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Abstract

Software has been an ubiquitous component in our daily
life. It ranges from large software systems like operating
systems to small embedded systems like vending machines,
both of which we frequently interact with. Software changes
often during its lifespan; these cause difficulty in under-
standing existing systems. Program comprehension is es-
timated to take up to 45% of software costs which goes up
to billions of dollars. One of the root causes of this prob-
lem is the fact that documented software specification is of-
ten missing, incomplete or outdated. This causes difficulties
in software maintenance efforts especially when a software
project involves many people or the project continues over a
long period of time. Lack of documented software specifica-
tion also causes difficulty in testing or verifying the correct-
ness of a software system. Incorrect software has caused the
loss of billions of dollars and even the loss of life. One solu-
tion to address the above problems is specification discov-
ery, namely, automated extraction of software specification
from program artifacts. In this paper, we describe our past
and current work in the domains of data mining, software
engineering and programming language in addressing the
discovery of software specifications with the goal of reduc-
ing software costs and improving software dependability.

1 Introduction

It’s best if all programs and software projects are de-
veloped with clear, precise and documented specifications.
However, due to hard deadlines and ‘short-time-to-market’
requirement [8], software products often come with poor,
incomplete and even no documented specification. This
situation is further aggravated by the phenomenon termed
as software evolution [6, 26]. As software evolves (i.e.
changes) the documented specification is often not updated.
This might render the original specification of little use after
several cycles of program evolution [13].

Incomplete, outdated and missing specification has con-
tributed to high software maintenance costs. It has been
investigated that 90% of software cost is due to mainte-

nance [16] and 50% of the maintenance cost is due to com-
prehending or understanding an existing code base [39].
Hence, approximately 45% of software cost is due to diffi-
culty in understanding an existing system. This is especially
true for software projects developed by many developers
over a long period of time. A good indication on the amount
associated with software costs is the US GDP’s software
component which amounts to $216.0 billion at the second
quarter 2007 alone [5]. Considering the above factors, re-
ducing maintenance cost by addressing the problem of lack,
incomplete and outdated specification can potentially save
a large amount of wasted resources.

On another related front, software dependability is a ma-
jor concern of software vendors and users. Software de-
pendability related issues have caused the loss of billions of
dollars and even the loss of lives [17]. As reported by US
National Institute of Standards and Technology (NIST) in
2002, incorrect or buggy software has caused US economy
to suffer $59.5 billion dollars loss annually [34]. Another
case with Ariane 5, a rocket project by European Space
Agency that exploded on its maiden voyage due to speci-
fication and design errors, highlights the need of addressing
software dependability [3].

To ensure correctness of a software system, program ver-
ification tools [10] have been proposed. However, program
verifier can only check specified properties (or specifica-
tion). If a property is not documented properly, incomplete,
or unavailable, not much can be done in ensuring the cor-
rectness of a software system. Also, the difficulty in for-
mulating a set offormal properties, which is the format re-
quired by standard program verifiers, has been a barrier to
its wide-spread adoption in the industry [2].

One approach to address the problem of incomplete, out-
dated and missing specification isspecification discovery
– automated extraction of software specification from pro-
gram artifacts. Having a complete and updated software
specification is a great help to lower software maintenance
costs and improve software dependability. Mined specifica-
tion can be utilized for aiding program understanding. Fur-
thermore, it can be converted to run-time tests and input as
properties-to-verify to standard program verifiers.



Software specification can be represented in various for-
malisms. One common formalism is automata (i.e., a transi-
tion system with start and end nodes) [22]. Another formal-
ism is Linear Temporal Logic (LTL) [23] expressions which
can be directly accepted by standard program verifiers [10].
Also, formal versions of UML sequence diagram, namely
Message Sequence Chart (MSC) [24] and Live Sequence
Chart (LSC) [12], have been active interests in the software
modeling community. Not only are the above formalisms
intuitive enough to aid program understanding, they are also
formal enough to be verified via verification techniques.
Hence, they address both program comprehension and de-
pendability issues.

In this paper we describe briefly three threads of our past
and current work in recovering specification (in the form of
automata [28, 29], LTL [27, 31] and LSC [30, 32]) from
program execution traces via data mining approaches. A
program execution trace can be simply viewed as a series of
method signatures (or names) of methods invoked when a
system is executed.

The outline of this paper is as follows. Section 2 high-
lights our work in automaton-based specification mining.
Section 3 highlights our work in mining Linear Temporal
Logic (LTL) expressions. Section 4 describes our work in
mining Live Sequence Charts (LSCs). Section 5 discusses
related work, and finally Section 6 concludes and discusses
future work.

2 Mining Automata

Initial studies on mining software specification often rep-
resent a mined specification in the form of an automaton
(e.g., [2, 11, 38, 4]). The work by Ammonset al. is
one of the pioneer in automaton-based specification mining
[2]. In [2], a machine-learning approach (i.e., an automaton
learner referred to as sk-strings [36]) is employed to dis-
cover program specification in the form of an automata by
analyzing program execution traces. It is assumed that in-
put traces must “reveal strong hints of correct protocols”
although they can also contain errors.

Our work proposes novel data mining algorithms (outlier
detection and clustering techniques) to improve the quality
of work in [2].

First, we define an array of metrics to objectively mea-
sure the performance of an automaton-based specification
miner (c.f., [28]). The most important one is anaccuracy
metric measured by the notion ofrecall andprecision. Pre-
cision and recall can then be defined asthe proportion of
sentences inSinf that is accepted bySorig andthe propor-
tion of sentences inSorig that is accepted bySinf where
Sorig is the original specification andSinf is the inferred
specification.

Next, we devise a novel architectural framework (re-
ferred to as SMArTIC) that achieves specification mining
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Figure 1. CVS Protocol

through pipelining of four functional components: Error-
trace filtering, clustering, learning, and automata merging
(c.f., [29]). We demonstrate that such an architecture im-
proves the quality of the mining result for two primary rea-
sons:

1. Early identification and filtering of erroneous program
execution traces can improve the quality of specifica-
tion discovery.

2. Over-generalization which occurs at the learning stage
can be mitigated by localization of learning process to
groups of related program execution traces.

We conduct experiments to support our reasoning. Our
experiments aim at deriving the API interaction protocol for
a CVS application built on top of the Jakarta Commons Net
FTP library [40]. There are six common FTP interaction
scenarios in the CVS application: Initialization, multiple-
file upload, download, and deletion, multiple-directory cre-
ation and deletion. All scenarios begin by connecting and
logging-in to the FTP server. They end by logging-off and
disconnecting from the FTP server. The client side only
maintains a record of files backed-up in the FTP server.

All these scenarios are depicted in the automata shown in
Figure 1. The dashed boxes, from top to bottom, represent
file upload, repository initialization, file deletion, directory
creation, directory deletion, and file download scenario re-
spectively.

Precs Recall
SMArTIC 0.484 0.981

SMArTIC without filtering 0.426 1
SMArTIC without clustering 0.263 0.984

sk-strings 0.225 1.000
As shown in the table above, SMArTIC improves the

precision while maintaining a good recall in the CVS pro-



tocol inference. The precision of SMArTIC are more than
double the precision of sk-strings. Both filtering and clus-
tering help in increasing precision while maintaining a good
recall.

3 Mining Linear Temporal Logic

In this section, we describe mining Linear Temporal
Logic (LTL) [23] expressions (or rules) satisfying given
support and confidence thresholds. LTL is one of the two
most commonly used formalisms accepted by standard pro-
gram verifiers [10] – the other one is Computational Tree
Logic (CTL) [23]. While an automata expresses a global
picture of software specification (which might be complex),
mined LTL expressions break the specification into smaller
pieces each expressingstrongly observed behaviorwhich is
easier to be understood.

Rules having the following format are the target of our
mining algorithm:

’Whenever a series of eventsESpre occurs, eventually
another series of eventsESpost also occurs.’

The above can be denoted asESpre → ESpost. ESpre and
ESpost are referred to as thepremiseandconsequentof the
rule respectively.

These set of rules can be expressed in LTL, and belong
to two of the most frequently used families of temporal
logic expressions for verification (i.e., response and chain-
response) according to a survey by Dwyeret al. [14]. Ex-
amples of such rules include:

1. Resource Locking Protocol: Whenever a lock is ac-
quired, eventually it is released.

2. Network Protocol: Whenever an HDLC connection
is made and an acknowledgement is received, eventu-
ally a disconnection message is sent and an acknowl-
edgement is received.

There are a number of LTL operators, among which we
are only interested in the operators ‘G’,‘F’ and ‘X’. The
operator ‘G’ specifies thatglobally at every point in time
a certain property holds. The operator ‘F’ specifies that a
property holds either at that point in time orfinally (even-
tually) it holds. The operator ‘X’ specifies that a property
holds at thenextpoint in time. The three examples listed in
Table 1 illustrate the meaning and use of these operations.

The set of LTL expressions minable by our mining
framework is represented in the Backus-Naur Form (BNF)
as follows:

rules := G(prepost)
prepost := event → post|event → XG(prepost)

post := XF (event)|XF (event ∧XF (post))

To identify strongly observedrules, we introduce:(Sup-
port) The number of tracesexhibiting the premise of the

F (unlock)
Meaning:Eventuallyunlock is called

XF (unlock)
Meaning: From thenextevent onwards,eventually

unlock is called
G(lock → XF (unlock))

Meaning:Globallywhenever lock is called, then from
thenextevent onwards,eventuallyunlock is called

Table 1. LTL Expressions and their Meanings

rule; (Confidence)The likelihood of the rule’s premise be-
ing followed by its consequent in the traces. Only rules
satisfying user-defined thresholds of minimum support and
confidence are mined.

An effective search space pruning strategy, inspired by
closed pattern mining strategies [44, 41], is utilized to effi-
ciently mine multi-event rules from traces. To prevent blow-
up in the number of rules, only a representative sub-set of
rules containing non-redundant ones is generated.

A case study is performed on traces from the security
component of JBoss Application Server [37]. This shows
the usefulness of our mining technique in recovering the
underlying protocol that the system obeys, thus aiding pro-
gram comprehension.

One of the mined rules (shown with abbreviated method
signatures) is presented in Figure 2. It describes authenti-
cation using Java Authentication and Authorization Service
(JAAS) for EJB within JBoss-AS. When authentication sce-
nario starts, configuration information is first checked to
determine authentication service availability – this is de-
scribed by the premise of the rule. This is followed by:
invocations of actual authentication events, binding of prin-
cipal information to the subject being authenticated, and uti-
lizations of subject’s principal and credential information in
performing further actions – these are described in the con-
sequent of the rule.

Premise Consequent 

XLoginConfImpl.getConfEntry() 
AuthenticationInfo.getName() 
 

ClientLoginModule.initialize() 
ClientLoginModule.login() 
ClientLoginModule.commit() 
SecAssocActs.setPrincipalInfo() 
SecAssocActs.pushSubjectCtxt() 
SimplePrincipal.toString() 
SecAssoc.getPrincipal() 
SecAssoc.getCredential() 
SecAssoc.getPrincipal() 
SecAssoc.getCredential() 

Figure 2. A Rule from JBoss-Security

We have performed another case study to discover spec-
ifications of the transaction component of JBoss-AS. Also,
a separate study on the integration of mined rules with a
program verifier for bug discovery has been performed. In-
terested readers might refer to [27, 31] for details.



4 Mining Live Sequence Charts

Scenarios, depicted using variants of sequence diagrams,
are popular means to specify the inter-object behavior of
systems (see, e.g., [20]). They are included in the UML
standard, and are supported by many modeling tools. In
particular, we are interested in mining modal scenarios pre-
sented using a UML2 compliant variant of Live Sequence
Chart (LSC) [12, 21]. LSC is an extension of International
Telecommunication Union (ITU) standard on Message Se-
quence Chart [24]. Different from standard UML sequence
diagram, MSC and LSC describeconstraintson traces.

We address the mining problem in two steps. In [30], we
propose iterative pattern, extending work on sequential pat-
tern mining [1, 44, 41] and episode mining [33, 18]. An it-
erative pattern is not an LSC or MSC, however its semantics
obeys the constraints of MSC and LSC. In [32], we extend
iterative pattern mining to mine LSC.

Iterative pattern is a series of events supported by asig-
nificant number of instances repeated within and across se-
quences (or traces). Similar to sequential pattern mining,
we consider adatabase of sequencesrather than a single se-
quence. However, we also mine patterns occurring repeat-
edly within a sequence. This is similar in spirit to episode
mining, but we remove the restriction that related events
must happen closely together in a window.

The above differences are required for analyzing pro-
gram traces and inferring specifications or properties. Due
to loops and recursions, a trace can contain repeated occur-
rences of interesting patterns. Also, program properties are
often inferred from a set of traces instead of a single trace.
Finally, important patterns for verification, such as lock ac-
quire and release or stream open and close (c.f [45, 9]), of-
ten have their events occur at some arbitrary distance away
from one another in a program trace. Hence, there is a need
to ‘break’ the ‘window barrier’ in order to capture these pat-
terns of interest.

Iterative pattern obeys the following apriori property uti-
lized by depth-first search sequential pattern miners (e.g.,
FreeSpan [19] and PrefixSpan [35]) which states:

If P is not frequent thenP++evs (whereevs is a series
of events) is also not frequent.

Due to possibly combinatorial number of frequent sub-
sequences of a long pattern, it’s best to mine a closed set of
patterns (c.f., [44] & [41]). Closed pattern mining discov-
ers patterns without any super-sequence having correspond-
ing set of instances. In [30], we mine aclosedset of iter-
ative patterns. A search space pruning strategy employed
by early identification and pruningof non-closed patterns
is used to mine a closed set of iterative patterns efficiently.
Our performance study on synthetic and real-world datasets
shows the success of our closed pattern miner: it runs with
over an order of magnitude speedup (over mining a full set
of frequent patterns) especially on low support thresholds

or when frequent patterns are long.
In [32], we extend the algorithm to mine LSCs. To

demonstrate and evaluate our approach, we present the re-
sults of a case study we have conducted using traces from
various components of Jeti [25], an open-source Java based
full featured instant messaging application. The results
demonstrate the effectiveness of our mining technique in re-
covering non-trivial and expressive underlying interactions.

One of the mined LSCs involving sending of mes-
sages when one client starts communicating with another
is shown in Fig. 3. The scenario starts whenever a user uses
the roster tree to select a party to communicate with. Then,
the roster tree will initiate the chat and set up a chat win-
dow. After several resources and identifiers of communi-
cating parties are obtained, eventually, an initial message is
sent via theBackend /Connect /Output channel.

lsc Start chat

0:Chat
Windows

chat(..)

0:
Roster
Tree

0:Jeti 0:JID 1:JID 0:
Backend

0:
Connect

0:
Output

chat(..)

getResource()

createThread()

getMyJID()

getUser()

send(Packet)

send(Packet)

lsc Start chat

0:Chat
Windows

chat(..)

0:
Roster
Tree

0:Jeti 0:JID 1:JID 0:
Backend

0:
Connect

0:
Output

chat(..)

getResource()

createThread()

getMyJID()

getUser()

send(Packet)

send(Packet)

Figure 3. A Mined LSC: Start chat

5 Related Work

For a complete description of related work, interested
readers can refer to the related work sections of our past
studies [29, 28, 27, 31, 30, 32]. In this section, only some
related studies will be highlighted.

Mining Automata. In [29], we extended the specifica-
tion miner described in [2]. In another work, Whaleyet
al. extract object-oriented component interface sequencing
constraints to form multiple finite state automatons [43].
Reisset al. encode program execution traces as directed
acylic graphs to aid visualization and understanding of pro-
grams [38]. Artset al. dynamically extract program mod-
els from Erlang programs as state graph models for model
checking and visualization [4]. We believe that these and
other similar miners can benefit from our data-mining based
architecture of filtering errors and clustering traces, with
minimal changes.

Mining LTL. Of the most relevance is the work on min-
ing rule-based specification [45, 42], where the rules have a
similar semantics as our work [27] but are limited to two-
event rules (e.g., 〈lock〉 → 〈unlock〉). Their algorithms do
not scale for mining multi-event rules since they first list
all possible two-event rules and then check the significance



of each rules. For rules of arbitrary lengths, the number of
possible rules is arbitrarily large. Our work generalizes their
work by mining a complete set of rules of arbitrary lengths
that satisfy given support and confidence thresholds. To en-
able efficient mining, we devise a number of search space
pruning strategies.

Mining LSCs. Several studies reverse engineers object
interactions from program traces and visualize them using
sequence diagrams (see, e.g., [15, 7]). These might seem
similar to our work in [32]. However, different from our
work, these studies simply represent theentire traceas a
sequence diagram. On the other hand, we minestrongly
observedLSCs expressed in the traces.

6 Conclusion & Future Work

In this paper, we have proposed a new data mining ap-
proach, namely specification discovery, which is a process
for automated extraction of software specification from pro-
gram artifacts. Three separate threads of work mining dif-
ferent form of specifications (automata, LTL and LSC) from
program execution traces have been briefly described. Not
only can these specification formalisms be easily under-
stood by software developers, they are also formal enough
to be verified by program verifiers. Hence, mining the above
specification formalisms can aid both program comprehen-
sion and dependability.

Our future research directions include: improving the
scalability of the mining processes further, incorporating
user-defined constraints suitable for software developers,
performing more case studies especially on more industrial
systems, and exploring further intersection of techniques in
data mining, software engineering and programming lan-
guage to improve specification discovery process.
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