
Mining Modal Scenarios from Execution Traces
(poster abstract)

David Lo

National University of Singapore

dlo@comp.nus.edu.sg

Shahar Maoz

The Weizmann Institute of Science, Israel

shahar.maoz@weizmann.ac.il

Siau-Cheng Khoo

National University of Singapore

khoosc@comp.nus.edu.sg

Abstract
Specification mining is a dynamic analysis process aimed
at automatically inferring suggested specifications of a pro-
gram from its execution traces. We describe a method, a
framework, and a tool, for mining inter-object scenario-
based specifications in the form of a UML2-compliant vari-
ant of Damm and Harel’s Live Sequence Charts (LSC),
which extends the classical partial order semantics of se-
quence diagrams with temporal liveness and symbolic class
level lifelines, in order to generate compact and expressive
specifications. Moreover, we use previous research work and
tools developed for LSC to visualize, analyze, manipulate,
test, and thus evaluate the scenario-based specifications we
mine. Our mining framework is supported by statistically
sound metrics. We demonstrate and evaluate our work using
a case study.

Categories and Subject Descriptors:D.2.1[Software En-
gineering]: Requirements/Specifications–Tools; D.2.7[Soft–
ware Engineering]: Distribution, Maintenance,and Enhance–
ment–Restructuring, reverse engineering and reengineering
General Terms:Algorithms, Design, Experimentation
Keywords: Specification Mining, UML Sequence Dia-
grams, Live Sequence Charts

1. Introduction
Analyzing the behavior of software systems, in order to
aid program comprehension, reduce their maintenance costs,
and improve their quality, is a complex and challenging task.
Having incorrect, incomplete, or outdated documented spec-
ifications, as a result of short time-to-market constraints,
changing requirements, and poorly managed product evo-
lution, reduces comprehension of the code base, increases
maintenance costs, and adds challenges towards verification
of their correctness. One approach to address this challenge
is to automatically infer specifications of a system from its

Copyright is held by the author/owner(s).

OOPSLA’07, October 21–25, 2007, Montréal, Qúebec, Canada.
ACM 978-1-59593-786-5/07/0010.

execution traces by a dynamic analysis process referred to as
specification mining(see, e.g., [2, 9]).

In this work we focus on mining specifications of reac-
tive systems, discrete event systems which maintain ongo-
ing interaction with their environment, and on their behav-
ioral specification using inter-object scenarios. Scenarios,
depicted using variants of sequence diagrams, are a pop-
ular means to specify the inter-object behavior of systems
(see, e.g., [5]), are included in the UML standard, and are
supported by many modeling tools. In particular, we are in-
terested in modal scenarios presented using a UML2 com-
pliant variant of Damm and Harel’s Live Sequence Charts
(LSC) [3, 7], which extends the partial order semantics of
sequence diagrams with universal and existential modalities
and allows symbolic class level lifelines, resulting in com-
pact and expressive specifications.

2. Modal Scenarios & Mining Framework
We use here a restricted subset of the LSC language. An
LSC includes a set of instance lifelines, representing sys-
tem’s objects, and is divided into two parts, thepre-chart
(‘cold’ fragment) and themain-chart(‘hot’ fragment), each
specifying an ordered set of method calls between the ob-
jects represented by the instance lifelines. A universal LSC
specifies auniversal liveness requirement: for all runs of the
system, and for every point during such a run, whenever the
sequence of events defined by the pre-chart occurs (in the
specified order), eventually the sequence of events defined
by the main-chart must occur (in the specified order). Events
not explicitly mentioned in the diagram are not restricted in
any way to appear or not to appear during the run (including
between the events that are mentioned in the diagram).

Syntactically, instance lifelines are drawn as vertical
lines, pre-chart (main-chart) events are colored in blue (red)
and drawn using a dashed (solid) line. LSCs can be edited
and visualized within standard UML2 compliant modeling
tools (e.g., IBM RSA) using themodalprofile [7].

The input for the mining algorithm are finite traces con-
sisting of events, where each event corresponds to a triplet:
caller object identifier, callee object identifier, and method
signature. To relate between LSCs and execution traces we
introduce notions of positive and negative witnesses.



We consider traces to be finite words over a finite alphabet
of eventsΣ = {a, b, c...}, where a unique letter corresponds
to a unique triplet. We use the symbol++ to represent the
concatenation operator between finite words. For two words
w, u we denote the projection ofw onto the alphabet of
events appearing inu by wu. A positive witnessof an LSC
M(pre, main) with respect to a traceT is defined as a
minimal subwords of T such thatsm = pre++main.
Note thatT may include many positive-witnesses ofM . A
negative-witnessof an LSCM(pre, main) with regard to a
traceT , is a positive-witness of the wordpre that cannot be
extended to a positive-witness ofM .

Given a trace, for an LSCM(pre, main) we measure its
statistical significance using two metrics (adopted from data
mining [4]): (1) support– the number of positive witnesses
of pre++main in the trace, and (2)confidence– the like-
lihood of thepre being followed by themain in the trace
(which can be found from the number of positive and nega-
tive witnesses ofpre andpre++main). Thus, given a trace
and user-defined thresholds for minimum support and confi-
dence, our algorithm findsa sound and complete setof sta-
tistically significant modal scenarios.

The mined set of LSCs is post-processed to identify class
level LSCs (see LSCsymbolic instances[11]). In addition,
we provide an array of additional user-guided filters and ab-
stractions, such as removing logically redundant LSCs, en-
suring connectivity, and limiting the length of mined LSCs,
to further refine the resulting set of mined scenarios.

3. Case Study, Conclusion & Future Work
To demonstrate our work we used AspectJ to instrument Jeti
[1], a popular full featured open source instant messaging
application, and created trace files of recorded interactions
between several Jeti clients, each of which is approximately
1K events long. Many informative LSCs were mined. An
example is highlighted below.

From traces involving the use of Jeti’s group whiteboard,
the miner has captured a scenario of drawing a line and
sending it to the other chat users. In Jeti, different graphic
elements (LineMode, EllipseMode, RectangleMode, etc.)
are all sub-classes of the abstract classMode. Interestingly,
the results included additional very similar LSCs corre-
sponding to drawing of ellipses and rectangles. Indeed, the
only difference between these LSCs was the participating
classes of the first leftmost lifelines. We thus performed a
super-class aggregation resulting in the LSC shown in Fig. 1
(Top). Note the abstract classMode referenced on the left-
most lifeline. This mined LSC takes advantage of the se-
mantics of LSC symbolic instances in defining compact and
expressive scenarios.

We have implemented a programmatic translation of the
mined LSCs (in textual format) into UML2 Sequence Dia-
grams extended with themodalprofile [7], using the Eclipse
UML2 APIs. This allows the visualization and manipula-
tion of LSCs inside IBM Rational Software Architect (RSA)

msd Draw shape

0:
Mode

0:Picture
Chat

0:JID 0:Picture
History

0:
Backend

0:
Connect

0:
Output

getMyJID)

toString(…)
draw(…)

addShapeDrawnByMe(…)
send(…)

send(…)
send(…)

msd Draw shape

0:
Mode

0:Picture
Chat

0:JID 0:Picture
History

0:
Backend

0:
Connect

0:
Output

getMyJID)

toString(…)
draw(…)

addShapeDrawnByMe(…)
send(…)

send(…)
send(…)

Figure 1. (Top) A mined LSC: Drawing a general shape
(Mode); (Bottom) A mined LSC inside IBM RSA.

(Fig. 1 (Bottom)). Finally, we used the S2A compiler [6],
developed at the Weizmann Institute of Science, to program-
matically compile selected LSCs into (monitoring)scenario
aspects[10]. These served as scenario-based tests for Jeti
and allowed us to ‘validate’ selected mined LSCs during
subsequent executions.

In this extended abstract we have proposed a novel
method to mine a sound and complete set of statistically sig-
nificant modal scenarios from program execution traces. The
framework exploits the unique features of LSCs – universal
liveness, class-level lifelines – and existing related tools –
IBM RSA, the S2A compiler – to improve the usefulness
of the mined specifications. The case study demonstrates
the utility of our approach. Our current method is limited to
mining of total order LSCs. In the future, we plan to mine
for additional features of sequence diagrams in general, such
as explicit partial order, various structural constructs (alter-
natives, loops, etc.), and functional state invariants.
AcknowledgementWe thank David Harel for his valuable advice.

References
[1] Jeti. Version 0.7.6 (Oct. 2006). http://jeti.sourceforge.net/.
[2] G. Ammons, R. Bodik, and J. R. Larus. Mining specification. InPOPL, 2002.
[3] W. Damm and D. Harel. LSCs: Breathing Life into Message Sequence Charts.

J. on Formal Methods in System Design, 19(1):45–80, 2001.
[4] J. Han and M. Kamber.Data Mining Concepts and Techniques, 2nd Ed.Morgan

Kaufmann, 2006.
[5] D. Harel. From play-in scenarios to code: An achievable dream.IEEE Computer,

34(1):53–60, 2001.
[6] D. Harel, A. Kleinbort, and S. Maoz. S2A: A compiler for multi-modal UML

sequence diagrams. InFASE, 2007.
[7] D. Harel and S. Maoz. Assert and negate revisited: Modal semantics for UML

sequence diagrams.Software and System Modeling, 2007.
[8] J. Klose, T. Toben, B. Westphal, and H. Wittke. Check it out: On the efficient

formal verification of Live Sequence Charts. InCAV, 2006.
[9] D. Lo and S.-C. Khoo. SMArTIC: Towards building an accurate, robust and

scalable specification miner. InSIGSOFT FSE, 2006.
[10] S. Maoz and D. Harel. From multi-modal scenarios to code: compiling LSCs into

AspectJ. InSIGSOFT FSE, 2006.
[11] R. Marelly, D. Harel, and H. Kugler. Multiple Instances and Symbolic Variables

in Executable Sequence Charts. InOOPSLA, 2002.


