length less than n, where
n is a user defined parameter. The appropriate value of this
parameter n might not be obvious to the user.

In the software engineering domain, Yang et al. mined a
restricted form of two-event temporal rules, instead of pat-
terns, from program traces [32]. To handle more than two
events, they proposed concatenation of 2-event rules to form
longer ones. Unfortunately, this method is not sound as only
an approximation to significance values of reported rules is
made. It is also not complete since potentially many of the

more-than-two-event rules cannot be generated by simple
concatenation of 2-event rules.

In a similar domain, El-Ramly et al. mined user-usage sce-
narios of GUI based program composed of screens – these
scenarios are termed as interaction patterns [11]. Given a
set of series of screen ids, frequent patterns of user inter-
actions are obtained. Similar to ours, interaction pattern
mining takes as an input a set of sequences and discover
patterns occurring repeatedly within sequences.

However, due to differences in the nature of data mined,
there are significant differences between interaction and it-
erative pattern mining.

Firstly, the semantics of the patterns mined are differ-
ent. Iterative pattern adheres to the semantics of MSC/LSC
specification language in describing software behavioral re-
quirements, whereas interaction pattern does not. Conse-
quently, the apriori property is not observed by interaction
patterns – a pattern can have a larger support than its sub-
sequences. In contrast, iterative patterns observe the apriori
property.

Secondly, for each pattern instance, interaction pattern
imposes a limit on the number of ‘insertions’ between one
event to the next by a fixed constant. For many useful
software temporal patterns (e.g. 〈lock, unlock〉) the number
of ‘insertions’ is irrelevant – events can be separated by an
arbitrary number of events; iterative patterns capture such
“behavior” well.

3. ITERATIVE PATTERNS
In this section, we define formally iterative pattern, and

provide the reasoning behind its semantics.

3.1 Basic Definitions
Let I be a set of distinct events. Let a sequence S be

an ordered list of events. We denote S as 〈e1, e2, . . . , eend〉
where each ei is an event from I. We refer to the ith event
in the sequence S as S[i]. The sequence database under
consideration is denoted by SeqDB.

A pattern P1 (〈e1, e2, . . . , en〉) is considered a subsequence
of another pattern P2 (〈f1, f2, . . . , fm〉) if there exist integers
1 ≤ i1 < i2 < i3 < i4 . . . < in ≤ m where e1 = fi1 ,
e2 = fi2 , · · · , en = fin . Notation-wise, we write this relation
as P1 v P2. We also say that P2 is a super-sequence of P1.
We use the notations first(P ) and last(P ) to denote the
first event and the last event of P respectively. Reference
to the database is omitted if it refers to the input sequence
database SeqDB.

Definition 3.1 (Concatenation and Truncation).
Concatenation of two patterns P1 (〈 a1, . . ., an〉) and P2

(〈b1, . . ., bm〉) will result in a longer pattern P3 (〈a1, . . . ,
an, b1, . . . , bm〉). Truncation operation is only applicable
between a pattern and its suffix. Truncation of a pattern
P3 (〈 a1, . . . , an, b1, . . . , bm〉) and a suffix P2 (〈 b1, . . . ,
bm〉) will result in the pattern P1 (〈a1, . . . , an〉). Patterns
concatenation is denoted by ++, while pattern truncation is
denoted by −−.

Another important operation used in this work is the era-
sure operation, as defined below.

Definition 3.2 (Erasure Operator).Given a pattern
P (〈p1, p2, . . . , pn〉) and a string S (〈s1, s2, . . . , sm〉), the era-
sure of S wrt. P , denoted by erasure(S, P ), is defined as a



new string Serased formed from S where all events occurring
in P are removed from S. Formally, Serased is defined as
(〈se1, se2, . . . , sek〉) such that (1) ∀i.sei 6∈ P and (2) there
exists a set of integers {i1 . . . ik} with 1 ≤ i1 < i2 < i3 <
i4 . . . < ik ≤ m and se1 = si1 , se2 = si2 , · · · , sek = sik and
∀j 6∈ {i1 . . . ik}, sj ∈ P .

3.2 Semantics of Iterative Patterns
Our definition of iterative pattern is inspired by the com-

mon languages for specifying software behavioral require-
ment: Message Sequence Chart (MSC) (a standard of In-
ternational Telecommunication Union (ITU) [16]) and its
extension, Live Sequence Chart (LSC) [9].

MSC and LSC is a variant of the well known UML se-
quence diagram describing behavioral requirement of soft-
ware. Not only does they specify system interaction through
ordering of method invocation, but they also specifies caller
and callee information. An example of such charts is a sim-
plified telephone switching protocol (c.f., [16]): abstract-
ing caller and callee information, the protocol can be rep-
resented as a pattern: 〈off hook, dial tone on, dial tone off,
seizure int, ring tone, answer, connection on〉.

In verifying traces for conformance to an event sequence
specified in MSC/LSC, the sub-trace manifesting the event
sequence must satify the total-ordering property: Given an
event evi in an MSC/LSC, the occurrence of evi in the sub-
trace occurs before the occurrence of every evj where j > i
and after evk where k < i [16]. Kugler et al. strengthened
the above requirement to include a one-to-one correspon-
dence between events in a pattern and events in any sub-
trace satisfying it [20]. Basically, this requirement ensures
that, if an event appears in the pattern, then it appears as
many times in the pattern as it appears in the sub-trace.

For the telephone switching example, the following traces
are not in conformance to the protocol:

off hook, seizure int, ring tone,
answer,ring tone, connection on
off hook, seizure int, ring tone,
answer, answer, answer, connection on

The first trace above doesn’t satisfy the total-ordering
requirement due to the out-of-order second occurrence of
ring-tone event. The second doesn’t satisfy the one-to-one
correspondence requirement due to multiple occurrences of
answer event.

The full language of MSC/LSC is complicated and it is
not our intention to mine MSC/LSC. Iterative pattern ab-
stracts away the caller and callee information but retains
the uniqueness and total ordering requirements.

The pattern instance definition capturing the total-order–
ing and one-to-one correspondence between events in the
pattern and its instance can be expressed unambiguously
in the form of Quantified Regular Expression (QRE) [24].
Quantified regular expression is very similar to standard
regular expression with ‘;’ as concatenation operator, ‘[-]’
as exclusion operator (i.e. [-P,S] means any event except P
and S) and * as the standard kleene-star.

Definition 3.3 (Pattern Instance - QRE).Given a
pattern P (p1p2 . . . pn), a substring SB (sb1sb2 . . . sbm) of a
sequence S in SeqDB is an instance of P iff it is of the
following QRE expression

p1; [−p1, . . . , pn]∗; p2; . . . ; [−p1, . . . , pn]∗; pn.

Operationally we use an equivalent definition of pattern
instance described using the erasure operation:

Definition 3.4 (Iterative Pattern Instance).Given
a pattern P (p1p2 . . . pn), a substring SB (sb1sb2 . . . sbm) of
a sequence S in SeqDB is an iterative pattern instance of P
iff (1) first(P ) = first(SB), (2) last(P ) = last(SB) and
(3) the following erasure constraint holds:

erasure(SB, erasure(SB, P )) = P.

We use the term “pattern instance” and “iterative pat-
tern instance” interchangeably in this paper. The operation
erasure(SB, erasure(SB, P )) basically removes all events
that occur in SB but not in P . An iterative pattern is thus
identified by a set of iterative pattern instances, which can
occur repeatedly in a sequence as well as across sequences.
We also use the term “pattern” and “iterative pattern” in-
terchangeably.

An instance is denoted compactly by a triple (sidx, istart,
iend) where sidx refers to the sequence index of a sequence
S in the database while istart and iend refer to the starting
point and ending point of a substring in S. By default, all
indices start from 1. With the compact notation, an instance
is both a string and a triple – the representations are used
interchangeably. The set of all instances of a pattern P in
a database DB is denoted as Inst(P, DB). Reference to
the database is omitted if it refers to the input sequence
database.

As an example, consider a pattern P (〈A, B〉) and a data–
base consisting of two sequences:

Identifier Sequence
S1 〈D, B, A, B, A, B, C, E〉
S2 〈D, B, A, B, B, B, A, B〉

The set Inst(P ) is the set of triples {(1,3,4),(1,5,6),(2,3,4),
(2,7,8)}.

There is a one-to-one ordered correspondence between
events in the pattern and events in its instance. This one-
to-one correspondence can be captured by the concept of
pattern instance landmarks defined below.

Definition 3.5 ( Pattern Instance Landmarks ).
Given a pattern P (p1p2 . . . pn), an instance I (s1s2 . . . sm)
of pattern P has the following landmarks: l1, l2, . . . ln where
1 ≤ l1 < l2 < . . . < ln ≤ m and sl1 = p1, sl2 = p2, . . . , sln =
pn. Due to erasure constraint, for each instance there is only
one such set of landmarks. The landmarks of an instance I
is denoted as Lnd(I). The ith member of the set Lnd(I) is
called the ith landmark.

The support of a pattern wrt. to a sequence database
SeqDB is the number of its instances in SeqDB. A pattern
P is considered frequent when its support, sup(P ), exceeds
a certain threshold (min s-sup).

3.3 Apriori Property and Closed Pattern
Iterative patterns possess the following ‘apriori’ property

used in PrefixSpan [25]:

Theorem 1 (Apriori Property - PrefixSpan). If P
is not frequent then its extensions (P++evs or evs++P )
(where evs is a series of events) are also not frequent.

In general, iterative pattern does not possess the apriori
property used in GSP [1]: if a pattern is frequent so does its



sub-sequences. However, considering patterns having corre-
sponding instances as described in Definition 3.6 below, the
GSP apriori property holds. It is restated in Theorem 2.

Definition 3.6 ( Corresponding Pattern Insts ).
Consider a pattern P and its super-sequence Q. Instance IP

(seqP , startP , endP ) of P corresponds to an instance IQ

(seqQ, startQ, endQ) of Q iff seqP = seqQ and startP ≥
startQ and endP ≤ endQ.

Theorem 2 (Apriori Property - GSP-Like). If a
pattern Q is frequent and P is a sub-sequence of Q, then ei-
ther P is frequent or every instance of Q do not correspond
to any instance of P (and vice versa).

Definition 3.7 (Closed Pattern). A frequent pattern
P is closed if there exists no super-sequence Q s.t.:
1. P and Q has the same support
2. Every instance of P corresponds to a unique instance

of Q.
An instance of P (seqP , startP , endP ) corresponds to an

instance of Q(seqQ, startQ, endQ) iff seqP = seqQ and startP

≥ startQ and endP ≤ endQ.

The second condition of the above definition is to prevent
the following case from happening.

Identifier Sequence
S1 〈A, B, B, A〉
S2 〈A, B, A〉

Consider the above sequence database. The only instance
of the pattern 〈A, B, A〉 is (2,1,3), while the only instance of
pattern 〈A, B, B, A〉 is (1,1,4). Both have the same support.
However, since their instances match different segments of
the sequences they should be reported separately. 〈A, B, A〉
is not “absorbed” by 〈A, B, B, A〉 and is thus closed.

Notation-wise, we denote the full set of closed iterative
patterns mined from SeqDB by Closed . We consider the
following problem: Given a sequence database, find a closed
set of iterative patterns.

4.GENERATION OF ITERATIVE PATTERNS
Iterative pattern instances can be mined using depth first

pattern growth and prune strategy (c.f., FreeSpan [14] and
PrefixSpan [25]). However, rather than using the usual pro-
jection that extracts sequential patterns, we perform a dif-
ferent type of projection outlined below.

Definition 4.1 (Projected-all). A database SeqDB
projected-all on a pattern P results in a set of pairings and
is denoted as SeqDBall

P . It is defined recursively as follows.

Base Case: if P is a single event ev
{(ev, sx) | ∃s ∈ SeqDB , ev++sx is a suffix of s}
Inductive Case: if P is multi-events
{(ox++px++last(P ), sx) |
∃(ox, (px++last(P )++sx)) ∈ SeqDBall

P−−last(P ).
((last(P ) 6∈ erasure(ox, P−−last(P ))) ∧

(∀ev ∈ P, ev 6∈ px))}

The definition of projected-all database captures pattern
instances that possibly occur repeatedly within a sequence
and across multiple sequences. The first element of the
pairings corresponds to pattern instances in string format.
The second element corresponds to the remaining part of

the sequence providing the context from which the pattern
can still be extended. Support of a pattern P is equal to
the number of instances supporting P , denoted as |Inst(P,
SeqDB)|. In turn, |Inst(P, SeqDB)| is equal to the size of
the projected database |SeqDBall

P |.
The instances of a length-1 pattern 〈e1〉 is simply the oc-

currences of event e1 throughout the sequences in SeqDB.
The instances of a length-k 〈e1, . . . , ek〉 pattern can be found
from instances of length-(k-1) 〈e1, . . . , ek−1〉 pattern.

Instances of a length-2 pattern 〈e1, e2〉 can be formed by
extending instance pairings of 〈e1〉, (ox, ss) in SeqDBall

〈e1〉,
on the condition: ∃i.ss[i] = e2 ∧ ∀j < i, ss[j] 6∈ {p1, p2}.
This condition corresponds to the second conjunctive clause
of the inductive case of Definition 4.1. The first conjunctive
clause in the definition is trivially satisfied since the erasure
of a length-1 pattern instance is an empty string.

Similarly, instances of a length-3 pattern 〈e1, e2, e3〉 can be
formed by extending instance pairings of 〈e1, e2〉, (ox, ss) in
SeqDBall

〈e1,e2〉, on the conditions:(1) e3 6∈ erasure(ox,〈e1, e2〉)
and (2) ∃i.ss[i] = e3 ∧ ∀j < i, ss[j] 6∈ {e1, e2}. The first and
second conditions correspond respectively to the two con-
junctive clauses of the inductive case. The first condition is
necessary since a substring instance ox of a length-2 pattern
〈e1, e2〉 only obeys the erasure constraint for the original
pattern – ox might contain e3.

Generalizing the above, instances of a length-k pattern
can be formed from instances of a length-(k-1) pattern, by
following the inductive case of Definition 4.1.

A simple depth-first algorithm to generate a full-set of it-
erative patterns is as follows. First, generate a set of length-
1 patterns where the support of each is greater than the
min sup threshold. A projected-all database can then be
created from the set of frequent length-1 patterns according
to the base case of Definition 4.1. Instances of a length-2
pattern can then be obtained by performing the inductive
step of Definition 4.1 to the corresponding length-1 pattern
projected database. Pattern not satisfying min sup will be
pruned. Since patterns obey apriori property, we can stop
extending pruned patterns. Length-(i+1) patterns can be
obtained from length-(i) patterns accordingly.

For ease of explanation, let’s represent the inductive step
of Definition 4.1 with the following Projected-first projection
and the related Seq operator.

Definition 4.2 (Projected-first & Seq). A project–
ed database SeqDBall

P can be projected-first on an event e
resulting in a set of pairings and denoted as (SeqDBall

P )fst
e .

It is defined as the following set.
{(ox++px++e, sx) | ∃(ox, (px++e++sx)) ∈ SeqDBall

P .
(e 6∈ erasure(ox, P )) ∧ (∀ev ∈ (P++e), ev 6∈ px))}

We denote the size of (SeqDBall
P )fst

e as Seq(e, SeqDBall
P ).

The above operation locates the first instance of an event
e in the projected database – hence the name projected-first.
It computes the sequences in projected database supporting
event e – hence the name Seq operator. However, constraints
corresponding to the inductive step of Definition 4.1 is also
added to ensure (SeqDBall

P )fst
e = SeqDBall

P++e.
We also define the following two operations of equivalence

of projected databases and inclusion of an event in a pro-
jected database.

Definition 4.3 (Operations on Projected DB).
Projected databases DB1 and DB2 are equivalent (denoted



as DB1 = DB2) iff |DB1| = |DB2| and ∀ (p1, s1)∈ DB1. ∃
(p2, s2) ∈ DB2. s1 = s2. Also, an event e is in a projected
database DB (denoted as e ∈ DB) iff ∃(p, s) ∈ DB. e is an
event in s.

Consider the following running example. Let us have the
following sequence database SeqDB shown in Table 1.

Identifier Sequence
S1 〈A, B, A, B, A, B, C, D, E〉
S2 〈A, B, B, B, B〉
S3 〈A, B, C, A, D, E, B, C〉
S4 〈A, B, C, C, A, B〉

Table 1: Sample SeqDB

Support of pattern 〈A, B, C〉 can be found by first con-
structing the projected database of 〈A〉. This is shown below
in Table 2

Instance Remainder of Sequence
(1, 1, 1) 〈B, A, B, A, B, C, D, E〉
(1, 3, 3) 〈B, A, B, C, D, E〉
(1, 5, 5) 〈B, C, D, E〉
(2, 1, 1) 〈B, B, B, B〉
(3, 1, 1) 〈B, C, A, D, E, B, C〉
(3, 4, 4) 〈D, E, B, C〉
(4, 1, 1) 〈B, C, C, A, B〉
(4, 5, 5) 〈B〉
Table 2: Sample SeqDBall

〈A〉

The projected database SeqDBall
〈A,B〉 can then be con-

structed from SeqDBall
〈A〉 using the inductive step of Defi-

nition 4.1. Equivalently, we are applying the projected-first
operation to the SeqDBall

〈A〉 with respect to event B. The
result is shown below in Table 3.

Instance Remainder of Sequence
(1, 1, 2) 〈A, B, A, B, C, D, E〉
(1, 3, 4) 〈A, B, C, D, E〉
(1, 5, 6) 〈C, D, E〉
(2, 1, 2) 〈B, B, B〉
(3, 1, 2) 〈C, A, D, E, B, C〉
(3, 4, 7) 〈C〉
(4, 1, 2) 〈C, C, A, B〉
(4, 5, 6) 〈〉
Table 3: Sample SeqDBall

〈A,B〉

Finally, performing the inductive step of Definition 4.1 to
SeqDBall

〈A,B〉 will result in SeqDBall
〈A,B,C〉 from which sup-

port of 〈A, B, C〉 can be found. Equivalently, we apply
the projected-first projection to SeqDBall

〈A,B〉 with respect
to event C. The projected database is as shown below in
Table 4.

Instance Remainder of Sequence
(1, 5, 7) 〈D, E〉
(3, 1, 3) 〈A, D, E, B, C〉
(3, 4, 8) 〈〉
(4, 1, 3) 〈C, A, B〉

Table 4: Sample SeqDBall
〈A,B,C〉

The support of 〈A, B, C〉 is then given by the size of
SeqDBall

〈A,B,C〉 which is 4: one from S1, two from S3 and
another one from S4 in SeqDB.

Generating a full-set of iterative patterns results in many
“redundancies”. As all subsequences of a frequent iterative
pattern P having corresponding instances are frequent, the
number of frequent patterns is potentially exponential to
the maximum length of the iterative patterns. Mining for
closed patterns is an effective solution. Besides reducing the
final number of patterns, closed pattern mining can usually
reduce run-time by pruning the search space.

Definition 4.4 (Prefix Extension Events). For a
pattern P , its set of prefix extension events is defined as the
set of length-1 items e where sup(e++P ) = sup(P ).

Definition 4.5 (Infix Extension Events). An event
e is an infix extension of a pattern P iff ∃ a super-sequence Q
where: (1) SeqDBall

P = SeqDBall
Q , (2) first(P) = first(Q),

(3) ∀ event ev1 ∈ erasure(Q, P ). ev1 = e, (4) sup(P ) =
sup(Q), and (5) Every instance of P corresponds to a unique
instance of Q.

Definition 4.6 (Suffix Extension Events). For a
pattern P , its set of suffix extension events is defined as the
set of length-1 items e where sup(P++e) = sup(P ).

Prefix/ suffix extension events define events that can be
added as prefix/ suffix (of length 1) to a pattern and re-
sults in another pattern having the same support1. Infix
extension events define events that can be added as infix to
a pattern and results in another pattern having the same
support and corresponding instances.

As an example, consider the sample database in Table 1.
For pattern 〈D〉, its set of prefix extension events is {〈A, B,
C〉}. For pattern 〈A, C〉, its set of infix extension events is
{〈B〉}. For pattern 〈A〉, its set of suffix extension events is
{〈B〉}.

The above definitions are used in the next two theorems,
which are then used for incremental and early detection of
closed patterns and early pruning of search space.

Theorem 3 (Extension Closure Checks). If there
exists no prefix, infix and suffix extension event w.r.t. a pat-
tern P , P must be a closed pattern; otherwise P must be
non-closed.

Proof. Part 1: If there exists a prefix, infix or suffix
extension event, then P must be non-closed.

Consider a pattern P (where |P | = n). If there exists
a suffix extension event e, there exists another pattern Q
(P++e) having the same support and a corresponding set of
instances as P .

Patterns P and Q have corresponding set of instances due
to the following. The region from the 1st to the nth land-
mark of an instance of Q is an instance of P . Hence, every
instance of Q matches an instance of P . Also, if sup(P ) =
sup(P++e), we have every instance of P matches an instance
of Q as well. They have corresponding instances.

Similarly, if there exists a prefix extension event e, there
exists another pattern Q (e++P ) having the same support
and a corresponding set of instances as P . Hence, if there
exists a prefix or suffix extension event for P , we can cre-
ate a super-sequence of P having the same support and a
corresponding set of instances (i.e. P is not closed).

1Patterns e++P and P++e will have corresponding instances
as P iff sup(e++P ) = sup(P ) and sup(P++e) = sup(P )
respectively – see proof of Theorem 3



Consider a pattern P . If there exists an infix extension
event e, we can create another pattern Q super-sequence
of P having the same support and corresponding instances.
Hence, P is not closed.
Part 2: If there exists no prefix, suffix and infix extension
event P must be closed.

We can only grow a pattern by adding prefix, infix and
suffix to it. Hence, if we cannot find a prefix, infix and suffix
extension event of a pattern P resulting in its super-sequence
having the same support, P must be closed.

It is enough to consider a single event extension since
apriori property holds for patterns having corresponding in-
stances.

As an example, consider the sample database in Table 1.
For pattern 〈A, B, C〉, its sets of prefix, suffix and infix ex-
tension events are empty. We can conclude that the pattern
〈A, B, C〉 is closed. On the other hand, for pattern 〈A〉, its
set of suffix extension events is not empty. Hence it is not
closed since there exists a pattern 〈A, B〉 which is a super-
sequence of 〈A〉 with the same support.

Theorem 4 (InfixScan Search Space Pruning).
Given a pattern P , if there exists an infix extension event
e w.r.t. a pattern P and e 6∈ SeqDBall

P , we can safely stop
growing pattern P .

Proof. From Definition 4.5, if a pattern P has an in-
fix extension event e, there exists a super-sequence pattern
Q where: (1) SeqDBall

P = SeqDBall
Q , (2) ∀ event ev1 ∈

erasure(Q, P ). ev1 = e, (3) sup(P ) = sup(Q), and (4) Ev-
ery instance of P corresponds to a unique instance of Q.

Since SeqDBall
P = SeqDBall

Q , if we can extend an in-
stance sx in Inst(P ) (and also in Inst(Q)) with a substring
sext where erasure(sx++sext, erasure(sx++sext, P++sext))
= P++sext, erasure(sx++sext,erasure(sx++sext, Q++sext))
will also be equal to Q++sext.

Since e is not in SeqDBall
P , whenever P++sext violate era-

sure constraint so does Q++sext.
Thus, given an arbitrary series of events sext, if P++sext

is frequent, there exists another pattern Q++sext having the
same support and corresponding instances. Hence, any pat-
tern having P as prefix will not be closed. We can stop
growing pattern P .

As an example, consider the sample database in Table 1.
For pattern 〈A, C〉, its set of infix extension events is {B}.
There is no point extending pattern 〈A, C〉 further. Take
for example pattern 〈A, C, D〉 of support 1. It is not closed
since, there exists pattern 〈A, B, C, D〉 which is a super-
sequence and has the same support and corresponding in-
stances as the pattern 〈A, C, D〉.

The next section outlines our algorithm utilizing the above
closure checks and InfixScan search space pruning for effi-
cient memory and time utilization and for pruning of redun-
dant search space.

5. ALGORITHM
Our CLIPER (CLosed Iterative Pattern minER) algo-

rithm is shown in Figure 1. The main procedure to com-
pute the closed set of iterative patterns: MinePatterns, is
shown at the top of the figure. It will call a recursive pro-
cedure MineRecurse shown at the bottom of the figure.

Procedure MinePatterns will first find patterns of length
one whose instances are more than or equal to min sup

Procedure MinePatterns
Inputs:
SeqDB : Sequence Database
min sup: Minimum Support Threshold
Outputs:
Closed: Closed Iterative Patterns
Methods:
1: Let Freq = {p|(|p|=1) ∧ (|Inst(p, ProjDB)| ≥ min sup)}
2: Let Closed = {}
3: For every f ev in Freq
4: Call MineRecurse (f ev,SeqDBall

f ev , min sup,

Closed, Freq)
5: End For
Output Closed

Procedure MineRecurse
Inputs:
Pat : Pattern so far
SeqDBall

Pat : Sequence Database
min sup: Minimum Support Threshold
Closed: Current Set of Closed Iterative Patternss
EV : Set of Frequent Events
Methods:
6: Let Freq = {e|e ∈ EV ∧ (Seq(e, SeqDBall

Pat) ≥ min sup)}
7: If (PreExt(Pat) = {} ∧ SufExt(Pat) = {})
8: Add Pat to Closed
9: End If
10: For every f ev in Freq
11: Let NxtPat = Pat++f ev

12: Let ProjDB = (SeqDBall
Pat)

fst
f ev

13: If (6 ∃ e. (e ∈ InfixExt(NxtPat) ∧ e 6∈ ProjDB))
14: Call MineRecurse (NxtPat,ProjDB,

min sup,Closed, EV )
15: End If
16:End For

Figure 1: CLIPER Algorithm

threshold. For all frequent length-1 patterns, it will then
call the procedure MineRecurse to recursively grow each
patterns.

The recursive algorithm MineRecurse, shown at the bot-
tom of Figure 1, will have as inputs the pattern prefix com-
puted so far (Pat), the projected-all sequence database
(SeqDBall

Pat), the support threshold, the data structure con-
taining current set of closed patterns (Closed) and the set
of frequent events.

The algorithm will first find length-1 event e where Pat++e
is frequent. Given the input pattern Pat and an event e, the
number of instances of Pat++e is equivalent to the num-
ber of pairings (px, sx) in SeqDBall

Pat where we can extend
px to an instance of Pat++e. The above is equivalent to
Seq(e, SeqDBall

Pat).
A set of prefix extension events of Pat is the set of such

event e where sup(e++Pat) = sup(Pat). A set of suffix
extension events of Pat is the set of such event e where
sup(Pat++e) = sup(Pat).

Only such pattern Pat without any infix extension events
will be an input to the recursive algorithm. Hence, it is only
necessary to check for the existence of any suffix and prefix
extension events. If there isn’t any, by Theorem 3, we can
add the pattern Pat to the set Closed.

Next, for any frequent pattern Pat++e, following Theo-
rem 4, we check for its infix extension events. If there is an
infix extension event which does not appear in SeqDBall

Pat++e,
we do not need to grow the pattern Pat++e anymore.



Growing patterns is performed recursively. At each step,
given an extension event e, the projected-all database of
SeqDBall

Pat++e need to be computed. It can be computed in-

crementally by taking the projected-first database of SeqDBall
Pat

(i.e. (SeqDBall
Pat)

fst
e ).

6. PERFORMANCE STUDY
Experiments had been performed on both synthetic and

real datasets to evaluate the scalability of our mining algo-
rithm and the effectiveness of our pruning strategy. Similar
to work in closed sequential pattern mining [31, 29], low
support thresholds are utilized to test for scalability.
Datasets. We use three datasets in our experiments: a
synthetic and two real datasets. Synthetic data generator
provided by IBM was used with modification to ensure gen-
eration of sequences of events. The generators accept a set
of parameters. The parameters D, C, N and S correspond
respectively to the number of sequences (in 1000s), the av-
erage number of events per sequence, the number of differ-
ent events (in 1000s) and the average number of events in
the maximal sequences. We experimented with the dataset
D5C20N10S20.

We also experimented on click stream dataset (i.e., Gazelle
dataset) from KDD Cup 2000 [19] which was also used to
evaluate CloSpan [31] and BIDE [29]. It contains 29369 se-
quences with an average length of 3 and a maximum length
of 651.

To evaluate our algorithm performance on mining from
program traces, we generate traces from a simple Traffic
alert and Collision Avoidance System (TCAS) from the Sie–
mens Test Suite [15], which has been used as one of the
benchmarks for research in error localization (e.g., [8]). The
test suite comes with 1578 correct test cases. We run these
test cases to obtain 1578 traces.

To test for scalability, instead of tracing method invoca-
tions, we trace executions of basic blocks of TCAS’s con-
trol flow graph. A basic block is a maximal sequence of
statements such that the execution of one statement will al-
ways results in the execution of the subsequent statements
in the sequence. Each trace of basic block ids is treated as
a sequence. The sequences are of average length of 36 and
maximum length of 70. It contains 75 different events – the
events are the basic block ids of the control flow graph of
TCAS. We call this dataset the TCAS dataset.
Environment and Pattern Miners. All experiments
were performed on a Pentium 4 3.0GHz PC with 2GB main
memory running Windows XP Professional. Algorithms
were written using Visual C#.Net running under .Net Frame-
work 2.0 with generics compiled with the release option us-
ing Visual Studio.Net 2005.

For the experiments we tested our pattern miner on two
configurations to test the effectiveness of our pruning strat-
egy. The first mines a closed set of iterative patterns while
another mines a full set of iterative patterns. Let’s refer the
earlier as closed iterative pattern miner and the latter as
full-set iterative pattern miner.
Experiment Results and Analysis. The results of exper-
iments performed on the D5C20N10S20, Gazelle and Siemens
dataset using closed and full-set iterative pattern miners are
shown in Figures 2, 3 & 4 respectively. The Y-axis (in log-
scale) corresponds to the runtime taken or the number of
generated patterns. The X-axis corresponds to the mini-
mum support thresholds. The thresholds are reported rela-

tive to the number of sequences in the database. Note that,
different from sequential patterns, due to repeated patterns
within a sequence this number can exceed 1.

104 

103 

102

101 

...0.1 0.25 0.28 0.31 0.34
min_sup (%) 

R
u

n
ti

m
e(

s)
 -

 (
lo

g
-s

ca
le

)

Full

Closed

102

103 

104 

105 

106 

107

...0.1 0.25 0.28 0.31 0.34
min_sup (%) 

|P
at

te
rn

s|
 -

 (
lo

g
-s

ca
le

)

Full

Closed

(a)Runtime (b)No. of Patterns

Figure 2: Performance results of varying min sup for
D5C20N10S20 dataset

104 

103 

102

10 

0.0260.023 0.029 0.032
min_sup (%) 

R
u

n
ti

m
e 

(s
) 

- 
(l

o
g

-s
ca

le
)

Full

Closed

108

107

106 

105 

104 

0.0320.0290.0260.023
min_sup (%) 

|P
at

te
rn

s|
 -

 (
lo

g
-s

ca
le

)

Full

Closed

(a)Runtime (b)No. of Patterns

Figure 3: Performance results of varying min sup for
Gazelle dataset

105 

104 

103 

102 

10

1 

1008570550.1 ...
min_sup (%) 

R
u

n
ti

m
e(

s)
 -

 (
lo

g
-s

ca
le

)

Full

Closed

1 

10

102 

103 

104 

105 

106

107

0.1 55 70 85 100...
min_sup (%) 

|P
at

te
rn

s|
 -

 (
lo

g
-s

ca
le

)

Full

Closed

(a)Runtime (b)No. of Patterns

Figure 4: Performance results of varying min sup for
TCAS dataset

From the plotted results it is noted that the pruning strat-
egy significantly reduces the runtime and the number of pat-
terns mined especially on low support threshold and when
the reported patterns are long. Admittedly, when the num-
bers of closed and full-set of patterns differ by only a small
factor, the overhead of mining closed patterns may result in
longer runtime as compared to mining a full-set of patterns.



However, when the length of the patterns is long, the num-
ber of closed patterns is likely to be much less than that of
a full-set of patterns.

For all datasets, even at very low support, closed pat-
tern miner is able to complete within less than 17 minutes.
TCAS dataset especially highlights performance benefit of
our pruning strategy. Closed iterative pattern miner is able
to run even at the lowest possible support threshold (at 1
instance) within less than 17 minutes. On the other hand,
full-set iterative pattern miner runs with excessive runtime
(> 6 hours) even at a relatively high support threshold of
867 instances.

The above shows that our miner can efficiently perform
its task on various benchmark data. Comparison of perfor-
mance results of closed and full-set pattern miner highlights
the benefit and effectiveness of our pruning strategy.

7. CASE STUDY: JBOSS APP. SERVER
A case study was performed on the transaction compo-

nent of JBoss Application Server (JBoss AS) [17]. JBoss AS
is the most commonly used J2EE application server. It con-
tains over 100,000 lines of code and comments. The transac-
tion component alone contains over 5,000 lines of code and
comments. The purpose of this case study is to show the
usefulness of the mined patterns by discovering iterative pat-
terns describing behavior of the transaction sub-component
of JBoss AS.

Traces are obtained by running JBoss-AOP [18] over JU-
nit and Ant on a regression test of the JBoss AS transaction
manager. We trace invocations of methods within the trans-
action component of JBoss AS (i.e., org.jboss.tm package).
This produces 28 traces of a total of 2551 events and an av-
erage of 91 events. The longest trace is of 125 events. There
are 64 unique events. Using min sup of 65%, the closed it-
erative pattern mining algorithm runs in less than a minute
(29s). Full-set pattern mining doesn’t terminate even after
running for more than 8 hours and produces more than 5
GB of patterns.

There are a total of 44 patterns resulting from the follow-
ing post-processing step after iterative pattern mining:

1. Density. Only report patterns whose number of unique
events is > 80% of its length.

2. Subsumption. Only report pattern P if none of its super-
sequences is frequent.

3. Ranking. Order them according to length and support
values.

We found at least 5 interesting software patterns of be-
havior resulting from mining the traces. These correspond
to the patterns of longest length and highest support. Their
abstracted representations are as follows:

1. 〈Connection Set Up Evs, TxManager Set Up Evs, Trans-
action Set Up Evs, Transaction Commit Evs, Transaction
Disposal Evs〉

2. 〈Connection Set Up Evs, TxManager Set Up Evs, Trans-
action Set Up Evs, Transaction Rollback Evs, Transac-
tion Disposal Evs〉

3. 〈Resource Enlistment Evs, Transaction Execution Evs,
Transaction Commit Evs, Transaction Disposal Evs〉

4. 〈Resource Enlistment Evs, Transaction Execution Evs,
Transaction Rollback Evs, Transaction Disposal Evs〉

5. 〈Lock-Unlock Evs〉

The first 4 patterns correspond to the few of the longest
patterns, the last pattern on lock and unlock events cor-
responds to the pattern with the highest support of 313.
The actual mined pattern for the first pattern shown above,
which is the longest pattern mined (of length 32), is shown
in Figure 5.

The first two patterns specify that a series of set up events
is always followed by a series of termination events. The first
pattern specifies a common behavior where: a connection is
first set up to the server, the transaction manager is set
up, the transaction is set up, the transaction is committed
and the transaction is finally disposed. The second pattern
specifies a similar behavior except that the transaction is
being roll-backed.

The third and fourth patterns specify the pattern ob-
served when the actual work is being performed. A resource
need to be enlisted to the transaction and the transaction
execution then take place. At the end of the execution, the
transaction can either be committed or roll-backed. Note
that there can be one or more resource enlistments and
transaction executions before a commit. Hence the pattern
is not included in the body of the first 2 patterns.

The fifth pattern corresponds to a more fine grained iter-
ative pattern occurring most often, namely lock and unlock.

8. CONCLUSION
In this paper, we propose iterative patterns – iterative

patterns are commonly occurring series of events exhibited
repeatedly within a sequence and across multiple sequences.
We extend sequential pattern mining to consider repeated
occurrences of pattern instances within sequences. We ex-
tend episode pattern mining by removing the constraint on
window size and consider a database of sequences rather than
a single sequence. To mine iterative pattern efficiently, we
present CLosed Iterative Pattern MinER (CLIPER).

The motivation of our work comes from the emerging field
of dynamic analysis where a set of program traces are ana-
lyzed to mine interesting software properties. Due to looping
similar patterns occur within a sequence and across multi-
ple sequences. Mining interesting patterns should take into
account both multiple sequences, and multiple occurrences
of patterns within a sequence. Also, since important pat-
terns like lock acquire followed-by lock-release and file open
followed-by file close (c.f., [32, 7]) are often separated by a
considerable number of events, we need to remove the win-
dow size constraint of frequent episode mining.

To reduce the number of reported patterns and improve
efficiency, we mine for the set of closed iterative patterns.
This reduces the run-time needed for mining patterns and
aids user in analyzing important patterns by sifting out pat-
terns “absorbed” by another.

Our performance study shows the efficiency of our method
in both real-world and synthetic datasets. The effectiveness
of our pruning strategy to mine closed patterns is evident
by comparing the runtime and the number of patterns gen-
erated before and after the pruning strategy is employed.
The set of interesting patterns mined from JBoss Applica-
tion Server transaction component confirms the usefulness
of our method in discovering software specifications in iter-
ative pattern form.

Besides mining software behavioral pattern, we believe
the proposed mining technique can potentially be applied
to other knowledge discovery domains.



 
Connection Set Up 
TransactionManagerLocator.getInstance 
TransactionManagerLocator.locate 
TransactionManagerLocator.tryJNDI 
TransactionManagerLocator.usePrivateAPI 
Tx Manager Set Up 
TxManager.begin 
XidFactory.newXid 
XidFactory.getNextId 
XidImpl.getTrulyGlobalId 
Transaction Set Up 
TransactionImpl.associateCurrentThread 
TransactionImpl.getLocalId 
XidImpl.getLocalId 

 
Transaction Set Up (Con’t) 
LocalId.hashCode 
TransactionImpl.equals 
TransactionImpl.getLocalIdValue 
XidImpl.getLocalIdValue 
TransactionImpl.getLocalIdValue 
XidImpl.getLocalIdValue 
Transaction Commit  
TxManager.commit 
TransactionImpl.commit 
TransactionImpl.beforePrepare 
TransactionImpl.checkIntegrity 
TransactionImpl.checkBeforeStatus 
 

 

Transaction Commit (Con’t) 
TransactionImpl.endResources 
TransactionImpl.completeTransaction 
TransactionImpl.cancelTimeout 
TransactionImpl.doAfterCompletion 
TransactionImpl.instanceDone 

Transaction Dispose 
TxManager.releaseTransactionImpl 
TransactionImpl.getLocalId 
XidImpl.getLocalId 
LocalId.hashCode 
LocalId.equals 

 
Figure 5: Longest Iterative Pattern Mined from JBoss Transaction Component

Acknowledgement. We would like to thank Jiawei Han
and Shahar Maoz for their valuable comments. We wish to
thank Blue Martini Software for contributing the KDD Cup
2000 data. This research is partially supported by an NUS
research grant R-252-000-250-112, NSF ITR/CCR-0325603,
IIS-05-13678, NSF BDI-05-15813, and IIS-02-42840.

9. REFERENCES
[1] R. Agrawal and R. Srikant. Mining sequential

patterns. In ICDE, 1995.

[2] G. Ammons, R. Bodik, and J. R. Larus. Mining
specification. In SIGPLAN POPL, 2002.

[3] R.V. Binder. Testing Object-Oriented Systems Models,
Patterns, and Tools. Addison-Wesley, 2000.

[4] B. Boehm. Software Engineering Economics.
Prentice-Hall, 1981.

[5] G Canfora and A Cimitile. Software Maintenance,
volume 1 of Handbook of Software Engineering and
Knowledge Engineering, pages 91–120. World
Scientific, 2002.

[6] R. Capilla and J.C. Duenas. Light-weight
product-lines for evolution and maintenance of web
sites. In CSMR, 2003.

[7] W-N. Chin, S-C. Khoo, S. Qin, C. Popeea, and H.H.
Nguyen. Verifying safety policies with size properties
and alias controls. In ICSE, 2005.

[8] C.Liu, X. Yan, L. Fei, J. Han, and S.P. Midkiff.
SOBER: statistical model-based bug localization. In
SIGSOFT ESEC-FSE, 2005.

[9] W. Damm and D. Harel. LSCs: Breathing life into
message sequence charts. Formal Methods in System
Design, 19:45–80, 2001.

[10] S. Deelstra, M. Sinnema, and J. Bosch. Experiences in
software product families: Problems and issues during
product derivation. In SPLC, 2004.

[11] M. El-Ramly, E. Stroulia, and P. Sorenson. From
run-time behavior to usage scenarios: an
interaction-pattern mining approach. In KDD, 2002.

[12] E. Erlikh. Leveraging legacy system dollars for
e-business. IEEE IT Pro, pages 17–23, 2000.

[13] G.C. Garriga. Discovering unbounded episodes in
sequential data. In PKDD, 2003.

[14] J. Han, J. Pei, B. Mortazavi-Asl, Q. Chen, U. Dayal,
and M-C. Hsu. Freespan: Frequent pattern-projected
sequential pattern mining. In KDD, 2000.

[15] M. Hutchins, H. Foster, T. Goradia, and T. Ostrand.

Experiments on the effectiveness of dataflow- and
control-flow-based test adequacy criteria. In ICSE,
1994.

[16] ITU-T. ITU-T Recommendation Z.120: Message
Sequence Chart (MSC). 1999.

[17] JBoss. http://www.jboss.org.

[18] JBoss AOP. http://labs.jboss.com/jbossaop/.

[19] R. Kohavi, C. Brodley, B. Frasca, L. Mason, and
Z. Zheng. KDD-Cup 2000 organizers’ report: Peeling
the onion. SIGKDD Explorations, 2:86–98, 2000.

[20] H. Kugler, D. Harel, A. Pnueli, Y. Lu, and
Y. Bontemps. Temporal logic for scenario-based
specifications. In TACAS, 2005.

[21] M.M. Lehman and L.A. Belady. Program Evolution -
Processes of Software Change. Academic Press, 1985.

[22] D. Lo and S-C. Khoo. SMArTIC: Toward building an
accurate, robust and scalable specification miner. In
SIGSOFT FSE, 2006.

[23] H. Mannila, H. Toivonen, and A.I. Verkamo.
Discovery of frequent episodes in event sequences.
DMKD, 1:259–289, 1997.

[24] K. Olender and L. Osterweil. Cecil: A sequencing
constraint language for automatic static analysis
generation. IEEE TSE, 16:268–280, 1990.

[25] J. Pei, J. Han, B. Mortazavi-Asl, H. Pinto, Q. Chen,
U. Dayal, and M.-C. Hsu. Prefixspan: Mining
sequential patterns efficiently by prefix-projected
pattern growth. In ICDE, 2001.

[26] Java Trans. API Spec. java.sun.com/products/jta/.

[27] T. Standish. An essay on software reuse. IEEE TSE,
pages 494–497, 1984.

[28] C. Steel, R. Nagappan, and R. Lai. Core Security
Patterns. Sun Microsystem, 2006.

[29] J. Wang and J. Han. BIDE: Efficient mining of
frequent closed sequences. In ICDE, 2004.

[30] W.Weimer and G.Necula. Mining temporal
specifications for error detection. In TACAS, 2005.

[31] X. Yan, J. Han, and R. Afhar. CloSpan: Mining closed
sequential patterns in large datasets. In SDM, 2003.

[32] J. Yang, D. Evans, D. Bhardwaj, T. Bhat, and M.Das.
Perracotta: Mining temporal API rules from imperfect
traces. In ICSE, 2006.

[33] M. Zhang, B. Kao, D.W. Cheung, and K.Y. Yip.
Mining periodic patterns with gap requirement from
sequences. In SIGMOD, 2005.


