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Algorithms for Next-Generation Sequencing

SNV calling
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Variations in our genome

(a) Single Nucleotide Polymorphism (SNV)

1 ’ ]

(b) Small indel
l

¥

(c) Copy Number Variation (CNV)

¥

(d) Structural Variation (SV)
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SNV

* SNV is a point mutation.
e |tis the most frequent genome variations.
e Each individual expects to have one SNV per 1000bp.

L ‘ ]

e SNV can occur in

— protein coding region (a sequence of codons) or
— non-coding region.
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SNV

 For SNVs on protein coding regions,
— Synonymous SNV: SNV that does not change amino acid
* Since they do not change amino acid, they may be neutral

— Non-synonymous SNV: SNV that changes amino acid
* Non-sense SNV: SNV that changes amino acid to stop codon
* Missense SNV: otherwise
e They can severely impact the 3D structure and function of the protein

 For SNVs on non-coding regions,
— Most of them are neutral.

— Some occur at functional sites like transcription factor binding sites or splice
junctions. They affect the gene expression.
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indels

e |Indels is a small insertion or deletion (of size <50bp).
* |tisthe 2" most frequent genome variations.
e Each individual expects to have one indel per 3000bp.

D

 Most indels are of size 1-20bp (98.5%)
e Most indels (43-48%) are located at 4% of the genome.
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Formation of indels

 75% indels are
caused by
polymerase slippage.

e |t occurs in a section

with repeat patterns
of bases (like CAG).

i) ALGORITHNS FOR >
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CAGCAGCAGCAGT CAGCAG R
@ JJ 1ttt
h GT CGTCGTCGTCGTT CGTC
. c/bubble
A A
C G
CAGCAG C AGCAGCAG >
) J T TTTTT 1] HEEEEEEEEE
GT CGTCGT CGTCGTC CGTSC
replication
CAGCAGCAGC CAGCAGTC CAGCAG -
St rrrerrr ettt rrrttrrrir
D G TCGTCGTCGT CGTCGTTC CGTC
(c)
CAGCAGCAGCAGC CAGCAG >
JIHEEEEEEEEEEEEEEEEEEEEE
h GT CGTCGTCGTOCGTTC CGTC
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Effect of indels

e Indels in non-coding regions
— Mostly neutral
— If they occur in functional sites like binding site, it may have effect.

* Indels in protein coding regions

— It will cost frame-shift

— If indel is multiple of 3, it will cause deletion or insertion of a few
codons. It may not affect the property of the gene

— If indels is not multiple of 3, it will destroy the whole protein.
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Homozygous and Heterozygous

e Human genome is diploid.

 The pair of nucleotides (alleles) appear in a particular position
(locus) is its genotype.

e |f the two alleles at a locus are the same, it is a homozygous
genotype; otherwise, it is a heterozygous genotype.

ACGTCATG...
ACGCCATG...

\

heterozygous
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SNV/indel versus phenotype

* SNV/indel are related to a number of diseases:

— SNVs in TP53 and CTNNB1 are recurrently associated with HCC (liver
cancer)

— Indels appear in microsatellites have been linked to >40 neurological
diseases

— Deletion of intron 2 of the BIM gene is associated with the resistance
to tyrosine kinase inhibitors in CML patients

Algorithms for Next-Generation Sequencing Copyright @ Wing-Kin Sung



J) ALGORITHNS FOR >
NEKT-GENERATION SEQUENCING ®

Somatic and germline mutations

e Germline mutations
— Mutations that are transmitted from parents to offspring.
— These mutations present in every cell of an individual.

 Somatic mutations
— Mutations that occur in a small group of an individual.

— These mutations will not pass to his/her children.
— These mutations may cause diseases like cancer.
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Genomes of an individual

- Align reads on the reference and identify variations

Reference genome
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Target sequencing

* Most disease related variants are located in protein coding ~
regions (or exons).

 Exons represent <2% of the human genome.

* To reduce cost, we can perform target sequencing:
— The most popular one is Whole Exome Sequencing (WES)
— It is cheaper than Whole Genome Sequencing (WGS)
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Target enrichment workflow

e This workflow tries to pull down targeted DNA fragments.

Genomic DNA
Sonication to break genomic DNA l

In-solution hybridization of biotinylated probe b -2 Biotinylated probe

2

Enrichment by pull-down l
2
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Amplicon generation workflow

e This workflow amplifies targeted regions.

Genomic DNA

Primer pair flanking
Hybridization of custom primer pairs — =" region of interest

Genomic DNA

Extension & Ligation of the region of interest l

Genomic DNA

Amplification by PCR l
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(a) Chrl 1111111111222222 22223333333333444444444455555555556666666666777777
1234567890123456789012345 678901234567890123456789012345678901234567859012345
REF: ACGTACAGACAGACTTAGGACAGAT--CGTCACACTCGGACTGACCGTCACAACGGTCATCACCGGACTTACAATCG
Samplel: GTACACACAGAC CAGATARACGTCAC CGGACTGACCGTCA AACGGT-———————"—————— CAATCG
ACACACAGACTT
CACACAGACTTA

SampleZ: ACGTACAGACAG GACAGATAACGTC TCGGACT---CG ACAACGGT---———--==————- CAAT

CGTACAGACAGA GGACAGATT-CGT W IME e [ ———————— === CARTC

AGGACAGATT-CGT

ftfileformat=VCFv4.2

(b) ##filepate=20110705
##source=VCFtools VCF
f#reference=NCBI36
##ALT=<ID=DEL,Description="Deletion">
##FILTER=<ID=gl0,Description="Quality below 10">
##INFO=<ID=SVTYPE,umber=1, Type=String, Description="Type of structural variant">
##INFO=<ID=END, Number=1, Type=Integer,Description="End position of the wariant">
##FORMAT=<ID=GQ, Number=1, Type=Integer, Description="Genotype Quality (phred score}">
##FORMAT=<ID=GT, Number=1, Type=String, Description="Genotype">
##FORMAT=<ID=DP, Number=1, Type=Integer,Description="Read Depth">

#CHROM POS ID REF ALT QUAL FILTER INFC FORMAT Samplel Sample?2
1 8 . G C . PASS . GT:DP 1/1:3 0/0:2

1 25 . T TAA, TT . ql0 . GT:DF 1/1:1 1/2:3

1 40 . TGAC T . PASS . GT:GQ 1/1:50 0/0:70
1 55 . T <DEL> . FPASS SVTYPE=DEL;END=69 GT 1/1 1/1
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Basic SNV calling =

| pLrey

e 1. Align reads 2. Identify a column with variants. 3. Call SNVs

Aligned reads | ——==" CACATAGACACCATTGAACACGTG——=—======~

Reference CACGTCACATAGACACCATTGAACACGTGGGTCACCATAT
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Different methods for calling SNVs

SNV calling

— Counting alleles

— Binomial distribution

— Poisson-Binomial model
— Bayesian approach

— Posterior odds ratio

e Somatics SNV calling
— Fisher exact test
— Probabilistic binomial mixture

Algorithms for Next-Generation Sequencing Copyright @ Wing-Kin Sung
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SNP calling based on counting alleles

1. Keep high-confident bases

— Usually, keep bases with phred score > 20
2. For each loci, counts the number of occurrences of each allele
3. If the proportion of the non-reference allele is between 20% and

80%, it is called a heterozygous genotype; otherwise, it is called a
homozygous genotype.

 This method is used in a number of commercial software including
Roche’s GSMapper, the CLC Genomic Workbench and the DNSTAR

Lasergene.
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Aligned reads —

Reference CACGTCACATAGACACCATTGAACACGTGGGTCACCATAT

Allele count a 4453177767787 77889888989881q777776655554
b 00005000000000000000001j000¢2000000000000

Homozygous Heterozygous
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Goodness of the simple approach

» This method works fairly well when the sequencing depth is
high (> 20x).

* Limitations:
— Simple quality score cutoff may lead to loss of information.
— This approach cannot provide measures of uncertainty.
— It may under-call heterozygous genotypes.
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e Simple counting does not give p-value.
 To determine uncertainty, we can use binomial distribution.
e Let D={b,, ..., b} be the set of bases covering a particular locus.

* H, (null model): All non-reference bases are generated by
seguencing error.

— (Assume p (say 0.01) is the chance of sequencing error)

* H,: The non-reference bases are real variant.
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Binomial distribution

 Null model: There is no SNV. (Assume p is the sequencing error rate.)
e Denote Pr_(X=k) be the probability of observing k non-reference variant among n bases under null

model. Under binomial distribution, we have: Pr,,(X = k) = (Z) p(1 —p)k

* Inthe example below, D={A, G, A}. A is the non-reference variant which occurs twice.
e Suppose the sequencing error rate is p=0.01.
e The chance of observing two non-reference variant is

— Pr,(X=2)= (3) (0.01)2(1 — 0.01) + (g) (0.01)3= 0.000298.

 With p-value threshold 0.05, we reject the null model.

GAACTCGCACGATCAG

GAACTCACAC
ACTCGCACGA
TCACACGATC
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Poisson-binomial model

* Previous solution assume sequencing error is the same for
every called base.

 We can estimate the sequencing error using the quality score per base.

* Consider a base b, with quality score q..
a;
e The error probability e; = 10 10,

GAACTCGCACGATCAG
GAACT AC A 20 102

TCACACGATC

A 50 10

Algorithms for Next-Generation Sequencing Copyright @ Wing-Kin Sung



)

i) ALGORITHMS FOR -

NENT-GENERATION SEQUENCING ™

5,5’ 3?‘% (’ﬁ&" :

Poisson-binomial model

%

S
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e With the error probability {e,, ..., e,}, we can compute
Pr,,(X = k) as follows.

Pro(X =k)= )»_ { (H (1— et)) (H ez) | the number of (b; # 7) is k}

blvnbﬂ_ bi:T bi?"—"i"‘

o If Pr,,(X = k) is smaller than the p-value threshold, we reject
the null model.
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Poisson-binomial model

* For the previous example, Pr,,(X = 2) = 0.00100108.
We reject the null model.

Pr3(X =0) = (1—e1)(l—e2)(1—-e3)=0.89099109
Prs(X =1) = (en)(l —e2)(l—es)+ (1—er)(e2)(l—e3)+ (1—er)(l—ez2)(es)
= 0.10800783
Prg(X =2) = (1—e1)(ez2)(es) + (e1)(1 —e2)(es) + (e1)(e2)(1 — e3)
= 0.00100107
Prs(X =3) = (e1)(e2)(es3) = 0.00000001
GAACTCGCACGATCAG
GAACT%ZEAC A 20 10
ACTCGCACGA . 0 Lot
TCACACGATC ) . o
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How to compute Pr (X=K)?

e LoFreq proposed a dynamic programming solution.
e When k=0, n=0 (base case),
- Prhb(X=0)=1
e When k=0, n>0 (recursive case),
- Pr,(X=0)=(1-e,)Pr_1(X =0)
e When k>0 (recursive case),
— Prh(X=k)=0-¢,)Pr,_.X=k)+e,Pr,(X=k—1)

e By the above recursive equation, we have an O(Kn) time algorithm for computing
Pr. (X=K).
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Algorithm for computing Pr (X>K)

Algorithm LoFreq
Require: n is the number of bases at the locus and K is the number of
non-reference bases, {qi,...,q,} is the set quality scores.
Ensure: Pr, (X > K)
1: PT(]( 0)
2: forz—ltondo
3 Set Pry(X =0)=(1—¢;)Pr;_1(X =0), where e; = 10~ 1
4: end for
5. for : =1 ton do
6: for k=1 to min{s, K — 1} do
7: Compute Pr;(X = k) by Equation 6.1;
8: end for
9: end for
10: Report 1 — kK ,:]1 Pr,(X =k);
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Bayesian approach

* D represents the observed data (i.e. the bases at a particular lo Tlo) e

e G represents the genotype at the locus.
— (There are 10 possible genotypes: AA, CC, GG, TT, AC, AG, AT, CG, CT, GT)

e Let D={b,, ..., by} and G be a genotype A/A,.

e Our aim to compute Pr(G|D).
e Then, we report the genotype G that maximizes Pr(G|D).

e By Bayesian, Pr(G|D) « Pr(G) Pr(D|G).
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Posterior Probability Pr(D | G)

* Since the read bases pileup at the reference position are
independent,

Pr(D|G) =] ] Pr(b |G)

e Assume G=A,A,, Pr(b,|G) can be computed as follows.
Pr(b,|G) =Pr(b | AA) =3 (Pr(b | A) +Prib | A,))

Pr(b, | A,) = )
" |le /3 otherwise
di

where e; = 10 10 is the error probability and g, is the Phred score
of the base b..

Algorithms for Next-Generation Sequencing Copyright @ Wing-Kin Sung



/i >
‘J ALGORITHMS FOR >

Prior probability Pr(G)

e There are 10 possible genotypes G.

e The prior probability Pr(G) is influenced by its identity as a homozygous reference,
heterozygous, or homozygous non-reference genotype.

e Letr be the reference and s be the alternative allele.
— Typically, we set

e Homozygous SNP rate = altHOM = 0.0005 ._._.

e Heterozygous SNP rate = altHET = 0.001 u 0.0005 0 0.001

e (For example, r=G and s=A.) 0 0 0
0.9985 0
0
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e Many methods use extra biological information to improve
the estimation of Pr(G).

 For example, we can use Ti/Tv ratio and dbSNP.

e Transition (Ti):

— purine<->purine (A <-> Q)

— pyrimidine pyrimidine<-> pyrimidine pyrimidine (C <->T)
* Transversion (Tv):

— purine <-> pyrimidine (A <->C, A<->T, G<->C and G<->T)
e Transition is more frequent than transversion

e dbSNP is the a database of known SNVs.
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Prior probability in SOAPsnp

e For example, in SOAPsnp, for non-dbSNP position

e Assume
— heterozygous SNP rate 0.001, homozygous SNP rate 0.0005
— Reference allele:G

— Transition/transversion ratio 4

e Note: Ais transition of G; Cand T are transversion of G

IS N R L

u3.33E-O4 1.11E-07 6.67E-04 1.11E-07
8.33E-05 1.67E-04 2.78E-08
ﬂ 0.9985  1.67E-04

8.33E-05
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Example

*  Pr(b,=A|AG)=1/2(Pr(b,=A| A)+Pr(b,=A|G))=1/2((1-102)+102/3)=0.49667
e Pr(b,=G|AG)=1/2(Pr(b,=G | A)+Pr(b,=G|G))=1/2(10"/3+(1-10%))=0.466667
o Pr(b;=A|AG)=1/2(Pr(b;=A|A)+Pr(b;=A|G))=1/2((1-10"%)+105/3)=0.499997

e Pr(D|AG)=0.49667*0.466667%0.499997 = 0.115888
A 20

e Pr(AG|D) = Pr(D|AG)*Pr(AG)=0.000116

102
G 10 101
 Hence, we predict the genotype is AG. A 50 105
b AG AA GG other
GAACTCGCACGATCAG A 0.496667 0.99 0.003333333 0.003333
GAACT AC G 0.466667 0.033333 0.9 0.033333
ACT%EEACGA A 0.499997 0.99999 0.333333  3.33x10°6
T ACGATC Pr(D|G) 0.115888 0.033  0.00000001 3.7x10%0
Pr(GID) 0.000116  1.65E-05 9.985E-09 0
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Somatic and germline SNVs detection

e Given the tumor and normal tissue of the same patients.
e Somatic SNVs are SNVs that appear in tumor but not normal.

e Germline SNVs are SNVs that appear in both tumor and non-
tumor while they are different from reference.
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Somatic SNV detection

* |nput: sequencing data from Tumor and Normal
e Qutput: Somatic SNVs

 Simple method:
— ldentify SNVs from tumor sample
— ldentify SNVs from normal sample
— Report SNVs appear in tumor but not normal.

e Better methods: MuTect, VarScan2
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VarScan2: Fisher exact test

e Use fisher exact test in the following 2-by-2 table.
e |f p-value < 0.1 (default),

— The variant is called somatic (if normal match reference)
— It is called LOH (if the normal is heterozygous)

e Otherwise, it is a germline variant.

# of variant # of reference
supporting reads supporting reads
a b

C d
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Somatic SNV calling by Fisher exact test

 To test if the SNV appear more in tumor, we can use Fisher exact test.

($)(c, )
Ctr \x/\Cr—Xx

* Ifp-value = .2, (Ct+cn> < 0, reference allele is under-represented in tumor.
Cr .
 |Iflocusjin normalis a homozygous reference, then it is a somatic SNV. J -
- _ o —— Reference
e |Iflocusjin normalis heterozygous, then itis -
an LOH (Loss Of Heterozygosity). - ~ Reads in tumor
e Otherwise, locus j is a germline variant. S
L
e For the example, - REF allele | ALT allele —
- - —a—
|F?[ Yalue O.'[(')Olslz.v Tumor ‘o " Reads in adjacent normal
is a somatic : — g
Normal 9 2 c,=11 —
Total c,=10 C\= 19
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 Consider a locus j whose reference base is .
e Input: Dy = {b4, ..., b,}and Dy = {b'4,...,b",,,}.

* Two steps:
e 1. Checkiflocusjisa SNV in tumor.
e 2. Verify if locus jis somatic SNV.
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Step 1: Call SNV in Tumor sample

e Input: Dy = {by, ..., b}
 We explain the data using two models.

— M,: There is no variant at this locus. The observed non-reference bases are due to random
sequencing errors.

— M}": A variant m exists; the frequency of mis f.
e Note: MO — Mg)n
» L(MP*|Dr) = [y Pr(by| M) = TTf-, Pr(bile;, 7, m, f)

fe—3‘+(1—f)(1—ei) ifbh =r
Pr(bi|ei,r,m,f):<f(l—ei)+(1—f)% if b =m
— If b =r,m
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Step 1: Call SNV in Tumor sample

e Variant is detected by their ratio.
e We declare m as a candidate variant if

P(m, f)L (M| Dr)

=P )Moy =

e where 9 is set to be 2.

e P(m,f) =P(m)P(f) [assume they are independent]
=P(m) [assume P(f) is uniformly distributed]
=§E(mutation frequency)
=10 [somatic mutation frequency ~ 3x10°]

e Hence, we declare m as a candidate variant if

L(M¢"|Dr) 1-107°
m}ngOD(m,f) = m}gx LMaIDD) > logqo W(ST ~ 6.3
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e |tis time consuming to find f that maximize LOD(m,f).

 |n MuTect, it estimates f to be

number of mutant reads
total number of reads

f =
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Exa m p | e Pr(b; = Ale; =102, r =G,m=4,f) 0.661111 0.003333
Pr(b, = Gle, =107, r=G,m=A,f) 0.322222 0.9
Pr(b; = Ale3 =107, r =G,m =A,f) 0.666661 3.33x10°

2
e Wesetf = e
2 2 2 1072 |
Priby =Ale1 =10 %, r=Gm=Af=-)=—(1-10"%) 4+ (1 - 3) = 0.661111
37 3 37 3
2 2101 2 .
Pr(by =Glea =107, r=G,m=A,f = g) =35+ (1-— 5)(1 —1071Y)  =0.322222
2, 2 ; 2 .107°
e We have

— Pr(D|M{') = 0.661111*0.32222*0.666661=0.142015
— Pr(D|M,) = 0.003333*0.9%3.33x10°¢ = 1x10°8

GAACTCGCACGATCAG
A 20

GAACTCACAC 10
ACTCGCACGA c T T
TCACACGATC . - 108
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Example

e We have

— Pr(D|M#) =0.661111*0.32222*0.666661=0.142015
— Pr(D|M,) = 0.003333*0.9*3.33x10°¢ = 1x10°8

= 7.15.

+ Then, LOD (m=A,f =2) =

e Since 7.15 > 6.3, we predict this locus is a SNV.

GAACTCGCACGATCAG

GAACT AC 1072
ACT G ACGA G 10 10—1

TCACACGATC A = 105

Algorithms for Next-Generation Sequencing Copyright @ Wing-Kin Sung
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Step 2: Verify if the locus is somatic  SEE

| pLrey

* Given a candidate somatic SNV at locus i, we said it is a somatic SNV if
Pr(locus j is reference|Dy)  Pr(somatic)L(Mo|Dy) -
Pr(locus j is mutated|Dy)  Pr(germline)L(M}L|Dy) ~ N

e Otherwise, itis a germline SNV.

 Since we expect 3 somatic SNVs out of 1 million bases, we set Pr(somatic) = 3 x 107°.
* Fact:

— There are 30 X 10° dbSNPs.

— We expect 3 X 10° SNVs per individual

— We expect 95% SNVs are in dbSNP position.

* For non-dbSNP, we set Pr(germline) = O'OSXSx§°6 =5%107°
3X10

* For dbSNP, we set Pr(germline) = 0.05x3x10% _ () ()95

30%106
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Step 2: Verify if the locus is somatic  SEE]

e Weset dy = 10.

L(Mo|Dn)

e |et LODN —_ L(Mg:lleN).

e Rule:
— For non-dbSNP, locus j is a somatic SNV if LODy = 2.2.
— For dbSNP, locus j is a somatic SNV if LOD,y = 5.5.

Algorithms for Next-Generation Sequencing Copyright @ Wing-Kin Sung
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Simple SNV caller gives ol &
many false positives = e

* Reasons:
— Systematic errors in base calling.
— Read mapping error.

A number of techniques are proposed:
— Base quality score recalibration
e Used by SOAPsnp, GATK, MuTect
— Local realignment
e Used by GATK, MuTect

— Rule-based filter
e Used by MAQ, SamTool, GATK, MuTect
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A more advance SNV caller

e 1. Align the reads

e 2. Realign the reads

e 3. Base quality Recalibration
e 4, SNV calling

e 5.SNV filtering

Algorithms for Next-Generation Sequencing Copyright @ Wing-Kin Sung



A more advance SNV caller

e |nput: the alignment file (BAM file)
e Qutput: a list of SNVs/indels (VCF file)

Local ‘ Duplicate l
Realighment ‘ read marking '

‘ Base quality ‘ SNV and Rule-based
‘ recalibration ' indel calling ‘ filter

VCF
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SNV calling is heavily affected by read alignmeng

e Read alignment is difficult.

e DePristo et al.(Nature Genetics, 2011) found that nearly two
thirds of the differences in SNV calling can be attributed to
different read mappings between BWA and MAQ (for HiSeq

and exome call sets).
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Local realighment

e Read mapping near indels is difficult.
e On the left, there are three SNVs A, Gand T.

o After realignment, only SNV C->T is remained.

CC TTTITTTGT T TG T T TAT T TG T T T GT T T GT T T GT T T TGAGACGGAGTCTTGCTCTATTGCCC

TTGTTTGTTTATTTGT T TGT T TG T T TGT T TTGAGACGGAGTCTTGCTCTAT

A ——

A=

|
]
!
HeH Ao =

[P e e PR A e

TTTTTTT&TTTGTT TTGTTTRT [ g X 4 ITTTTTTGT T TGT T TATTTGTTITG T TTOGT TTGT T T TGAGACGGAGTCTTLETETATTG
HiSeq data, raw BWA alignments HiSeq data, after MSA

n

cc

DePristo et al. Nature Genetics, 2011.
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GATK local realignment algorithm (1)

* 1. Find regions that
— contain at least one read with indel;
— contain a cluster of mismatch bases; or
— contain some known indel (e.g. from dbSNP)

e 2. For each region, construct haplotypes
— from reference sequence and known indel
— from indels in reads spanning the site

— from Smith-Waterman alignment of reads that do not perfectly
match the reference genome.
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Example

Reference H,;: GTCATCAGCTCACATAGACACCATTGAACACGTGGGTCACCATAT

R,z ~TCATCAGCTCACATAGACACTG=—m—mmmm—mmmmm e
| Rys ————- CAGCTCACATAGACAC___ TGAACACG-———————————-—
Aligned | p - GCT__ CATAGACACCATTGAACACGT———————————-—
reads Ry === - TAGACAC___ TGAACACGTGGGTCACC----
ReZ ——m—mmmmmmm e ACACTGAACACGTGGGTCACCATA-

R, has a cluster of mismatches while R, and R, have a indel.
The set of reads overlap with the indel and the cluster of mismatches is {R, R,, R;, Ry, Rc}.

From these reads, we observe two possible deletions (delete CAT and delete CA).
We generate two possible haplotypes:

H, = TCATCAGCTCACATAGACAC | TGAACACGTGGGTCACCATA.

H, = TCATCAGCT | CATAGACACCATTGAACACGTGGGTCACCATA.

Algorithms for Next-Generation Sequencing Copyright @ Wing-Kin Sung
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GATK local realignment algorithm (l1)

3. For each haplotype H,
— Align reads without gaps to H,
— Suppose R, ..., R, are aligned to H..
— Compute the score L(H))

* LetR,be the " read. Let R, be the k™ base of read R..

* Letg;, be the error probability determined from the quality score of the kth base of the read
R

i
* L(Rj|H)=ITcy jp; LRy IH;)
e L(H)=1II L(R;[H;)

j=1..m

4. |dentify the haplotype H, that maximizes L(H.)
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~

4 l et o
i’ ALGORITHMS FOR =

y

NENT-GENERATION SEQUENCING ™
/d ; :

( 5 aﬂ& I%‘h r{

/i
(=8
£

Z
j

§

Example

Assume every base is Q20.

H, = TCATCAGCTCACATAGACACTGAACACGTGGGTCACCATA

%zl: TCATCAGCTCACATAGACACTG-——————————mm o= L(R,|H,)=1
R,z —---CAGCTCACATAGACACTGAACACG--—————————- L(R, | H,)=1
Ungapped | p - ________ GCTCATAGACACCATTGAACACGT———————- L(R;|H,)=1022
alignment | p - _____________ TAGACACTGAACACGTGGGTCACC--- L(R,|H,)=1
RgI ————mm e ACACTGAACACGTGGGTCACCATA L(R,|H,)=1
H, = TCATCAGCTCATAGACACCATTGAACACGTGGGTCACCATA
" R,z TCATCAGCTCACATAGACACTG=—=————mm e e L(R,|H,)=10"
Ungapped | Re: ———~CAGCTCACATAGACACTGAACACG=—===-==-=-==--- L(R, | H,)=1022
alignment | Ra® —====- GCTCATAGACACCATTGAACACGT————————————— L(R, | H,)=1
Ry ——————— - TAGACACTGAACACGTGGGTCACC----- L(R,|H,)=10"10
| Rgl —m—mmmmmm e ACACTGAACACGTGGGTCACCATA-- L(R,|H,)=10"

L(H,)=L(R, | H,)L(R, | H,)L(Rs | H,)L(R, | H,)L(Rs | H,)=10"22.
L(H,)=L(R; | H,)L(R, | Hy)L(Rs | H,)L(R, | H,)L(Rs | H,)=10-38,

Since L(H,) > L(H,), we select H,.

Algorithms for Next-Generation Sequencing Copyright @ Wing-Kin Sung



GATK local realignment algorithm (l11)

* Denote L(Hy, H;) :szl_.m max{L(R; |H;),L(R; [H,)}
* 5. Accept H. if log (L(Hy,H,)/L(H,)) > 5.
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Example

H, = TCATCAGCTCACATAGACACTGAACACGTGGGTCACCATA

%21: TCATCAGCTCACATAGACACTG-—-—-————————————- L(R,|H,)=1
R,z ——-—-CAGCTCACATAGACACTGAACACG--—————————- L(R,|H,)=1
Ungapped | p - _______ GCTCATAGACACCATTGAACACGT ———-———~ L(Ry|H,)=1022
alignment | p - - TAGACACTGAACACGTGGGTCACC--- L(R,|H,)=1
Rgr ——mm—mmmmm - ACACTGAACACGTGGGTCACCATA L(R.|H,)=1
Ho = TCATCAGCTCACATAGACACCATTGAACACGTGGGTCACCATA
" R,z TCATCAGCTCACATAGACACTG-—-——————————————o—— L(R, | Hy)=10"2
Ungapped | Rz ————CAGCTCACATAGACACTGAACACG====—==-=-=—=-- L(R, | Hy)=10"
alignment | Ra® ——=====- GCTCATAGACACCATTGAACACGT-—-——-—-—-—- L(R,| Ho)=10"
Ry ——————— - TAGACACTGAACACGTGGGTCACC---  L(R,|H,)=10"1°
| Rgl —m—mmmmmm e ACACTGAACACGTGGGTCACCATA  L(R, |H,)=10"

L(Ho)=L(R; | Ho)L(R, | Ho)L(R5 | Ho)L(R,4 | Ho)L(Rg | Hy)=10734,
L(Ho,H,)=L(R;|H{)L(R, | H{)L(R3 | Ho)L(R, | H,)L(Rs | H,)=10".

Since log (L(H,,H,)/L(H,))=30>5, we accept H;.
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GATK local realignment algorithm (1V)

* 6. Realign every read R; to H; if L(R;|H;)>L(R;[H).

Reference H,: GTCATCAGCTCACATAGACACCATTGAACACGTGGGTCACCATAT

R,z ~TCATCAGCTCACATAGACACTG===——=—mmmm—mm e mmm =
| Ry ————- CAGCTCACATAGACAC___ TGAACACG-———————————~—
Aligned | p - GCT__CATAGACACCATTGAACACGT—=—————————~—
reads Ry ————mmmmmmm e TAGACAC _ TGAACACGTGGGTCACC——--
Rg: ——mmmmmmmmmmm e ACACTGAACACGTGGGTCACCATA-

-

Reference Hy: GTCATCAGCTCACATAGACACCATTGAACACGTGGGTCACCATAT

R,z ~TCATCAGCTCACATAGACAC  TGemmmmmmmmmmmm e

| Ry: ————- CAGCTCACATAGACAC___ TGAACACG-———————————~—
Realigned | p - ________ GCTCATAGACACCATTGAACACGT———————————~—
reads Ry: ——mmmmmmmm e TAGACAC  TGAACACGTGGGTCACC———-
Re: ——mmmmmmmmmmm e ACAC___ TGAACACGTGGGTCACCATA-

Algorithms for Next-Generation Sequencing Copyright @ Wing-Kin Sung



i
J’ MGI]HITHMS FIIR
NEXT EENEHHTII]I\I SIIIIIENBING

Marking of duplicate reads

 Due to the PCR amplification step during the NGS library preparation,
duplicate reads may generated.

e Those duplicate reads may bias the SNP calling.
e Hence, we need to mark them.

e Method:

— Merge all lanes.

— ldentify all paired-end reads where the outer ends map to the same position on
the genome.

— Those paired-end reads may be generated by PCR amplification.
e They may result in false SNP calls.

— We mark all these reads as duplicates.

Algorithms for Next-Generation Sequencing Copyright @ Wing-Kin Sung
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Quality score

e By definition, if a base with error probability p,
its quality score is -10 log,,p.

* In previous discussion, we use this score to improve SNV
calling.

e However, the inaccuracy and covariation patterns differ
strikingly between sequencing technologies.

 We need to recalibrate the quality score.

Algorithms for Next-Generation Sequencing Copyright @ Wing-Kin Sung
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Three factors that affect the quality score SEE

e Position of the base

— The error rate is different at different position

e Substitution bias

— Some substitution mismatches (like T->G) are under-represented

e Dinucleotide context

— G is a likely base before an error

Algorithms for Next-Generation Sequencing Copyright @ Wing-Kin Sung
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Cycle effect

Although all are Q25,

Quality is estimated by the estimate qualities are
- 10 log,,(mismatch rate) different at different positions

40 /

—— Q5 — Q10— Q15 - Q20 75

-

W
o

TSI

0 5 10 15 20 25 30 35

Estimated quality
s 3

Read coordinate
R Li et al(2009) Genome Research 19:1124-132
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Substitution bias

* (O-R)/R= (mismatch rate - Qscore error rate)/(Qscore error rate)

Read=G and Ref=T
Qscore under-estimate mismatch rate

Read=G and Ref=C

GG Qscore over-estimate
p / mismatch rate

% frequency deviation

Type of substitutions
R Li et al(2009) Genome Research 19:1124-132
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Dinucleotide context

1.6 -
Correlation: 0.931
p-value: 0 . .
G is a likely base before an
error
1.4 -
3
g
g 1.2
]
I
=
=
2
3 1.0 A ee0
FRE o
£ Cen TeC
CeG 1,4 AeC
AeG T
E(l(,aeT
0.8
AeT
TeT
T T T T T
0.8 1.0 12 1.4 1.6

Frequency in Beta

Dohmet al (2008) NAR. 36(16):e105
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e A number of methods are proposed to recalibrate
base quality score:
— SOAPsnp
— GATK
— ReQON

e ReQON uses logistic regression model on
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Simple recalibration of quality score

* Letb,, ..., b, beall bases.
* Letq,, ..., q, be the corresponding quality scores.

_4i
e Lete; = 10 1o,
* Let Ugiobal = —10 loglO(% ZTL}=1 ei)'
e Let x be the number of true errors.
* Lete = —101log;(=.

* Then, the recalibrated score is g;+(&-0gopa)-

Algorithms for Next-Generation Sequencing Copyright @ Wing-Kin Sung



i) ALGORITHNS FOR >
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qguality score

e |n practice, € and x is unknown.
e We assume any SNV that is not in dbSNP128 is an error; otherwise, it is not an error.

 Example: Suppose we have 1000 reads, each of length 100bp.
e So, we sequenced 100k bases.

e Assume 100 of them are different from the reference bases.

e Qut of these 100 bases, suppose 95 of them are dbSNP128.

e Then, x=100-95.

¢ €=—-10log,u 2> =43,

100000

* SUppPOSe Qgopa=45.
e If =30, the recalibrated score is 30 + 43 — 45 = 28.

Algorithms for Next-Generation Sequencing Copyright @ Wing-Kin Sung
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Recalibration table

e Align subsample of reads from a lane to human reference
— Exclude all known dbSNP sites
— Assume all other mismatches are sequencing errors

error(prev(bi)b;pos(b;).qi)+1

* &(prev(b;)b;, pos(b;),q;) = —101logy, count(prev(b;)b;,pos(b;),q;)+1

* The recalibration score of b; is (e — CIgmbal) + (e(prev(b;)b;, pos(b;),q;) — q;)

prev(b,)b,
T pos(by), ¢

Algorithms for Next-Generation Sequencing Copyright @ Wing-Kin Sung
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Example

e Example:
— error(AA, 2,40) =8
— count(AA, 2, 40) = 3239

8+1
—e(4A,2,40) = -101og,, = 25.56
3239+1 Positions | Count | Diff
1&2 from ref
3239 8+1
—10log10 35397
CA 4223 5 8+1
~10l0g10 353517
prev(bi)bi GA 3518 2 1010g 8+1
T pos(b)), q; 103739+ 1
TA 4032 20 8+1

—10log103739 77

1T
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Rule-based filtering

e |tis used to filter false positives resulting from correlated sequencing artifacts.

e Samtools (or MAQ) rule-base filter:
— Discard SNPs near to indels (within 3bp flanking region of a potential indel).
— Discard SNPs with low coverage (covered by 3 or fewer reads).
— Discard SNPs covered by reads with poor mapping only (mapping quality lower than 60 for all covered reads).
— Discard SNPs in SNP dense regions (within a 10bp region containing 3 or more SNPs).
— Discard SNPs with consensus quality smaller than 10.

e MuTect rule-base filter:
— Discard SNPs near to indels (false positives caused by misaligned small indel events).
— Discard SNPs covered by reads with poor mapping
— Discard SNPs on triallelic sites
— Discard SNPs covered by reads with strand bias
— Discard SNPs covered by reads mapped to similar location
— Discard SNPs in tumor if some reads in normal also contain the SNPs

e Discard SNPs also appear in a panel of normal samples (since they are not expected to cause disease).

Algorithms for Next-Generation Sequencing Copyright @ Wing-Kin Sung



Iterative mapping-based method for
SNV calling

 Previous methods assume SNVs are sparse.

e When there are SNV hotspot (2 or more SNVs cluster
together), previous methods fail to identify SNVs.

e Such scenerio happens in bacteria.

e Solution: Iterative mapping
— iCORN (Otto et al. 2010)
— ComB (Souaiaia et al. 2011)

Algorithms for Next-Generation Sequencing Copyright @ Wing-Kin Sung
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 Mapping allow at most 2 mismatches. y
SNV is called if there exists 2 supporting reads.

Original reference

X x k x X
kK X X X

gt . Reference after 1 iteration
x X X X X Reference after 2 iteration
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Iterative Correction of Reference Nucleotides EEg=i

(iCORN)

Repeat

1. Map reads to reference using SSAHA.

2. Call SNVs and indels

3. Correct the reference using the called SNVs/indels

4. Remap the reads and measure the coverage (using SNPoMatic)
5. If the coverage decreased, then undo correction.

Until no new SNVs/indels can be found.
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 i{CORN can improve the sensitivity of a SNV caller.

e However, it also increases the number of false positives.

Coverage plots

Mapping reads

T Mean 84x = 1. Iteration

- 2. teration
0x

— 3. lteration

Coverage plots

Perfect mapping reads ,.—f""\' : Mean 63x - 4. Iteration
- 5. lteration

\.l"\
\.-'Q-—‘-f'r \.-\.\zg
0x

ttttttttttttttttettttetttttttttttaaaaaaatttttttttttgttggtttgatgttt
tttttttttttttttttttttttttttttttttaaaaaaatttttCttCttgttggtAtgatgttt
tttttttttttttttttttetettttCttttttTaaTCCatatttottottgttggtatgatgttt
ttttttttttttttttCtttttttttotttttttaatecatatttettottgttggtatgatgttt
ttttttCtttttttttotttttitttotttttttaatecatatttettettgttggtatgatgttt

ttttttCtttttttttCLttttttttCLtttttTaaPCCatatttCLECttgttggtAtgatgttt
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Indel calling

* |ncreasing evidence of indels being involved in a number of diseases
(Yang et al. 2010).

1. Realignment based approach (discussed!)
— E.g. GATK, Dindel
2. Split-read approach
— E.g. Pindel, microindels, Splitread
3. Span distribution-based clustering approach
— E.g. MoDIL
4. Local assembly approach
— E.g. SOAPindel

Algorithms for Next-Generation Sequencing Copyright @ Wing-Kin Sung
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Split-read approach

e E.g.Pindel

1. Enumerate all paired-end reads where only one read is fully aligned.

2. Check if the non-fully aligned read can map near to its mate after allowing a short indel
3. Anindel event is reported if such candidate indel is supported by at least two paired-end reads.
 Pindel can detect the exact breakpoints of an indel.

S N Deletion
|

/ Y Insertion

This is known as the ‘anchored split mapping’ signature.

Reference genome

Reference genome
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e MoDIL. The first method to use the span distribution-based clustering approach;
allowing the detection of smaller indels, and explicitly modelling heterozygosity.

i 1

s » e
o - >
Oo——— B aE B au
B »—a -
L
— —
200 230 200 230
Same as reference genome Homozygous deletion Heterozygous deletion
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Algorithm

Align the paired-end reads to the reference genome.

|Identify the span distribution Y of the paired-end reads.

|dentify paired-end reads with abnormal insert size.

Find clusters of paired-end reads that overlap with the abnormal insert size.

A S

For each cluster,

— Check ifitis:
e (1) The same as the distribution Y
e (2) A mixture of two distribution X1 and X2
e (3) A distribution X
— EM algorithm is used to model the cluster as a mixture of two distributions. (KS test is used to
evaluate the goodness of the mixture.)
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e LetY be theinsert size distribution of the whole library. Let u be the mean insert size.

 Let X be all paired-end reads around an indel of size s, we expect their insert size distribution has the same
shape as Y, but the mean is shifted to u + s.
e Precisely, let X ={X,, ..., X,} be the insert sizes of a cluster of paired-end reads with mean py. We expect

Pr(X;lpux) = Pr(Y = X; — pux + py).

: 1

- 1 1 -
1 1
-

200 230
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* If X contains two set of paired-end reads X, and X, then the insert size
is @ mixture of two distributions of the same shape as Y, where their means are 4

and ug.
(Uy, ty) (uy + s, 1y +5) (Uy, by +5)
e S » . an  B>—
Oo—— B aa /E——a
OD—— ;B aa —a
D [ e | [ |
oD [ S E—— [ SR E——
OoD—da S S
L
195 219 195
199 228 200
200 230 210
201 231 219
210 240 230
200 230 200 230 240
Same as reference genome Homozygous deletion Heterozygous deletion
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Aim

* |nput:
—Y={Yy, ..., Y|y} is the insert sizes of the full library. Let iy be its mean
and oy be its standard derivation

— X={Xy, ..., X|x} is a mixture of two set of insert sizes XAand XB
extracted from the two haplotypes.

e Aim: We aim to find mean insert sizes u, and ug of the two
sets X and XB, respectively.
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* Y={Y, .., Yylistheinsert sizes of the full library
— Let uy be its mean and gy be its standard derivation
* X={Xy .., Xy} is the insert sizes of the cluster
— Let uy be its mean and oy be its standard derivation

 To check if X fits the distribution of Y, we can use KS test.

—

szez I(Zj—puz=v)

o Letf,(v) = Z , where % .

®

1 ifZ;—u, <v S
1(Zj —pz <v) = "oy Rz =T a 06

0 otherwise S
* The KS statistics is g 04
— Dy = m1?X|fX(U) — fy()l. § 0.2

e If Dy is significantly small,

Y and X have the same shape. h
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Check if X fits the mixture model

* |Input:
- Y={Y, .., Y|Y|} is the insert sizes of the full library,
— X is a mixture of two set of insert sizes X* and X&

e To test if the distributions of both X* and XB have the same shape as that
of Y, we use the following statistics:

B
— —Dya+ X |DXB where Dy = mafoX(v) fy(v)]

If the statistics is significantly small, we accept that X is a
mixture of distributions having the same shape as Y
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Learn the mixture model of X

e We perform EM algorithm.

XA
« Weaimtolearn puy, ug and A, where 1, = %

Input: X={X,, ..., X,.}

e 1. Initialization of w4, ug andA,

2. E-step: Compute yj; = Pr(X; € Xt|A4, g, ti5)
3. M-step: Determine )LA, Uy and Ug.

_/’lA__ ]1)/]A)AB ]1y]B_1_/1A
— Uy and ug are set to be the value that minimizes

Ag - fr(v)

ZX i—UASV VA
A4 max : A — fr(v)

+ AB max
v
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E-step

* Compute yj; = Pr(Xj € XtMA,uA, ,uB)

Ac Pr(X;luc)
Aa Pr(X; ) +A5 Pr(X; i)
— where t=A,B, j=1,...,n.

* Vit =
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M-step

-‘" )m: o

* Given yj; = Pr(X S Xt‘/lA,uA, HB) find A4, 14 and ug that minimizes
AADXA + ABDXB.

* Wehave: A4 = -3, vja, Ap = Z] vip=1—144

* U, and ug are set to be the value that minimizes

A4 m3X|fA(V) — fy(W)| + 15 m1§1X|fB (v) — fy()]

ZX]'—[J,tSv Vit ZXj—utSv Vit

—where f,(v) = =
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Determine the indel size

e Let uy be its mean and oy be its
standard derivation of the full library Y

e LetX=1{X,, ..., X } be the insert sizes of ._._ -
a cluster whose distribution is the same - -
as Y. o

* Let uy be the mean insert size of X

e Then, the indel size follows a Guassian
distribution N(uy — Uy, % . 230
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Local assembly approach

e This approach is used by SOAPindel and Scalpel.
e Method for SOAPindel:
e 1. Identify a set of reads whose mates do not map on the reference genome.

e 2. Find the expected positions of the unmapped reads (given the insert size). These reads are called
virtual reads.

3. Identify cluster of virtual reads. Then, for each cluster, contigs are generated by de novo assembly.

4. Align contigs on the reference genome to identify potential indels.

(a) -

(b) s
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