
A Compilation Model for Aspect-Oriented
Polymorphically Typed Functional Languages

Kung Chen1, Shu-Chun Weng2, Meng Wang3,
Siau-Cheng Khoo4, and Chung-Hsin Chen1

1 National Chengchi University
2 National Taiwan University

3 Oxford University
4 National University of Singapore

Abstract. Introducing aspect orientation to a polymorphically typed functional
language strengthens the importance of type-scoped advices; i.e., advices with their
effects harnessed by type constraints. As types are typically treated as compile time
entities, it is highly desirable to be able to perform static weaving to determine at
compile time the chaining of type-scoped advices to their associated join points. In
this paper, we describe a compilation model, as well as its implementation, that
supports static type inference and static weaving of programs in an aspect-oriented
polymorphically typed lazy functional language, AspectFun. We present a type-
directed weaving scheme that coherently weaves type-scoped advices into the base
program at compile time. We state the correctness of the static weaving with respect
to the operational semantics of AspectFun. We also demonstrate how control-flow
based pointcuts (such as cflowbelow) are compiled away, and highlight several
type-directed optimization strategies that can improve the efficiency of woven code.

1 Introduction

Aspect-oriented programming (AOP) aims at modularizing concerns such as profiling and
security that crosscut the components of a software system[8]. In AOP, a program consists
of many functional modules and some aspects that encapsulate the crosscutting concerns.
An aspect provides two specifications: A pointcut , comprising a set of functions, designate
when and where to crosscut other modules; and an advice, which is a piece of code,
that will be executed when a pointcut is reached. The complete program behaviour is
derived by some novel ways of composing functional modules and aspects according to the
specifications given within the aspects. This is called weaving in AOP. Weaving results in
the behaviour of those functional modules impacted by aspects being modified accordingly.

The effect of an aspect on a group of functions can be controlled by introducing bounded
scope to the aspect. Specifically, when the AOP paradigm is supported by a strongly-type
polymorphic functional language, such as Haskell or ML, it is natural to limit the effect of
an aspect on a function through declaration of the argument type. For instance, the code
shown in Figure 1 defines three aspects named n3, n4, and n5 respectively; it also defines a
main/base program consisting of declarations of f and h and a main expression returning
a triplet. These advices designate h as pointcut . They differ in the type constraints of their
first arguments. While n3 is triggered at all invocations of h, n4 limits the scope of its
impact through type scoping on its first argument; this is called a type-scoped advice. This
means that execution of n4 will be woven into only those invocations of h with arguments
of list type. Lastly, the type-scoped advice n5 will only be woven into those invocations of
h with their arguments being strings.



Example 1.
// Aspects

n3@advice around {h} (arg) =

proceed arg ;

println "exiting from h" in

n4@advice around {h} (arg:[a]) =

println "entering with a list";

proceed arg in

n5@advice around {h} (arg:[Char]) =

print "entering with ";

println arg;

proceed arg in

// Base program

h x = x in

f x = h x in (f "c", f [1], h [2])

// Execution trace

entering with a list

entering with c

exiting from h

entering with a list

exiting from h

entering with a list

exiting from h

Fig. 1. An Example of Aspect-oriented program written in AspectFun

As with other AOP, we use proceed as a special keyword which may be called inside
the body of an around advice. It is bound to a function that represents “the rest of the
computation at the advised function”; specifically, it enables the control to revert to the
advised function (ie., h).

Using type-scoped aspects enable us to have customized, type-dependent tracing mes-
sage. Note that String (a list of Char) is treated differently from ordinary lists. Assuming a
textual order of advice triggering, the corresponding trace messages produced by executing
the complete program is displayed to the right of the example code.

In the setting of strongly-type polymorphic functional languages, types are treated as
compile-time entities. As their use in controlling advices can usually be determined at
compile-time, it is desirable to perform static weaving of advices into base program at
compile time to produce an integrated code without explicit declaration of aspects. As
pointed out by Sereni and de Moor [13], the integrated woven code produced by static
weaving can facilitate static analysis of aspect-oriented programs.

Despite its benefits, static weaving is never a trivial task, especially in the presence of
type-scoped advices. Specifically, it is not always possible to determine locally at compile
time if a particular advice should be triggered for weaving. Consider Example 1, from a
syntactic viewpoint, function h can be called in the body of f. If we were to naively infer
that the argument x to function h in the RHS of f’s definition is of polymorphic type, we
would be tempted to conclude that (1) advice n3 should be triggered at the call, and (2)
advices n4 and n5 should not be called as its type-scope is less general than a → a. As a
result, only n3 would be statically applied to the call to h.

Unfortunately, this approach would cause incoherent behavior of h at run-time, as only
the third trace message “exiting from h” would be printed. This would be incoherent
because the invocations (h [1]) (indirectly called from (f [1])) and (h [2]) would
exhibit different behaviors even though they would receive arguments of the same type.

Most of the work on aspect-oriented functional languages do not address this issue of
static and coherent weaving. In AspectML [4] (a.k.a PolyAML [3]), dynamic type checking



is employed to handle matching of type-scoped pointcuts; on the other hand, Aspectual
Caml [10] takes a lexical approach which sacrifices coherence1 for static weaving.

Fig. 2. Compilation Model for AspectFun

In this paper, we present a compilation model for AspectFun that ensures static and
coherent weaving. AspectFun is an aspect-oriented polymorphically typed functional lan-
guage with lazy semantics. The overall compilation process is illustrated in Figure 2.
Briefly, the model comprises the following three major steps: (1) Static type inference of
an aspect-oriented program; (2) Type-directed static weaving to produce a single woven
code and convert advices to functions; (3) Type-directed optimization of the woven code.
In contrast with our earlier work [15], this compilation model extends our research in three
dimensions:

1. Language features: We have included a suite of features to our aspect-oriented func-
tional language, AspectFun. Presented in this paper are: second-order advices and
complex pointcuts such as cflowbelow. We specify an operational semantics for As-
pectFun.

2. Algorithms: We have extended our type inference and static weaving strategy to handle
the language extension.2 We have formulated the correctness of static weaving wrt.
the operational semantics of AspectFun, and provided a strategy for analysing and
optimizing the use of cflowbelow pointcuts.

3. Systems: We have provided a complete implementation of our compilation model turn-
ing aspect-oriented functional programs into executable Haskell code. 3

Under our compilation scheme, the program in Example 1 is first translated through static
weaving to an expression in lambda-calculus with constants for execution. For presentation
sake, the following result of static weaving is expressed using some meta-constructs:

n3 = \arg -> (proceed arg ; println "exiting from h") in

n4 = \arg -> (print "entering h with a list" ; proceed arg) in

n5 = \arg -> (print "entering h with " ; println arg; proceed arg) in

h x = x in

f dh x = dh x in (f <h,{n3,n4,n5}> "c", f <h,{n3,n4}> [1], <h,{n3,n4}> [2])

1 Our notion of coherence admits semantic equivalence among different invocations of a function
with the same argument type. This is different from the coherence concept defined in qualified
types [6] which states that different translations of an expression are semantically equivalent.

2 Though not presented in this paper, we have devised a deterministic type-inference algorithm
to determine the well-typedness of aspect-oriented programs.

3 The prototype is available at http://www.cs.nccu.edu.tw/~chenk/AspectFun/AspectFun-0.7.zip.



Note that all advice declarations are translated into functions and are woven in. A meta-
construct 〈 , {. . .}〉, called chain expression, is used to express the chaining of advices and
advised functions. For instance, 〈h , {n3, n4}〉 denotes the chaining of advices n4 and n3
to advised function h. In the above example, the two invocations of h, with integer-list
arguments, in the original aspect program have been translated to invocations of the chain
expression 〈h , {n3, n4}〉. This shows that our weaver respects the coherence property.

All the technically challenging stages in the compilation process are explained in detail
– in their respective sections – in the rest of this paper. For ease of presentation, we gather
all compilation processes pertaining to control-flow based pointcuts in Section 5.

The outline of the paper is as follows: Section 2 highlights various Aspect-oriented
features through AspectFun and defines its semantics. In Section 3, we describe our type
inference system and the corresponding type-directed static weaving process. Next, we
formulate the correctness of static weaving with respect to the semantics of AspectFun.
In section 5, we provide a detailed description of how control-flow based pointcuts are
handled in our compilation model. We discuss related work in Section 6, before concluding
in Section 7.

2 AspectFun: The Aspect Language

We introduce an aspect-oriented lazy functional language, AspectFun, for our investigation.
Figure 3 presents the language syntax. We write ō as an abbreviation for a sequence of
objects o1, ..., on (e.g. declarations, variables etc) and fv(o) as the free variables in o. We
assume that ō and o, when used together, denote unrelated objects. We write t1 ∼ t2 to
specify unification. We write t � t′ iff there exists a substitution S over type variables
in t such that St = t′, and we write t ≡ t′ iff t � t′ and t′ � t. To ease our presentation,
complex syntax, such as if expressions and sequencings (;), are omitted even though they
are used in examples.

Programs π ::= d in π | e
Declarations d ::= x = e | f x = e | n@advice around {pc} (arg) = e
Arguments arg ::= x | x :: t
Pointcuts pc ::= ppc | pc + cf
Primitive PC’s ppc ::= f | n
Cflows cf ::= cflowbelow(f) | cflowbelow(f( :: t))
Expressions e ::= c | x | proceed | λx.e | e e | let x = e in e

Types t ::= Int | Bool | a | t → t | [t]
Advice Predicates p ::= (f : t)
Advised Types ρ ::= p.ρ | t
Type Schemes σ ::= ∀ā.ρ

Fig. 3. Syntax of the AspectFun Language

In AspectFun, top-level definitions include global variable and function definitions, as
well as aspects. An aspect is an advice declaration which includes a piece of advice and
its target pointcuts. An advice is a function-like expression that executes when any of
the functions designated at the pointcut are about to execute. The act of triggering an
advice during a function application is called weaving. Pointcuts are denoted by {pc} (arg),
where pc stands for either a primitive pointcut, represented by ppc, or a composite pointcut.
Pointcuts specify certain join points in the program flow for advising. Here, we focus on
join points at function invocations. Thus a primitive pointcut, ppc, specifies a function



name the invocations of which, either directly or indirectly via functional arguments, will
be advised.

Advice is a function-like expression that executes before, after , or around a pointcut.
An around advice is executed in place of the indicated pointcut, allowing the advised
pointcut to be replaced. A special keyword proceed may be used inside the body of an
around advice. It is bound to the function that represents “the rest of the computation” at
the advised pointcut. As both before advice and after advice can be simulated by around
advice that uses proceed, we only need to consider around advice in this paper.

A sequence of pointcuts, {pc}, indicates the union of all the sets of join points se-
lected by the pci’s. The argument variable arg is bound to the actual argument of the
named function call and it may contain a type scope. Alpha renaming is applied to local
declarations beforehand so as to avoid name capturing.

A composite pointcut relates the triggering of advice to the program’s control flow.
Specifically, we can write pointcuts which identify a subset of function invocations which
occur in the dynamic context of other functions. For example, the pointcut f+cflowbelow(g)
selects those invocations of f which are made when the function g is still executing (i.e.
invoked but not returned yet).4 As an example, in the following code, there are four invo-
cations of fac, and advice n will be triggered by all the fac invocations, except the first
one (fac 3) due to the pointcut specification “fac+cflowbelow(fac)”.

n@advice around {fac + cflowbelow(fac)} (arg) = println "fac"; proceed arg in

fac x = if x==0 then 1 else x * fac (x-1) in fac 3

Similarly, a type-scoped control-flow based pointcut such as (g+cflowbelow(f( :t))) lim-
its the call context to those invocations of f with arguments of type t.

Composite pointcuts are handled separately in our compilation model through series of
code transformation, analyses and optimizations. This is discussed in detail in Section 5.

In AspectFun, advice names can also be primitive pointcuts. As such, we allow advices
to be developed to advice other advice. We refer to such advices as second-order advices .
In contrast, the two-layered design of AspectJ like languages only allow advices to advise
other advices in a very restricted way, thus a loss in expressivity [12].

The following code fragment shows a use of second-order advice to compute the total
amount of a customer order and apply discount rates according to certain business rules.

Example 2.

n3@advice around {n1,n2} (arg) = let finalRate = proceed arg

in if (finalRate < 0.5) then 0.5 else finalRate in

n1@advice around {getRate} (arg) = (getHolidayRate arg) * (proceed arg) in

n2@advice around {getRate} (arg) = (getAnniversaryRate arg) * (proceed arg) in

discount item = (getRate item) * (getPrice item) in

calcPrice cart = sum (map discount cart) in ...

In addition to the regular discount rules, ad-hoc sale discounts such as holiday-sales,
anniversary sales etc., can be introduced through aspect declarations, thus achieving sep-
aration of concern. This is shown in the n1 and n2 declarations. Furthermore, there may
be a rule stipulating the maximum discount rate that is applicable to any product item,
regardless of the multiple discounts it qualifies. Such a business rule can be realized using

4 The semantics of cflowbelow adheres to that provided in AspectJ. Conversion of the popularly
cflow pointcuts to cflowbelow pointcuts is available in [2].



a second-order aspect, as in n3. It calls proceed to compute the combined discount rate
and ensures that the rate do not exceed 50%.

AspectFun is polymorphic and statically typed. Central to our approach is the construct
of advised types, ρ in Figure 3, inspired by the predicated types [14] used in Haskell’s type
classes. These advised types augment common type schemes (as found in the Hindley-
Milner type system) with advice predicates, (f : t), which are used to capture the need of
advice weaving based on type context. We shall explain them in detail in Section 3.

We end our description of the syntax of AspectFun by referring interested readers
to the accompanied technical report [2] for detailed discussion of the complete features of
AspectFun, which include “catch-all” pointcut any and its variants, a diversity of composite
pointcuts, nested advices, as well as advices over curried functions.

Semantics of AspectFun As type information is required at the triggering of advices for
weaving, the semantics of AspectFun is best defined in a language that allows dynamic ma-
nipulation of types: type abstractions and type applications. Thus, we convert AspectFun
into a System-F like intermediate language, FIL.

Program πI ::= (Adv, eI)
Advice Adv ::= (n : ς, pc, τ, eI)
Join points jp ::= f : τ | ε
Expressions eI ::= c | x | proceed | λjpx : τx. eI | eI eI | Λα. eI | eI{τ} | LET x = eI IN eI

Values vI ::= c | λjpx : τx. eI | Λα. eI

Types τ ::= Int | Bool | α | τ → τ | [τ ]
Type schemes ς ::= ∀α. τ | τ

Fig. 4. Syntax of FIL

FIL stores all the advices in a separated space leaving only function declarations and
the main expression in the program. Expressions in FIL, denoted by eI , are extensions of
those in AspectFun to include annotated lambda (λjpx : τx.eI), type abstraction (Λα.eI)
and type application (eI{τ}) as listed in figure 4.

The conversion is led by the rule π
prog
� (A, eI). A type environment, also called

conversion environment, Δ of the structure x : ς is employed. We write the judgement
Δ �D π : τ � eI ;A to mean that an AspectFun program having type τ is converted to a
FIL program, yielding an advice store A ∈ Adv. The judgement Δ � e : τ � eI asserts
that an AspectFun expression e having a type τ under Δ is converted to a FIL expression
eI . The important conversion rules are listed in Figure 5. The full set of rules is available
in Appendix B.

Specifically, the rules (Decl:Func) and (Decl:Adv-An) convert top-level function
and advice declarations to ones having annotated lambda λf :τx : τx.eI ; the annotation
λ(f :τ) highlights its jointpoint. The semantics of FIL uses these annotations to find the
set of advices to be triggered. The conversion also introduces type abstraction Λα into
the definition bodies. In the rule (Expr:Ty-App), types are applied when these func-
tions/advices are used, thus enabling type-scoped advice to be triggered in the context of
polymorphic functions.

Each advice in AspectFun is converted to a tuple in A. The tuple contains the advice’s
name (n) with the advice’s type (ς), the pointcuts the advice selects (pc), the type-scope
constraint on argument (τ), and the advice body (eI).

Operational Semantics for FIL We describe the operational semantics for AspectFun in



(

prog� )

∅ �D π : τ � eI ;A
π

prog
� (A, eI)

(Decl:MainExpr)

Δ � e : τ � eI

Δ �D e : τ � eI ; ∅

(Decl:Func)

Δ.x : τx � e : τf � eI
f α = fv(τx → τf ) \ fv(Δ)

Δ.f : ∀α. τx → τf �D π : τ � eI ;A
Δ �D f x = e in π : τ � LET f = Λα. λf :τx→τf x : τx. eI

f IN eI ;A

(Decl:Adv-An)

tx

type
� τx Δ.x : τx, proceed : τx → τn � e : τn � eI

n

α = fv(τx → τn) \ fv(Δ) Δ �D π : τ � eI ;A
Δ �D n@advice around {pc} (x :: tx) = e in π : τ � eI ;

A, (n : ∀α.τx → τn, pc, τx, Λα. λn:τx→τnx : τx. eI
n)

(Expr:Var)

τ = Δ(x)

Δ � x : τ � x
(Expr:Ty-App)

∀α. τ = Δ(x) τx = [τ ′/α]τ

Δ � x : τx � x{τ ′}

(Type:Base) σ � Int
type
� Int σ � Bool

type
� Bool σ, a : α � a

type
� α

(Type:Inferred)

σ � t
type
� τ

σ � [t]
type
� [τ ]

σ � t1
type
� τ1 σ � t2

type
� τ2

σ � t1 → t2
type
� τ1 → τ2

Fig. 5. Conversion Rules to FIL (interesting cases)

terms of that for FIL. For the sake of space limitation, we leave the semantics for handling
cflow-based pointcut to Appendix C.

The reduction-based big-step operational semantics, written as ⇓A, is defined in Figure
6. Together with it are definitions of the auxiliary functions used. Note that the advice
store A is implicitly carried by all the rules, and it is omitted to avoid cluttering of symbols.

Triggering and weaving of advices are performed during function applications, as shown
in rule (OS:App). Triggering operation first chooses eligible advices based on argument
type, and weaves them into the function invocation – through a series of substitutions
of advice bodies – for execution. Note that only those advices the types of which are
instantiable to the applied function’s type are selected for chaining via the Weave function.

3 Static Weaving
In this section, we present a type inference system which guarantees type safety and, at
the same time, weaves the aspects through a type-directed translation. Note that, for com-
posite pointcuts such as f+cflowbelow(g), our static weaving system simply ignores the
control-flow part and only considers the associated primitive pointcuts (ie., f). Treatment
of control-flow based pointcuts is presented in Section 5.

Type directed weaving As introduced in Section 2, advised type denoted as ρ is used
to capture function names and their types that may be required for advice resolution. We
further illustrate this concept with our tracing example given in Section 1.

For instance, function f possesses the advised type ∀a.(h : a → a).a → a, in which
(h : a → a) is called an advice predicate. It signifies that the execution of any application
of f may require advices of h applied with a type which should be no more general than
a′ → a′ where a′ is a fresh instantiation of type variable a. We say a type t is more general
than type t′ iff t � t′ but t �≡ t′. Note that advised types are used to indicate the existence
of some indeterminate advices . If a function contains only applications whose advices are
completely determined, then the function will not be associated with an advised type; it



Expressions:
(OS:Value) c ⇓ c λjpx : τx. eI ⇓ λjpx : τx. eI Λα. eI ⇓ Λα. eI

(OS:App)

eI
1 ⇓ λjpx : τx. eI

3 Trigger(λx : τx. eI
3, jp) = λx : τx. eI

4 [eI
2/x]eI

4 ⇓ vI

eI
1 eI

2 ⇓ vI

(OS:Ty-App)

eI
1 ⇓ Λα. eI

2 [τ/α]eI
2 ⇓ vI

eI
1{τ} ⇓ vI

(OS:Let)

[eI
1/x]eI

2 ⇓ vI

LET x = eI
1 IN eI

2 ⇓ vI

Auxiliary Functions:
Trigger : eI × jp → eI

Trigger(eI , ε) = eI

Trigger(λx : τx. eI , f : τf ) = Weave(λx : τx. eI , τf , Choose(f, τx))

Weave : eI × τ × Adv → eI

Weave(eI , τf , []) = eI

Weave(eI
f , τf , a : advs) = Let (n : ∀α. τn, pc, τ, Λα. eI) = a

In If ¬(τn � τf ) Then Weave(eI
f , τf , advs)

Else Let τ be types such that [τ/α]τn = τf

(eI
p, eI

a) = (Weave(eI
f , τf , advs), (Λα. eI){τ})

λn:τnx : τx. eI
n = [eI

p/proceed]eI
a

In Trigger(λx : τx. eI
n, n : τn)

Choose(f, τ ) = {(ni : ςi, pci, τi, e
I
i ) | (ni : ςi, pci, τi, e

I
i ) ∈ A, τi � τ, ∃pc ∈ pci s.t. JPMatch(f, pc)}

JPMatch(f, pc) = (f ≡ pc)

Fig. 6. Operational Semantics for FIL

will be associated with a normal (and possibly polymorphic) type. As an example, the
type of the advised function h in Example 1 is ∀a.a → a since it does not contain any
application of advised functions in its definition.

We begin with the following set of auxiliary functions that assists type inference:

(Gen) gen(Γ,σ) = ∀ā.σ where ā = fv(σ)\fv(Γ ) (Card) |o1...ok| = k

The main set of type inference rules, as described in Figure 7, is an extension to the
Hindley-Milner system. We introduce a judgment Γ � e : σ � e′ to denote that expression
e has type σ under type environment Γ and it is translated to e′. We assume that the advice
declarations are preprocessed and all the names which appear in any of the pointcuts are
recorded in an initial global store A. Note that locally defined functions are not subject
to being advised and not listed in A. We also assume that the base program is well typed
in Hindley-Milner and the type information of all the functions are stored in Γbase.

The typing environment Γ contains not only the usual type bindings (of the form
x : σ � e) but also advice bindings of the form n : σ � x̄. This states that an advice with
name n of type σ is defined on a set of functions x̄. We may drop the � x̄ part if found
irrelevant. When the bound function name is advised (i.e. x ∈ A), we use a different
binding :∗ to distinguish from the non-advised case so that it may appear in a predicate
as in rule (Pred). We also use the notation :(∗) to represent a binding which is either :
or :∗. When there are multiple bindings of the same variable in a typing environment, the
newly added one shadows previous ones.

Predicating and Releasing Before illustrating the main typing rules, we introduce a
weavable constraint of the form wv(f : t) which indicates that advice application of the
f -call of type t can be decided. It is formally defined as:



Expressions:

(Var)

x : ∀ā.p̄.t� e ∈ Γ

Γ � x : [t̄/ā]p̄.t� e
(Var-A)

x :∗ ∀ā.p̄.tx ∈ Γ t′ = [t̄/ā]tx wv(x : t′) Γ � ni : t′ � ei

n̄ : ∀b̄.q̄.tn � x� n̄′ ∈ Γ {ni | ti � t′} |ȳ| = |p̄|
Γ � x : [t̄/ā]p̄.tx � λȳ.〈x ȳ , {ei}〉

(App)

Γ � e1 : t1 → t2 � e′1 Γ � e2 : t1 � e′2
Γ � e1 e2 : t2 � (e′1 e′2)

(Abs)

Γ.x : t1 � x � e : t2 � e′

Γ � λx.e : t1 → t2 � λx.e′

(Let)

Γ � e1 : ρ� e′1 σ = gen(Γ, ρ) Γ, f : σ � f � e2 : t� e′2
Γ � let f = e1 in e2 : t� let f = e′1 in e′2

(Pred)

x :∗ ∀ā.p̄.tx ∈ Γ [t̄/ā]tx � t

Γ, x : t� xt � e : ρ� e′t x ∈ A

Γ � e : (x : t).ρ� λxt.e
′
t

(Rel)

Γ � e : (x : t).ρ� e′

Γ � x : t� e′′ x ∈ A x �= e

Γ � e : ρ� e′ e′′

Declarations:

(Global)

Γ � e : ρ� e′ σ = gen(Γ, ρ) Γ.id :(∗) σ � id � π : t� π′

Γ � id = e in π : t� id = e′ in π′

(Adv)

Γ.proceed : t1 → t2 � λx.ea : p̄.t1 → t2 � e′a fi : ∀ā.ti ∈ Γbase try(S = t1 � tx)

S(t1 → t2) � ti Γ.n : σ � f̄ � n � π : t′ � π′ σ = gen(Γ,S(p̄.t1 → t2))

Γ � n@advice around {f̄} (x :: ∀b̄.tx) = eain π : t′ � n = e′a in π′

Fig. 7. Typing rules

Definition 1. Given a function f and its type t2 → t′2, if ((∀n.n :(∗) ∀ā.p̄.t1 → t′1 � f) ∈
Γ ∧ t1 ∼ t2) ⇒ t1 � t2, then wv(f : t2 → t′2).

This condition basically means that under a given typing environment, a function’s type is
no more general than any of its advices. For instance, under the environment {n : ∀a.[a] →
[a] � f, n1 : Int → Int � f}, wv(f : b → b) is false because the type is not specific enough
to determine whether n1 and n2 should apply whereas wv(f : Bool → Bool) is vacuously
true and, in this case, no advice applies. Note that since unification and matching are
defined on types instead of type schemes, quantified variables are freshly instantiated to
avoid name capturing.

There are two rules for variable lookups. Rule (Var) is standard. In the case that
variable x is advised, rule (Var-A) will create a fresh instance t′ of the type scheme
bound to x in the environment. Then we check weavable condition of (x : t′). If the check
succeeds (i.e., x’s input type is more general or equivalent to any of the advice’s), x will
be chained with the translated forms of all those advices defined on it, having equivalent
or more general types than x has (the selection is done by {ni|ti � t′}). We give all
these selected advices a non-advised type in the translation of them Γ � ni : [[σ′]] � ei.
This ensures the bodies of the selected advices are correctly woven. Finally, the translated
expression is normalized by bringing all the advice abstractions of x outside the chain
〈. . .〉. This ensures type compatibility between the advised call and its advices.

If the weavable condition check fails, there must exists some advices for x with more
specific types, and rule (Var-A) fails to apply. Since x ∈ A still holds, rule (Pred)

can be applied. This rule adds an advice predicate to a type (Note that we only allow
sensible choices of t constrained by tx � t). Correspondingly, its translation yields a
lambda abstraction with an advice parameter. This advice parameter enables concrete
advice-chained functions to be passed in at a later stage, called releasing, through the
application of rule (Rel). The rule (Rel) may be applied to release (i.e.,remove) an
advice predicate from a type. Its translation generates a function application with an



advised expression as argument. An example which shows type derivation steps in details
can be found in Appendix A.

Handling Advices Declarations define top-level bindings including advices. We use a
judgement Γ � π : σ � π′ which closely reassembles the one for expressions.

The rule (Global) is very similar to (Let) with the tiny difference that (Global)

will bind id with : when it is not in A; and with :∗ otherwise.
The rule (Adv) deals with advice declarations. We only consider type-scoped advices,

and treat non-type-scoped ones as special cases having the most general type scope ∀a.a.
We first infer the (possibly advised) type of the advice as a function λx.ea under the
type environment extended with proceed. The advice body is therefore translated. Note
that this translation does not necessarily complete all the chaining because the weavable
condition may not hold. Thus, as with functions, the advice is parameterized, and an
advised type is assigned to it and only released when it is chained in rule (Var-A).

Next, we check whether the inferred input type is more general than the type-scope:
If so, the inferred type is specialized with the substitution S resulted from the matching;
otherwise, the type-scope is simply ignored. The function try acts as an exception handler.
It attempts to match two types: If the matching succeeds, a resulting substitution is
assigned to S; otherwise, an empty substitution is returned. As a result, the inferred type
t1 is not strictly required to subsume the type scope tx. On the other hand, the advice’s
type S(t1 → t2) is require to be more general than or equivalent to all functions’ in the
pointcut. Note that the type information of all the functions is stored in Γbase. Finally,
this advice is added to the environment. It does not appear in the translated program,
however, as it is translated into a function awaiting for participation in advice chaining.

Translating Chain Expressions The last step of AspectFun compilation is to ex-
pand meta-constructs produced after static weaving, such as chain-expressions, to stan-
dard expressions in AspectFun, which are called expanded expressions. Expansion of meta-
construct is defined (partly) below by an expansion operator [[·]]. It is applied composition-
ally on expressions, with the help of an auxiliary function ProceedApply to abstract the
keyword proceed to become a function parameter. Moreover, ProceedApply also handles
expansion of second-order advices.

[[·]] : Expression containing meta-constructs −→ Expanded expression

[[e1 e2]] = [[e1]] [[e2]] ... trivial rules omitted
[[〈f e , {}〉]] = [[f e]]
[[〈f e , {ea, eadvs}〉]] = ProceedApply(ea, 〈f e , {eadvs}〉)

ProceedApply(〈n e , {ns}〉, k) = [[〈(λproceed.en e) k , {ns}〉]]
ProceedApply(n e, k) = [[(λproceed.en e) k]] if rank(n) = 0

where en is the body of n

rank(x) =

{
1 + maxi rank(eai) if x ≡ 〈f e , {ea}〉
0 otherwise

4 Correctness of Static Weaving

The correctness of static weaving is proven by relating it to the operational semantics of
AspectFun. As the latter is expressed in terms of the evaluation of expressions eI in FIL,
we define an equivalence relation between terms from AspectFun and FIL.



Definition 2 (∼∼). Given an expanded expression e and an FIL expression eI, e ∼∼ eI

iff e �−→∗
β v, eI ⇓A vI , and v ∼∼v vI , where v ∼∼v vI is defined as follows:

c ∼∼v c
v ∼∼v λjpx : τ.eI iff ∀e1 ∼∼ eI

1, (v e1) ∼∼ ((λjpx : τ.eI) eI
1)

To be applicable to an AspectFun program, the equivalence relation has to be built on
mutual agreement between the type environment and the FIL-conversion environment.

Definition 3 (Respect of Environment). A static weaving environment Γ is said to
respect a FIL-conversion environment and an advice store (Δ,A), written as Γ ∝ (Δ,A)
if

x :(∗) σ ∈ Γ ⇔ x : ς ∈ Δ where [[σ]]
type� ς and

n : ∀a.p.tx → tn � x ⇔ (n : ς, pc, τx, eI
n) ∈ A

where tx
type

� τx, (∀a.tx → tn)
type

� ς and JPMatch(x, pci) ≡ true for some i.

Next, we notice that predicates created during static weaving can be realized at run-
time through functions – and their associated advices – of appropriate types. This is
captured by the notion of feasibility.

Definition 4 (Feasibility to predicates). Given Γ, Δ,A and π with Γ ∝ (Δ,A), an
expanded expression e is said to be feasible to a predicate g : tg, written as e � g : tg, if
wv(g : tg) and e ∼∼ [τ/α](λg:τg x : τx.eI) where λg:τgx : τx.eI is the FIL-converted body of

function g in π and tg
type

� [τ/α]τg.

Based on the above definitions, we can define a crucial correspondence relation between
expressions produced by static weaving and the corresponding FIL-expressions, as follows:

Definition 5 (Respect of Expressions). Given an AspectFun program π such that the
static weaving environment Γ respects the FIL-converted pair (Δ,A). An expression λdp.e
produced by static weaving is said to respect an FIL-converted expression eI under the pair
of types (p.t, τ) if for all type substitution S making expressions ep � Sp and St

type� S′τ ,
[[[ep/dp]e]] ∼∼ (S′eI) holds.

We now extend this correspondence relation to an AspectFun program, relating the
static woven declarations and FIL-converted declarations.

Definition 6 (Respect of Environment Under Programs). Given an AspectFun
program π = decl in e, a static weaving environment Γ respects a type environment and

advice store (Δ,A) used in FIL-conversion , written as Γ
π

∝ (Δ,A), if

1. Γ ∝ (Δ,A),

2. all the global variables x = ex ∈ decl having translation Γ � ex : p.t � λdp.e′x and
Δ � ex : τx � Λα.eI

x, λdp.e′x respects eI
x under (p.t, τx),

3. all the functions g x = eg ∈ decl having translation Γ � λx.eg : p.t � λdp.λx.e′g and
Δ, x : τx � eg : τg � Λα.eI

g, λdp.λx.e′g respects eI
g under (p.t, τx → τg), and

4. all the advice n@advice around {pc} (arg) = en ∈ decl with arg ≡ x or x :: tx having
translation Γ, proceed : t � en : p.t� λdp.λx.e′n and (n : ∀α.τx → τn, pc, τx, Λα.λn:τx→τnx :
τx.eI

n) ∈ A, λdp.λx.e′n respects λn:τx→τnx : τx.eI
n under (p.t, τx → τn).



The correctness of static weaving wrt the operational semantics can now be stated:

Theorem 1 (Soundness of Static Weaving). Given an AspectFun expression e in the
environment Γ derived from the original program π. If

Γ
π

∝ (Δ,A), Γ � e : p.t� e′, and Δ � e : τ � eI ,

then either [[e′]] ∼∼ eI or e′ respects eI under (p.t, τ).

5 Compiling Control-Flow Based Pointcuts

At the beginning of the compilation process (step 2 in Figure 2), all control-flow based
pointcuts in the source are converted to pointcuts involving only cflowbelow[2]. For ex-
ample,

m@advice around {h+cflowbelow(d(_::Int))} (arg) = ...

will be translated, via introduction of second-order advice, into the following:

m’@advice around {d} (arg :: Int) = proceed arg in

m@advice around {h+cflowbelow(m’)} (arg) = ...

Next, the advice m will be further translated to

m@advice around {h} (arg) = ...

while the association of h+cflowbelow(m’) and m will be remembered for future use.
After the static weaving step, behaviors of control-flow based pointcuts are installed

into the woven code through guard insertion and monad transformation (step 6 and 8 in
Figure 2), following the semantics of control-flow based pointcuts. The description of the
two steps will be presented after explaining the extension made to the FIL semantics.

Semantics of control-flow based pointcuts The semantics of control-flow based point-
cuts is defined by modifying the operational semantics for FIL introduced in section 2.

Specifically, we modify the operational semantics function ⇓A, defined in Figure 6, to
carry a stack S, written as ⇓S

A, denoting that the progress is done under a stack environ-
ment S. S is a stack of function names capturing the stack of nested calls that have been
invoked but not returned at the point of reduction.

By replacing ⇓ by ⇓S , most rules remain unchanged except rules (OS:App) and
(OS:Let), which are refined with the introduction of (|e, S|):

(OS:App’)

eI
1 ⇓S λf :τf x : τx. eI

3 Trigger′(λfx : τx. eI
3, f : τf ,S) = λgx : τx. eI

4

S ′ = cons(g,S) [(|eI
2,S|)/x]eI

4 ⇓S′
vI

eI
1 eI

2 ⇓S
A vI

(OS:Let’)

[(|eI
1,S|)/x]eI

2 ⇓S vI

LET x = eI
1 IN eI

2 ⇓S vI
(OS:Clos)

eI ⇓S vI

(|eI ,S|) ⇓S′
vI

(|e,S|) is a stack closure, meaning that e should be evaluated under stack S ignoring
current stack. Detailed discussion of the modification can be found in Appendix C.



State-based implementation As stated above, the only control-flow based pointcut to
implement is the cflowbelow pointcut. We use an example to illustrate our implementation
scheme. The following is part of a woven code after static weaving.

Example 3. // meta-data: IFAdvice [k+cflowbelow(g)] (n,...)

n arg = arg+123 in

k x = x + 1 in

g x = <k, {n}> x in

f x = if x == 0 then g x else <k, {n}> x in (f 0, f 1)

This first (comment) line in the code above indicates that advice n is associated with the
pointcut k+cflowbelow(g). Hence, n should be triggered at a call to k only if the k-call
is made in the context of a g’s invocation. We call g the cflowbelow advised function.

In order to support the dynamic nature of the cflowbelow pointcut efficiently, our
implementation maintains a global state of function invocations, and inserts state-update
and state-lookup operations at proper places in the woven code. Specifically, the insertion
is done at two kinds of locations: At the definitions of cflowbelow advised functions, g
here, and at the uses of cflowbelow advices.

For a cflowbelow advised function definition, we encode the updating of the global
state – to record the entry into and the exit from the function – in the function body. In
the spirit of pure functional language, we implement this encoding using a reader monad
[7]. In pseudo-code format, the encoding of g in Example 3 will be as follows:5

g x = enter "g"; <k, n> x; restore_state

Here, enter "g" adds an entry record into the global state, and restore state erases it.
Next, for each use occurrence of cflowbelow advices, we wrap it with a state-lookup to

determine the presence of the respective pointcuts. The wrapped code is a form of guarded
expression denoted by <|guard,n|> for advice n. It implies that n will be executed only if
the guard evaluates to True. The Example 3 with wrapped code appears as follows:

Example 3a
// meta-data: IFAdvice [k+cflowbelow(g)] (n,...)

n arg = arg+123 in

k x = x + 1 in

g x = enter "g"; <k, { <| isIn "g", n|> } > x; restore_state in

f x = if x == 0 then g x else <k, { <| isIn "g", n |> } > x in (f 0, f 1)

The guard (isIn "g") determines if g has been invoked and not yet returned. If so,
advice n is executed. In this case, n is not triggered when evaluating f 1, but it is when
evaluating f 0.

Control-Flow Pointcut Analysis and Optimization From Example 3a, we note
that the guard occurring in the definition of g is always true, and can thus be eliminated.
Similarly, the guard occurring in the definition of f is always false, and the associated advice
n can be removed from the code. Indeed, many of such guards can be eliminated during
compile time, thus speeding up the execution of the woven code. We thus employ two
interprocedural analyses to determine the opportunity for optimizing guarded expressions.
They are mayCflow and mustCflow analyses (cf. [1]).

5 Further mechanism is required when the cflowbelow advised function is a built-in function.
The detail is omitted here.



Since the subject language is polymorphically typed and higher-order, we adopt annotated-
type and effect systems for our analysis (cf. [11]). We define a context ϕ to be a set of
function names. Judgments for both mayCflow and mustCflow analyses are of the form

Γ̂ � e : τ̂1
ϕ′
−→τ̂2 & ϕ

For mayCflow analysis (resp. mustCflow analysis), this means that under an annotated-

type environment Γ̂ , an expression e has an annotated type τ̂1
ϕ′
−→τ̂2 and a context ϕ

capturing the name of those functions which may be (resp. must be) invoked and not yet
returned during the execution of e. The annotation ϕ′ above the arrow → is the context
in which the function resulted from evaluation of e will be invoked.

As this type-and-effect approach has been described in detail in [11], we only present
the mayCflow analysis in Appendix D for reference. Applying both mayCflow and
mustCflow analyses over the woven code given in Example 3a, we obtain the following
contexts for the body of each of the functions:

ϕmay

k = {f, g}, ϕmay
g = {f}, ϕmay

f = ∅
ϕmust

k = ∅, ϕmust
g = {f}, ϕmust

f = ∅

The result of these analyses will be used to eliminate guarded expressions in the woven
code. The basic principles for optimization are:

Given a guarded expression egd of the form <| isIn f , e |>:

1. If the mayCflow analysis yields a context ϕmay for egd st. f �∈ ϕmay, then the
guard always fails, and egd will be eliminated.

2. If the mustCflow analysis yields a context ϕmust for egd st. f ∈ ϕmust, then
the guard always succeeds, and egd will be replaced by the subexpression e.

Going back to Example 3a, we are thus able to eliminate all the guarded expressions,
yielding the following woven code:

// meta-data: IFAdvice [k+cflowbelow(g)] (n,...)

n arg = arg+123 in

k x = x + 1 in

g x = enter "g"; <k, {n}> x; restore_state in

f x = if x == 0 then g x else <k, {}> x in (f 0, f 1)

The expression <k,{}> indicates that no advice is chained; thus k will be called as usual.

6 Related Work

AspectML [4, 3] and Aspectual Caml [10] are two other endeavors to support polymorphic
pointcuts and advices in a statically typed functional language. While they have introduced
some expressive aspect mechanisms into the underlying functional languages, they have not
successfully reconciled coherent and static weaving – two essential features of a compiler
for an aspect-oriented functional language.

AspectML [4, 3] advocates first-class join points and employs the case-advice mecha-
nism to support type-scoped pointcuts based on runtime type analysis. It enables program-
mers to reify calling contexts and change advice behavior based on the context information



found therein, thus achieving cflow based advising. Such dynamic mechanisms gives As-
pectML additional expressiveness not found in other works. However, many optimization
opportunities are lost as advice application information is not present during compilation.

Aspectual Caml [10] takes a lexical approach to static weaving. Its weaver traverses
type-annotated base program ASTs to insert advices at matched joint points. The types of
the applied advices must be more general than those of the joint points, thus guaranteeing
type safety. Unfortunately, the technique fails to support coherent weaving of polymorphic
functions which are invoked indirectly. Moreover, there is no formal description of the type
inference rules, static weaving algorithm, or operational semantics.

The implementation and optimization of AspectFun took inspirations from the As-
pectBench Compiler for AspectJ (ABC) [1]. Despite having a similar aim, the differences
between object-oriented and functional paradigms do not allow most existing techniques
to be shared. The concerns of closures and inlining can be more straightforwardly encoded
with higher-order functions and function calls in AspectFun; whereas the complex control
flow of higher-order functional languages makes the cflow analysis much more challenging.
As a result, our typed cflow analysis has little resemblance with the one in ABC which
was based on call graphs of an imperative language.

In [9], Masuhara et al. proposed a compilation and optimization model for aspect-
oriented programs. As their approach employs partial evaluation to optimize a dynamic
weaver implemented in Scheme, the amount of optimization is restricted by the ability of
the partial evaluator. In contrast, our compilation model is built upon a static weaving
framework; residues are only inserted when it is absolutely necessary (in case of some
control-flow based pointcuts), which keeps the dynamic impact of weaving to a minimum.

7 Conclusion and Future Work

Static typing, static and coherent weaving are our main concerns in constructing a com-
pilation model for functional languages with higher-order functions and parametric poly-
morphism. As a sequel to our previous work, this paper has made the following significant
progress. Firstly, while the basic structure of our type system remains the same, the typing
and translation rules have been significantly refined and extended beyond the two-layered
model of functions and advices. Consequently, advices and advice bodies can also be
advised. Secondly, we proved the soundness of our static weaving with respect to an oper-
ational semantics for the underlying language, AspectFun. Thirdly, we seamlessly incorpo-
rated a wide range of control-flow based pointcuts into our model and implemented some
novel optimization techniques which take advantage of the static nature of our weaver.
Lastly, we developed a compiler which follows our model to translate AspectFun programs
into executable Haskell code.

Moving ahead, we will investigate additional optimization techniques and conduct em-
pirical experiments of performance gain. Besides, we plan to explore ways of applying our
static weaving system to other language paradigms. In particular, Java 1.5 has been ex-
tend with parametric polymorphism by the introduction of generics. Yet, as mentioned in
[5], the type-erasure semantics of Java prohibits the use of dynamic type tests to handle
type-scoped advices. We speculate our static weaving scheme could be a key to the solution
of the problem.



References

1. Pavel Avgustinov, Aske Simon Christensen, Laurie Hendren, Sascha Kuzins, Jennifer Lhoták,
Ondřej Lhoták, Oege de Moor, Damien Sereni, Ganesh Sittampalam, and Julian Tibble.
Optimising AspectJ. In PLDI ’05: Proceedings of the 2005 ACM SIGPLAN conference on
Programming language design and implementation, pages 117–128, New York, NY, USA,
2005. ACM Press.

2. Kung Chen, Shu-Chun Weng, Meng Wang, Siau-Cheng Khoo, and Chung-Hsin Chen. A
compilation model for AspectFun. Technical report, TR-03-07, National Chengchi University,
Taiwan, March 2007. http://www.cs.nccu.edu.tw/˜chenk/AspectFun/AspectFun-TR.pdf.

3. Daniel S. Dantas, David Walker, Geoffrey Washburn, and Stephanie Weirich. PolyAML: a
polymorphic aspect-oriented functional programmming language. In Proc. of ICFP’05. ACM
Press, September 2005.

4. Daniel S. Dantas, David Walker, Geoffrey Washburn, and Stephanie Weirich. AspectML:
A polymorphic aspect-oriented functional programming language. ACM Transactions on
Programming Languages and Systems (TOPLAS), 2006, to appear.

5. Radha Jagadeesan, Alan Jeffrey, and James Riely. Typed parametric polymorphism for
aspects. Science of Computer Programming, 2006, to appear.

6. M. P. Jones. Qualified Types: Theory and Practice. D.phil. thesis, Oxford University, Septem-
ber 1992.

7. Mark P. Jones. Functional programming with overloading and higher-order polymorphism.
In Advanced Functional Programming, pages 97–136, 1995.

8. Gregor Kiczales, John Lamping, Anurag Menhdhekar, Chris Maeda, Cristina Lopes, Jean-
Marc Loingtier, and John Irwin. Aspect-oriented programming. In Mehmet Akşit and Satoshi
Matsuoka, editors, Proceedings European Conference on Object-Oriented Programming, vol-
ume 1241, pages 220–242. Springer-Verlag, Berlin, Heidelberg, and New York, 1997.

9. Hidehiko Masuhara, Gregor Kiczales, and Christopher Dutchyn. A compilation and opti-
mization model for aspect-oriented programs. In CC, pages 46–60, 2003.

10. Hidehiko Masuhara, Hideaki Tatsuzawa, and Akinori Yonezawa. Aspectual Caml: an aspect-
oriented functional language. In Proc. of ICFP’05. ACM Press, September 2005.

11. Flemming Nielson, Hanne R. Nielson, and Chris Hankin. Principles of Program Analysis.
Springer-Verlag New York, Inc., Secaucus, NJ, USA, 1999.

12. Hridesh Rajan and Kevin J. Sullivan. Classpects: unifying aspect- and object-oriented lan-
guage design. In ICSE ’05: Proceedings of the 27th international conference on Software
engineering, pages 59–68, New York, NY, USA, 2005. ACM Press.

13. Damien Sereni and Oege de Moor. Static analysis of aspects. In Mehmet Aksit, editor, 2nd
International Conference on Aspect-Oriented Software Development (AOSD), pages 30–39.
ACM Press, 2003.

14. Philip Wadler and Stephen Blott. How to make ad-hoc polymorphism less ad-hoc. In Confer-
ence Record of the 16th Annual ACM Symposium on Principles of Programming Languages,
pages 60–76. ACM, January 1989.

15. Meng Wang, Kung Chen, and Siau-Cheng Khoo. Type-directed weaving of aspects for higher-
order functional languages. In PEPM ’06: Workshop on Partial Evaluation and Program
Manipulation. ACM Press, 2006.

A A Static Typing/Translation Example

We illustrate the application of rules in Figure 7 by deriving the type and the woven code
for the program shown in Example 1. We use C as an abbreviation for Char. During the
derivation of the definition of f , we have:

Γ = {h :∗ ∀a.a → a� h, n3 : ∀a.a → a � h� n3,
n4 : ∀a.[a] → [a] � h� n4, n5 : ∀b.[C] → [C] � h� n5}



h : t → t� dh ∈ Γ2
(Var)

Γ2 � h : t → t� dh

x : t� x ∈ Γ2
(Var)

Γ2 � x : t� x
(App)

Γ2 = Γ1, x : t� x � (h x) : t� (dh x)
(Abs)

Γ1 = Γ, h : t → t� dh � λx.(h x) : t → t� λx.(dh x)
(Pred)

Γ � λx.(h x) : (h : t → t).t → t� λdh.λx.(dh x)

Next, for the derivation of the first element of the main expression, we have:

Γ3 = {h :∗ ∀a.a → a� h, n3 : ∀a.a → a � h� n3, n4 : ∀a.[a] → [a] � h� n4,
n5 : ∀b.[C] → [C] � h� n5, f : ∀a.(h : a → a).a → a� f}

f : ∀a.(h : a → a).a → a� f ∈ Γ3
(Var)

Γ3 � f : (h : [C] → [C]).[C] → [C]� f

h :∗ ∀a.a → a� h ∈ Γ3 ...
(Var-A)

Γ3 � h : [C] → [C]� 〈h , {n3, n4, n5}〉
(Rel)

Γ3 � f : [C] → [C]� (f 〈h , {n3, n4, n5}〉)
...

(App)

Γ3 � (f “c”) : [Char]� (f 〈h , {n3, n4, n5}〉 “c”)

We note that rules (Abs),(Let) and (App) are rather standard. Rule (Let) only bind
f with : which signalizes locally defined functions are not subject to advising.

B AspectFunto FIL Conversion Rules

Figures 8, 9 and 10 define the rules achieving AspectFun to FIL conversion.

(Type:Base) σ � Int
type
� Int σ � Bool

type
� Bool σ, a : α � a

type
� α

(Type:Inferred)

σ � t
type
� τ

σ � [t]
type
� [τ ]

σ � t1
type
� τ1 σ � t2

type
� τ2

σ � t1 → t2
type
� τ1 → τ2

Fig. 8. Type conversion judgements

C Modification to the Semantics for Handling Cflow-Based
Pointcuts

In this section, we shall present semantics extensions on the FIL to support cflow-based
pointcuts. The modification is so small that existing conditions or proofs based on the
existing definitions are all valid with a little modification.

FIL Supporting Cflow The operational semantics should be modified to carry the stack
information. Fortunately, since we already annotated function names on the function body,
only the rule is really changed.

First, we modify the reduction-based big-step operational semantics function ⇓A to
carry a stack S, written as ⇓S

A, denoting that the progress is done under stack environment
S. S is a list of function names capturing the stack of nested calls (represented by the



(

prog� )

∅ �D π : τ � eI ;A
π

prog
� (A, eI)

(Decl:MainExpr)

Δ � e : τ � eI

Δ �D e : τ � eI ; ∅

(Decl:Const)

Δ � e : τx � eI
x α = fv(τx) \ fv(Δ) Δ.x : ∀α. τx �D π : τ � eI ;A

Δ �D x = e in π : τ � LET x = Λα. eI
x IN eI ;A

(Decl:Func)

Δ.x : τx � e : τf � eI
f α = fv(τx → τf ) \ fv(Δ)

Δ.f : ∀α. τx → τf �D π : τ � eI ;A
Δ �D f x = e in π : τ � LET f = Λα. λf :τx→τf x : τx. eI

f IN eI ;A

(Decl:Func-Rec)

Δ.f : τx → τf .x : τx � e : τf � eI
f α = fv(τx → τf ) \ fv(Δ)

Δ.f : ∀α. τx → τf �D π : τ � eI ;A
Δ �D f x = e in π : τ � LET f = Λα. λf :τx→τf x : τx. eI

f IN eI ;A

(Decl:Adv)

Δ �D n@advice around {pc} (x :: a) = e in π : τ � eI ;A
Δ �D n@advice around {pc} (x) = e in π : τ � eI ;A

(Decl:Adv-An)

tx

type
� τx Δ.x : τx.proceed : τx → τn � e : τn � eI

n

α = fv(τx → τn) \ fv(Δ) Δ �D π : τ � eI ;A
Δ �D n@advice around {pc} (x :: tx) = e in π : τ � eI ;

A, (n : ∀α.τx → τn, pc, τx, Λα. λn:τx→τnx : τx. eI
n)

(

type�)

b = fv(t) α = fresh(a) β = fresh(b) a : α, b : β � t
type
� τ

∀a.t
type
� ∀α.τ

Fig. 9. Declaration conversion judgements

corresponding function names) that have been invoked but not returned at the point of
reduction.

Second, two intermediate expression construction, stack closure and stack frame are
added. Stack closure is written as (|e,S|), it means that e should be evaluated under stack
S ignoring current stack. Note that applying a substitution ([e′/x]) on a stack closure
affects only the expression, left the stack unchanged: [e′/x](|e,S|) = (|[e′/x]e,S|). Stack
frame, written as λfx : τx.eI , being used between (OS:App) and Trigger, evaluates eI

under current stack with f pushed. The difference between annotated lambda and stack
frame is that type is not carried in a stack frame.

Most rules remains unchanged except that ⇓ are all replaced by ⇓S . Rule (OS:App)

is changed into

(OS:App’)

eI
1 ⇓S λf :τf x : τx. eI

3 Trigger′(λfx : τx. eI
3, f : τf ,S) = λgx : τx. eI

4

S ′ = cons(g,S) [(|eI
2,S|)/x]eI

4 ⇓S′
vI

eI
1 eI

2 ⇓S
A vI

Rule (OS:Let), which is often thought as a syntactic sugar for the underlying lambda
application, changes similar to (OS:App)

(OS:Let’)

[(|eI
1,S|)/x]eI

2 ⇓S vI

LET x = eI
1 IN eI

2 ⇓S vI



(Expr:Const) Δ � c : τc � cI where τc and cI are built-in type and expression

(Expr:Var)

τ = Δ(x)

Δ � x : τ � x
(Expr:Ty-App)

∀α. τ = Δ(x) τx = [τ ′/α]τ

Δ � x : τx � x{τ ′}

(Expr:Lambda)

Δ.x : τx � e : τ � eI

Δ � λx. e : τx → τ � λx : τx. eI
(Expr:App)

Δ � e1 : τ ′ → τ � eI
1

Δ � e2 : τ ′� eI
2

Δ � e1 e2 : τ � eI
1 eI

2

(Expr:Let)

Δ.x : τx � ex : τx � eI
x α = fv(τx) \ fv(Δ) Δ.x : ∀α. τx � e : τ � eI

Δ � let x = ex in e : τ � LET x = Λα. eI
x IN eI

Fig. 10. Expression conversion judgements

Finally a new rule for closure evaluation is needed:

(OS:Clos)

eI ⇓S vI

(|eI ,S|) ⇓S′
vI

As (OS:App) is changed, the auxiliary functions Trigger, Weave, Choose and JPMatch
are changed accordingly.

Trigger′ : eI × jp × stack → eI

Trigger′(eI , ε,S) = eI

Trigger′(λf :τf x : τx. eI , f : τf ,S) = Weave′(λf :τf x : τx. eI , τf ,S , Choose′(f, τx,S))

Weave′ : eI × τ × stack × Adv → eI

Weave′(eI , τf ,S , []) = eI

Weave′(eI
f , τf ,S , a : advs) = Let (n : ∀α. τn, pc, τ, Λα. eI) = a

In If ¬(τn � τf ) Then Weave(eI
f , τf , advs)

Else Let τ be types such that [τ/α]τn = τf

(eI
p, eI

a) = (Weave′(eI
f , τf ,S , advs), (Λα. eI){τ})

λn:τnx : τx. eI
n = [eI

p/proceed]eI
a

In Trigger(λnx : τx. eI
n, n : τn,S)

Choose′(f, τ,S) = {(ni : ςi, pci, τi, e
I
i ) | (ni : ςi, pci, τi, e

I
i ) ∈ A, τi � τ, ∃pc ∈ pci s.t. JPMatch′(f, pc,S)}

JPMatch′(f, pc + cflowbelow(g),S) = JPMatch′(f, pc,S) ∧ g ∈ S
JPMatch′(f, pc,S) = JPMatch(f, pc)

D mayCflow Inference Rules

In handling control-flow-based analysis and optimization, we would like our subject pro-
gram to be in the form that (1) all advice declarations have proceed as their first argument,
and yet (2) chain expressions still exist in the program. To this end, we first modify the
chain-expansion definition given earlier to the following:

[[·]] : Expression containing meta-constructs −→ Expanded expression
[[e]] = let e′ = addProceed(e) in [[+ e′ +]]
addProceed(let n arg = e1 in e2) = if (n is an advice) then

let n proceed arg = e1 in addProceed(e2)
else let n arg = e1 in addProceed(e2)

addProceed(e) = e



[[+ e1 e2 +]] = [[+ e1 +]] [[+ e2 +]] ... trivial rules omitted
[[+ 〈f e , {}〉 +]] = [[+ f e +]]
[[+ 〈f e , {ea, eadvs}〉 +]] = ProceedApply(ea, 〈f e , {eadvs}〉)

ProceedApply(〈n e , {ns}〉, k) = [[+ 〈en k e , {ns}〉 +]]
ProceedApply(n e, k) = [[+ en k e +]] if rank(n) = 0

where en is the body of n

rank(x) =

{
1 + maxi rank(eai) if x ≡ 〈f e , {ea}〉
0 otherwise

With the above definition, we now can subject the woven code to the operation
addProceed. Next, we make some changes to the original analysis:

– A little typo with in rule (If) in which incorrect indices of the expressions are corrected.

– In rule (Let), the first premise should not carry a new type association for variable
x. Also, when performing inferring on e2, the type association of x in the assumption
should be τ̂1.

– In rule (Decl), the “invocation context” of f (that is, ϕF ) should include the function
name f . I don’t know what the argument was that leads to dropping it. I hope this
new version is more accurate. In addition, we need to have the constraint that f is in
the invocation context.

– In rule (Guarded), we don’t directly infer the guarded expression; rather, we infer
the application of guarded expressions. This allows us to capture the context at both
the success and the failure of the guard. As such, I call the rule (Gd-app), instead of
(Guarded).

– Because of the new guarded-application rule, the general rule for function application
should be constrained so that the rules remain syntax-directed. I added a new predicate
guarded(e1) to ensure that e1 is a guarded expression. Note that, by doing this, we
also assume that a guarded expression must appear in the function application context.
(Otherwise, the program is ill-typed.) In logical form, we have

guarded (<|e1, e2|>) = True
guarded (e) = False

(Const) Γ̂ �may c : τ̂c & ϕ (Var) Γ̂ �may x : Γ (x) & ϕ

(Lambda)

Γ̂ .x : τ̂x �may e : τ̂e & ϕ

Γ̂ �may λx.e : τ̂x
ϕ′
−→τ̂e & ϕ

(App)

Γ̂ �may e1 : τ̂2
ϕF−→τ̂ & ϕ ¬guarded(e1)

Γ̂ �may e2 : τ̂2 & ϕ ϕ ⊆ ϕF

Γ̂ �may (e1 e2) : τ̂ & ϕ

(Let)

Γ̂ �may e1 : τ̂1 & ϕ

Γ̂ .x : τ̂1 �may e2 : τ̂ & ϕ

Γ̂ �may let x = e1 in e2 : τ̂ & ϕ

(If)

Γ̂ �may e1 : Bool & ϕ

Γ̂ �may e2 : τ̂ & ϕ Γ̂ �may e3 : τ̂ & ϕ

Γ̂ �may if e1 then e2 else e3 : τ̂ & ϕ

(Decl)

Γ̂ .(f : τ̂x
ϕF−→τ̂).(x : τ̂x) �may ef : τ̂ ′ & ϕF {f} ⊆ ϕF Γ̂ .(f : τ̂x

ϕF−→τ̂ ) �may p : τ̂ & ∅
Γ̂ �may f x = e in p : τ̂ & ∅

(Chain)

Γ̂ �may e1(e2(. . . (en e) . . .)) : τ̂ & ϕ

Γ̂ �may 〈e, {e1, . . . , en}〉 : τ̂ & ϕ
(Gd-app)

Γ̂ �may e1 : Bool & ϕ Γ̂ �may e3 : τ̂ & ϕ

Γ̂ �may (e2 e3) : τ̂ & ϕ

Γ̂ �may <|e1, e2|> e3 : τ̂ & ϕ



(Subs)

Γ̂ �may e : τ̂ & ϕ

Γ̂ �may e : τ̂ ′ & ϕ
if τ̂ ≤ τ̂ ′

(Subt1)

τ̂ ′
1 ≤ τ̂1 τ̂2 ≤ τ̂ ′

2 ϕ′ ⊆ ϕ

τ̂1
ϕ−→τ̂2 ≤ τ̂ ′

1
ϕ′
−→τ̂ ′

2

(Subt2) τ̂ ≤ τ̂


